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Abstract

The Distributed Key Tunnel Protocol is a post quantum secure channel
mechanism that combines asymmetric key exchange, digital signatures,
pre-shared keys, state hashing, and a state evolving ratchet to provide au-
thenticated confidentiality and integrity for long lived connections. The
protocol uses a flexible construction that supports multiple post quan-
tum key encapsulation and signature schemes, including lattice based
families such as Kyber and Dilithium and optional code based or hash
based alternatives such as Classic McEliece and SPHINCS+. Directional
pre-shared keys may be configured to strengthen the tunnel establish-
ment process and to provide hybrid symmetric protection that remains
effective even if public key primitives are weakened in the future.
This paper provides a complete formal cryptanalysis of the protocol. It
beginswith an engineering level specification of all handshakemessages,
key schedule components, transcript hashing rules, and transport phase
operations, including the derivation of directional root keys, RCS tunnel
keys, and sequence based nonces. The description is based on a detailed
examination of the DKTP specification and the reference implementa-
tion and is written to enable faithful verification of all state transitions
and cryptographic inputs.
The paper then presents a formalmodel of DKTP that includes long term
keys, configurable pre-shared keys, ephemeral key pairs, ratchet states,
and the complete transcript driven key schedule. A game based adver-
sarial model is defined with support for message manipulation, compro-
mise of various key classes, quantumoracle queries toKeccak based func-
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tions, and key indistinguishability tests. Security goals include authenti-
cation, handshake confidentiality, ciphertext integrity, replay resistance,
forward secrecy, post compromise security, and ratchet security.
For each goal we provide a reduction to the underlying post quantum
assumptions, including IND-CCA security of the selected key encapsula-
tionmechanism, existential unforgeability of the selected signature scheme,
pseudo-randomness of the domain separated Keccak based key deriva-
tion functions, and confidentiality and integrity of theRCS authenticated
encryption system. The proofs include a transcript integrity lemma that
incorporates pre-shared key inputs and formalizes binding of all hand-
shake messages into a single authenticated transcript.
The formal analysis is complemented by an implementation conformance
section that verifies that the statemachine,message formats, KDF inputs,
ratchet behavior, and failure handling in the reference implementation
correspond to the formal model. A concrete security section provides se-
curity level estimates for typical parameter selections and quantifies the
contribution of pre-shared keys. The results show that DKTP achieves
strong post quantum security under a wide range of assumptions and
provides a robust secure channel mechanism suitable for long term pro-
tection against both classical and quantum adversaries.
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1 Introduction
The Distributed Key Tunnel Protocol is a post-quantum secure channel pro-
tocol designed to establish long lived, stateful, authenticated, and confiden-
tial tunnels between two peers. DKTP combines post quantum public key ex-
change, post quantum signatures, pre-shared symmetric keys, a cookie based
session binding mechanism, and a state evolving tunnel key ratchet. The de-
sign emphasizes long term robustness, flexibility in the choice of cryptographic
primitives, resistance to quantumcapable adversaries, and precise control over
session state transitions.
The protocol described in this paper is identical to themechanism implemented
in the DKTP reference code and documented in the DKTP technical specifica-
tion. All handshake fields, key derivation inputs, associated data structures, re-
play protections, and ratcheting behaviors are drawn directly from those docu-
ments. The purpose of this formal analysis is to provide a rigorous, mathemat-
ically grounded foundation for the protocol as deployed, not for a simplified
or idealized variant.

1.1 Background and Motivation
The transition from classical to post quantum cryptography presents several
challenges for secure channel protocols. Classical authenticated key exchange
protocols often rely onmathematical assumptions that are no longer viable un-
der quantum adversaries. Post quantum alternatives exist, but many have dif-
ferent performance characteristics, different security reductions, and different
requirements for key management.
DKTP addresses these issues by providing a modular construction that sup-
ports multiple post quantum key encapsulationmechanisms and digital signa-
tures. The protocol does not assume a single fixed suite of primitives. Instead,
it is compatible with a range of algorithms, including lattice based systems
such as Kyber and Dilithium, code based systems such as Classic McEliece,
and hash based systems such as SPHINCS+. Implementations select parame-
ter sets at compile time through configuration and do not alter the structure
of the protocol.
A second motivation is resilience in the presence of long term compromise.
Many systems rely solely on public key material during the handshake. DKTP
supplements this with directional pre-shared symmetric keys. These keys pro-
vide additional entropy, improve resistance to downgrade attacks, strengthen
session establishment when long term static keys are exposed, and contribute
to post compromise recovery after the session transitions into its transport
mode.

5



Finally, DKTP is designed for systems that require stable stateful tunnels rather
than single pass exchanges. The protocol integrates a tunnel level key deriva-
tion mechanism, per direction sequence numbers, authenticated timestamps,
and a ratchet that updates symmetric keys after eachhandshake. This supports
long-lived channel operation with periodic renewal of cryptographic state.

1.2 Design Objectives for DKTP
DKTP was created according to several engineering and cryptographic objec-
tives.
• Post-quantum security. The protocol must rely exclusively on crypto-
graphic primitives that remain secure in the presence of quantum adver-
saries. TheKEMmust satisfy IND-CCA security and the signature system
must provide existential unforgeability under chosen message attack.

• Support for algorithm agility. The protocol must remain functional
when instantiated with any supported post quantum KEM or signature
scheme. This includes configurable options for Kyber, Dilithium, Clas-
sic McEliece, and SPHINCS+, selectable by the implementation without
changing the packet structure.

• Use of directional pre-shared keys. Each direction of communication
has an independent pre-shared key. The handshake must incorporate
these keys to strengthen initial authentication and key derivation, and the
protocolmust update these keys during ratcheting to provide post compro-
mise recovery.

• Cookie based session binding. The handshake does not use a transcript
hash. Instead, the initiator and responder compute a session cookie from
the session configuration and verification keys. This cookie is transmitted
in earlymessages and authenticated in later messages, ensuring that both
parties agree on the same session parameters and preventing tampering
or reflection attacks.

• Symmetric tunnel keys with directional separation. The tunnel uses
separate symmetric keys for sending and receiving. These keys are de-
rived from the shared secrets produced by the KEM, combined with the
directional pre-shared keys and the authenticated session cookie.

• Replay and ordering guarantees. All encrypted transport packets in-
clude a fixed format header containing a flag byte, a strictly increasing
sequence number, a payload length, and a timestamp. This header is au-
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thenticated during decryption, providing replay protection and ordering
guarantees.

• Secure implementation and state handling. The protocol must be im-
plementable in constant time. All ephemeral secrets, intermediate keying
material, and ratchet states must be securely erased after use. Sequence
numbers and nonce values must be monotonic, unique, and correctly au-
thenticated.

These objectives shape the design and analysis of the protocol. They also guide
the security model developed in this paper.

1.3 Contributions of this Paper
This paper provides the first complete, specification accurate, formal crypt-
analysis of DKTP. Its contributions are:
• A detailed engineering description of the DKTP handshake and trans-
port phases based strictly on the technical specification, including session
cookies, directional pre-shared keys, KEM operations, signature valida-
tion, authenticated encryption, and state transitions.

• A formal model that captures all relevant components of the protocol, in-
cluding long term asymmetric keys, directional pre-shared keys, config-
uration identifiers, ephemeral KEM keys, authenticated session cookies,
shared secrets, tunnel keys, and ratchet values.

• Formal definitions of all security goals relevant to secure channel pro-
tocols, including authentication, confidentiality, integrity, replay resis-
tance, forward secrecy, post compromise security, and ratchet security.

• Rigorous reduction based proofs showing how each security goal follows
from the assumptions on the underlying primitives. These reductions in-
clude explicit treatment of pre-shared keys and the session cookie, and
accurately reflect the behavior of the actual protocol.

• A cryptanalytic evaluation of the protocol that describes its attack sur-
faces, explains why each attack is mitigated, and identifies the security
dependencies introduced by the KEM, the signature scheme, the AEAD
mode, and the pre-shared key mechanism.

• A concrete security analysis that quantifies the strength of the protocol
under different algorithm selections and different pre-shared key lengths.
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• An implementation conformance section that verifies the alignment be-
tween the formal model and the DKTP reference implementation, includ-
ing packet formats, KDF inputs, calls to cryptographic libraries, and era-
sure behavior.

1.4 Relationship to the Specification and Implementation
This formal analysis was developed using the DKTP technical specification,
the reference C implementation, and the implementation analysis documents
as authoritative sources. Every step of the handshake, every byte of every
message, every input to the key derivation functions, and every update of the
pre-shared keys is taken directly from those documents. The descriptions and
proofs in this paper are therefore grounded in the protocol that is implemented
and deployed.
By combining a detailed engineering description, a precisemathematicalmodel,
and complete security reductions, this document ensures that the DKTP proto-
col can be analyzed, implemented, and evaluated with confidence. The align-
ment among specification, implementation, and formal analysis provides a
foundation for long term use of DKTP in environments that require high secu-
rity against classical and quantum adversaries.

2 Engineering Description of DKTP
This section provides a complete and specification accurate engineering level
description of the Distributed Key Tunnel Protocol. The purpose is to give
a clear and detailed account of every component of the protocol before the
formal model is introduced. All information in this section is drawn directly
from theDKTP technical specification and the associated reference implemen-
tation.
DKTP establishes a secure channel between an initiator and a responder. The
structure consists of a four pass post-quantum handshake followed by a state-
ful transport phase. The handshake authenticates the peers, agrees on config-
uration, derives directional shared secrets, incorporates pre-shared keys, and
produces tunnel keys and initial nonces. The transport phase uses authenti-
cated encryption with strict sequence numbers, timestamps, and flags to pro-
vide confidentiality, integrity, and replay protection.
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2.1 Protocol Roles and State Machines
DKTP operates between two peers who take on the roles of initiator 𝐼 and re-
sponder 𝑅. Each side maintains an explicit protocol state machine that transi-
tions through the following phases.
• Idle. No session is active. The peer waits for a Connect-Request or initi-
ates one.

• Handshake. Thepeer processes one of the handshakemessages (Connect-
Request, Connect-Response, Exchange, or Verification) and updates its
handshake state accordingly.

• Tunnel Established. The peer has derived tunnel keys, initial nonces,
and updated pre-shared keys. Transport packets may now be sent and
received.

• Ratchet Ready. When a new handshake is initiated over an existing con-
nection, the peer performs a ratchet operation to refresh directional PSKs
and tunnel keys.

Eachpeer stores directional state variables, including sequencenumbers, nonces,
current tunnel keys, updated PSKs, and timers used for timestamp validation.
The state machine is symmetric except for initiation order.

2.2 Long Term Keys and Configuration Parameters
Each peer has three classes of long lived cryptographic material.

Long term verification key pair. Each peer holds a static post quantum sig-
nature key pair (𝑣𝑘, 𝑠𝑘) used to sign and verify handshake messages. The algo-
rithm is configurable andmay beDilithium, SPHINCS+, or another supported
post quantum signature system.

Directional pre-shared keys. DKTPmaintains two independent symmetric
pre-shared keys.

psk𝐼→𝑅, psk𝑅→𝐼.
These keys strengthen authentication, add symmetric protection to the hand-
shake, and contribute to forward secrecy and post compromise recovery. Each
PSK is updated at the end of the handshake using tunnel key material.
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Configuration parameters. These include:
• the KEM algorithm and parameter set,

• the signature algorithm and parameter set,

• the allowed cipher suites,

• policy parameters such as timestamp window and maximum sequence
advance.

These parameters are included in the session cookie to bind the session to the
same configuration on both sides.

2.3 Core Primitives and Algorithm Agility
DKTP is designed to be agnostic to the underlying post-quantum primitives.
Implementations select algorithms at compile time through the configuration
file. DKTP supports:
• KeyEncapsulationMechanisms: Kyber parameter sets, ClassicMcEliece
parameter sets.

• Signature Schemes: Dilithium parameter sets, SPHINCS+ variants.

• Authenticated Encryption: RCS, a wide-block Rijndael based authen-
ticated encryption construction that uses cSHAKE for key schedule and
KMAC style authentication.

• Hash Function and KDF: Keccak based functions with explicit domain
separation, used to derive tunnel keys, nonces, and updated PSKs.

The protocol structure does not change when the cryptographic algorithms
are changed.

2.4 Handshake Phases in Engineering Terms
From an engineering perspective, the DKTP handshake is realized as a fixed
sequence of six protocol messages. These messages authenticate peer iden-
tities, perform a bidirectional KEM exchange, derive directional tunnel keys,
and then explicitly confirm establishment before the tunnel is treated as oper-
ational.
𝑀1 ∶ Connect-Request

𝑀2 ∶ Connect-Response

𝑀3 ∶ Exchange-Request
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𝑀4 ∶ Exchange-Response
𝑀5 ∶ Establish-Request
𝑀6 ∶ Establish-Response

Connect-Request (M1). The initiator transmits its identity and configura-
tion material and authenticates the message using its long-term signature key.
Themessage binds the packet header fields (sequence number and timestamp)
to the authenticated payload.

Connect-Response (M2). The responder validates the initiator signature,
generates an ephemeral KEMkeypair, returns the encapsulation key, and signs
the responder message hash. The responder also derives and stores a session
cookie state value for later establishment confirmation.

Exchange-Request (M3). The initiator validates the responder signature,
performs KEM encapsulation to the responder encapsulation key, generates
its own ephemeral KEM keypair, and sends the encapsulated ciphertext and
the initiator encapsulation key, authenticated under its long-term signature
key.

Exchange-Response (M4). The responder validates the initiator signature,
decapsulates the initiator ciphertext to obtain the initiator-to-responder shared
secret, encapsulates to the initiator encapsulation key to obtain the responder-
to-initiator shared secret, and derives the directional tunnel keys and nonces
via the KDF.

Establish-Request (M5). Once both directional cipher instances are initial-
ized, the initiator hashes the session cookie state together with the establish-
request header fields and encrypts the resulting cookie-hash under the trans-
mit channel cipher. This establishes explicit confirmation that the initiator
derived the same tunnel state.

Establish-Response (M6). The responder decrypts and verifies the cookie-
hash, updates the pre-shared keys, and returns an encrypted cookie-hash de-
rived from the establish-response header fields. After the initiator validates
this response, the tunnel is considered established and operational.
The tunnel is not treated as established solely by completion of the KEM ex-
change. Operational activation occurs only after the establish request and es-
tablish response messages are verified.
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2.5 Key Schedule and Directional Separation
This subsection describes the DKTP tunnel key derivation from an engineer-
ing perspective, matching the specification. DKTP derives independent trans-
mit and receive channel keys using the two KEM shared secrets produced dur-
ing the exchange phase together with the pre-shared secrets provisioned in the
peering key structures.

Directional secrets. After the exchange-response message, each peer holds
two KEM-derived shared secrets:
• secl: the local shared secret derived from the peer’s encapsulation opera-
tion to the remote ephemeral key (used for the local transmit channel).

• secr: the remote shared secret derived from decapsulation of the peer’s
received ciphertext (used for the local receive channel).

Pre-shared secrets. Each peer maintains two pre-shared secrets as part of
the peering key material:
• pssl: the local host pre-shared secret.
• pssr: the remote host pre-shared secret.

Tunnel keys and nonces. Directional tunnel keys and initial nonces are de-
rived using the DKTP KDF as specified:

(𝑡𝑐𝑘𝑙, 𝑛𝑙) ← KDFDKTP(secl, pssr), (𝑡𝑐𝑘𝑟, 𝑛𝑟) ← KDFDKTP(secr, pssl).

Here 𝑡𝑐𝑘𝑙 and 𝑛𝑙 initialize the local transmit cipher instance, while 𝑡𝑐𝑘𝑟 and
𝑛𝑟 initialize the local receive cipher instance. This assignment yields strict
directional separation.

Activation. Cipher instances are initialized after key derivation, but the tun-
nel is treated as established only after the establish-request and establish-response
messages are successfully processed.

PSK update. After establishment is confirmed, pre-shared secrets are up-
dated as specified:

pssl ← Hash(pssl ∥ 𝑡𝑐𝑘𝑙), pssr ← Hash(pssr ∥ 𝑡𝑐𝑘𝑟).

These updates are persisted alongside the peering key structures.
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2.6 Transport Phase, Ratcheting, and Tunnel Operation
Once the handshake finishes, both peers enter the tunnel phase. All transport
packets are encrypted and authenticated using RCS with the current tunnel
key and nonce.
Each packet header contains:
• a flag byte,

• an eight byte sequence number,

• a four byte payload length,

• an eight byte timestamp.
This header is authenticated as AEAD associated data.
The ratchet is triggered when a new handshake is initiated during an estab-
lished session. The resulting handshake produces new directional root keys,
which update:

psk𝐼→𝑅, psk𝑅→𝐼, 𝑡𝑐𝑘𝑙, 𝑡𝑐𝑘𝑟.
This provides post compromise recovery.

2.7 Replay Protection and Ordering Requirements
Replay protection and strict ordering are provided by:
• authenticated sequence numbers,

• monotonically increasing counters in each direction,

• timestamp freshness checks,

• AEAD authentication of the entire header.

The receiver rejects:

• duplicate sequence numbers,

• out of order packets,

• timestamp violations,

• packets failing integrity verification.
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2.8 FailureHandling, Zeroization, and ImplementationNotes
The DKTP implementation performs secure erasure of:

• ephemeral KEM private keys,

• derived shared secrets,

• tunnel keys and nonces,

• pre-shared keys immediately after update,

• intermediate buffers used during encryption and decryption.

All cryptographic routines use constant time operationswhere applicable. The
random number generator is required to be cryptographically secure and to
provide entropy for ephemeral keys and nonces.
Errors at any phase of the handshake cause immediate session termination
and state destruction.

3 Formal Preliminaries
This section introduces the notation, cryptographic primitives, and adversar-
ial capabilities that form the basis of the security model for DKTP. The formal-
ism presented here aligns with the engineering description of the protocol and
matches the state variables and operations found in the DKTP specification
and reference implementation. All assumptions are stated in terms of stan-
dard post quantum definitions and oracle based adversarial interaction.

3.1 Notation and Conventions
We use uppercase letters for keys and shared secrets, lowercase letters for mes-
sages, and bold symbols for algorithms. Byte strings are written as elements
of {0, 1}∗. Concatenation is written as 𝐴 ∥ 𝐵. For a hash or KDF with domain
separation, we write

Hashlabel(𝑋),KDFlabel(𝑋),
to indicate that the internal function is the same but that a label string is pre-
pended within the domain separation space.
For a peer 𝑃, we denote its long term signature key pair by (𝑣𝑘𝑃, 𝑠𝑘𝑃) and its
directional pre-shared keys by

psk𝑃→𝑄, psk𝑄→𝑃.
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Each session has a configuration value config and a session cookie cookie com-
puted from config and the verification keys. The cookie is treated as a public
but authenticated value.
Random sampling from a distribution is written as 𝑥 ← 𝒟.

3.2 Post Quantum Primitives (General KEM and Signature
Families)

DKTP supports a range of post quantumkey encapsulation and signature schemes.
In the formal model, these are treated generically as families of algorithms
with standard security properties. The specific implementation may select
Kyber, Classic McEliece, or another IND-CCA secure KEM, and may select
Dilithium, SPHINCS+, or another EUF CMA secure signature scheme.

Key encapsulationmechanism. A post quantumKEM consists of the algo-
rithms

(𝑝𝑘, 𝑠𝑘) ← KEM.KeyGen(),
(𝑐, 𝐾) ← KEM.Encap(𝑝𝑘),
𝐾 ← KEM.Decap(𝑐, 𝑠𝑘).

The security requirement is IND-CCA under classical and quantum adver-
saries. DKTP uses two encapsulations to derive directional shared secrets:

secl, secr.

Signature scheme. A post quantum digital signature scheme consists of the
algorithms

(𝑣𝑘, 𝑠𝑘) ← SIG.KeyGen(),
𝜎 ← SIG.Sign(𝑠𝑘,𝑚),

SIG.Verify(𝑣𝑘,𝑚, 𝜎) ∈ {0, 1}.

The security requirement is existential unforgeability under chosen message
attack. The Verification message in DKTP relies on this property.
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3.3 Hash and KDF with Domain Separation
DKTP uses Keccak based functions for hashing and key derivation. The exact
functions (cSHAKE, KMAC, or a KDF built on these primitives) are abstracted
in the formal model while maintaining the domain separation structure de-
scribed in the specification.
Domain separation labels include:

• DKTP Cookie for computing the session cookie,

• DKTP Root IToR and DKTP Root RToI for the directional root keys,

• DKTP Tunnel for deriving tunnel keys and initial nonces,

• DKTP PSK Update for updating the directional pre-shared keys.

Each label corresponds to a different prefix or customization string inside the
KDF.
The KDF is treated as a pseudo-random function family in the quantum ran-
dom oracle model.

3.4 Pre-Shared Keys in the Formal Model
In the formal model, DKTP uses two pre-shared secrets stored in the peering
key structures:

pssl (local pre-shared secret), pssr (remote pre-shared secret).
These values seed tunnel key derivation together with the KEM shared secrets.
They are not used as independent authenticationmechanisms, and they do not
replace the asymmetric exchange.

Use in key derivation. The transmit and receive channel keys are derived
as:

(𝑡𝑐𝑘𝑙, 𝑛𝑙) ← KDFDKTP(secl, pssr), (𝑡𝑐𝑘𝑟, 𝑛𝑟) ← KDFDKTP(secr, pssl).

Update rule. After establishment confirmation, the pre-shared secrets are
updated:

pssl ← Hash(pssl ∥ 𝑡𝑐𝑘𝑙), pssr ← Hash(pssr ∥ 𝑡𝑐𝑘𝑟).

This update is persisted in the peering key structures and influences subse-
quent handshakes.
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Compromise considerations. Compromise of pssl or pssr affects the secu-
rity of sessions derived using that material, but does not remove the need to
break theKEMto reconstruct the full directional tunnel state in sessionswhere
the KEM secrets remain uncompromised.

3.5 Assumptions and Adversarial Interaction
The adversary 𝒜 controls all network communication. It may delay, reorder,
inject, or modify messages. The adversary interacts with instances of the pro-
tocol through oracles that allow the creation of sessions, message delivery, and
key exposure.
The main assumptions are:

• KEM security: IND-CCA under quantum adversaries.

• Signature security: EUF CMA under classical and quantum adversaries.

• KDF security: pseudo-randomness of the domain separatedKeccak based
construction.

• AEAD security: confidentiality and integrity of RCS.

• Pre-shared keys remain secret and uncompromised.

Implementation assumptions, such as secure erasure, constant time KEM de-
capsulation, and CSPRNG quality, are stated separately in the implementation
conformance section.

3.6 Oracle Definitions
The adversary interacts with the protocol through the following oracles. Each
oracle operates on a session (𝑃, sid) belonging to party 𝑃.

• Send(𝑃, sid, 𝑚). Delivers message 𝑚 to the local protocol instance. Used
to initiate new sessions and to inject handshake and transport packets.

• RevealEPH(𝑃, sid). Reveals the ephemeral KEM private key used in the
handshake for that session. This oracle is restricted by freshness condi-
tions in the security games.

• RevealTunnelKey(𝑃, sid). Reveals the directional tunnel key for a com-
pleted session. Forbidden for sessions that will be tested in confidentiality
games.
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• Corrupt(𝑃). Reveals the long term signature secret key of party 𝑃. Per-
mitted in some games and forbidden in others depending on the security
goal.

• Test(𝑃, sid). Used in confidentiality, forward secrecy, post compromise
security, and ratchet security games. Returns either the real key or a ran-
dom key depending on a hidden bit chosen by the challenger.

These oracle definitions form the basis for all security games in later chapters.
They accurately reflect the operations that the implementation performs and
theways inwhich an adversarymight attempt to gain information or influence
session state.

4 Formal Protocol Specification
This section presents a precise, specification accurate formal description of the
DKTP protocol. Every field, operation, and state component is taken directly
from the technical specification and the reference implementation. The hand-
shake, cookie binding, key schedule, tunnel derivation, and ratchet evolution
are given in a mathematically explicit form suitable for later security analysis.

4.1 Formal Handshake Messages
This subsection defines the DKTP handshake message flow in a form suitable
for security analysis, matching the protocol specified in the DKTP Specifica-
tion. The handshake consists of six messages exchanged between an initiator
𝐼 and a responder 𝑅.

Long-term keys and header binding. Each peer possesses a long-term sig-
nature keypair (sk𝑠𝑖𝑔𝑋 , vk𝑠𝑖𝑔𝑋 ) for 𝑋 ∈ {𝐼, 𝑅}. Handshake authentication binds
the serialized packet header Hdr (including sequence number and timestamp)
to the message payload by signing a hash of (payload ∥ Hdr).

Message M1: Connect-Request (𝐼 → 𝑅). The initiator sends configuration
and identification material and authenticates it under its signature key. We
model the payload abstractly as

𝑀1 = (kid_array, config, vk𝑠𝑖𝑔𝐼 ),
and the transmitted message includes a signature

𝜎1 = Sig.Sign(sk𝑠𝑖𝑔𝐼 , Hash(𝑀1 ∥ Hdr)).
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Message M2: Connect-Response (𝑅 → 𝐼). The responder verifies 𝜎1, gen-
erates an ephemeral KEM keypair, stores the decapsulation key, and returns
the encapsulation key:

(dk𝑅, ek𝑅) ← KEM.Gen.

The responder also derives and stores a session cookie state value sch as defined
by the specification (Section 4.2). The payload is modeled as

𝑀2 = (ek𝑅, sch_commit),

where sch_commit denotes the authenticated commitment value to sch used
by the implementation. The responder signs

𝜎2 = Sig.Sign(sk𝑠𝑖𝑔𝑅 , Hash(𝑀2 ∥ Hdr)).

Message M3: Exchange-Request (𝐼 → 𝑅). The initiator verifies 𝜎2, per-
forms KEM encapsulation to ek𝑅 obtaining the remote secret secr and cipher-
text 𝑐𝑝𝑡𝑎:

(𝑐𝑝𝑡𝑎, secr) ← KEM.Encap(ek𝑅).
It also generates its own ephemeral KEM keypair (dk𝐼, ek𝐼) �

Message M4: Exchange-Response (R → I). The responder verifies 𝜎3 and
decapsulates cpta to obtain its copy of the remote secret secr. The responder
encapsulates to ekI to obtain the local secret secl and ciphertext cptr:

(cptr, secl) ← KEM.Encap(ekI).

The responder derives directional tunnel keys and nonces as in Section 4.5,
initializes cipher instances, and returns cptr authenticated under its signature:

M4 = (cptr), 𝜎4 = Sig.Sign(sksigR , Hash(M4 ∥ Hdr)).

The initiator verifies 𝜎4 and decapsulates cptr to obtain its copy of secl, then
derives the same directional tunnel keys and initializes cipher instances.

MessageM5: Establish-Request (I → R). Let sch denote the session cookie
state value held by both peers after processing M2. The initiator computes a
cookie-hash bound to the establish-request header fields:

hsch ← Hash(sch ∥ Hdr),

and encrypts it under the transmit channel cipher instance with associated
data equal to the serialized header. The payload is a ciphertext cptI.
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Message M6: Establish-Response (R → I). The responder decrypts and
verifies the establish-request cookie-hash. It then updates the pre-shared se-
crets as specified, recomputes a cookie-hash bound to the establish-response
header fields, encrypts it under the transmit channel cipher instance, and re-
turns ciphertext cptR. The initiator decrypts and validates cptR. After this
point the tunnel is considered established.
This message flow is the basis for the authentication and key indistinguisha-
bility games defined in subsequent sections.

4.2 Cookie Based Transcript Binding
DKTP binds the handshake transcript to the establishment confirmation us-
ing a session cookie state value sch. The value sch is derived during connect-
response processing and is later incorporated into the establish-request and
establish-response messages in hashed form, bound to the corresponding es-
tablish packet header fields.

Session cookie state derivation. The responder derives and stores sch as a
hash over immutable handshake inputs. In the specification, these inputs in-
clude thenegotiated configuration, the key identificationmaterial, and responder-
generated values used during the connect-response step. We model this as:

sch ← HashDKTP-SCH(kid_array ∥ config ∥ ekR ∥ vksigI ∥ vksigR ).

The initiator obtains the necessary commitment information during process-
ing of the connect-response message and reconstructs the corresponding sch
value as specified.

Establishment binding. During establishment, the session cookie state is
combined with the establish packet header fields to produce a cookie-hash:

hsch ← HashDKTP-EST(sch ∥ Hdr).

The value hsch is then encrypted under the active channel cipher instance
with associated data equal to the serialized header. Because Hdr includes se-
quence number and timestamp fields, this prevents replay and transcript splic-
ing across sessions.
The cookie state sch is not a secret. Its purpose is to provide transcript binding
and explicit confirmation that both peers derived identical tunnel state before
the tunnel is considered established.
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4.3 Formal Key Schedule (Including PSKMixing)
This subsection defines the DKTP tunnel key derivation in the formal model,
matching the DKTP Specification. DKTP derives independent transmit and
receive channel keys by applying the DKTP KDF to the KEM shared secrets
and the pre-shared secrets stored in the peering key structures.

KEM shared secrets. Let secr denote the shared secret derived from decap-
sulation of the received ciphertext (the remote-derived secret), and let secl
denote the shared secret derived locally during encapsulation to the peer’s
ephemeral key (the local-derived secret). Both peers obtain identical values
of secr and secl after completion of the exchange-response step.

Pre-shared secrets. Each peer maintains:

pssl (local pre-shared secret), pssr (remote pre-shared secret).

Directional tunnel keys and nonces. TheDKTPKDF derives both a tunnel
channel key and an initial nonce per direction:

(tckl, nl) ← KDFDKTP(secl, pssr), (tckr, nr) ← KDFDKTP(secr, pssl).

The values (tckl, nl) initialize the local transmit cipher instance, and (tckr, nr)
initialize the local receive cipher instance.

Establishment and PSK update. After successful establishment confirma-
tion, pre-shared secrets are updated:

pssl ← Hash(pssl ∥ tckl), pssr ← Hash(pssr ∥ tckr).

These updated values persist in the peering key structures and seed subsequent
handshakes.
This derivation is the sole mechanism by which DKTP produces initial chan-
nel keys and nonces in the formal model.

4.4 Security Margin and Long-Horizon Threat Model
This subsection clarifies the threatmodel anddesign rationale underlyingDKTP’s
choice of cryptographic parameters. It does not introduce additional security
assumptions beyond those already used in the formal analysis, but explains
the intended security horizon and margin considerations.
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Long-horizon adversary model. DKTP is designed for scenarios in which
confidentiality and integrity of communications are expected to remain robust
over extended time horizons, including periods in which cryptanalytic tech-
niques, computational capabilities, or implementation attack surfacesmay evolve
in unpredictable ways. The design therefore adopts conservative parameter
choices that exceed those commonly used in deployed secure channel proto-
cols.

Symmetric securitymargin. DKTP instantiates its transport channel using
RCS-512, a 512-bit keyed authenticated encryption scheme with large nonce
space and configurable authentication tag length. Directional channel keys are
derived independently for each communication direction, yielding two cryp-
tographically independent channel instances per session.
The intent of this construction is not to claim information-theoretic security,
but to provision a substantial security margin against: (i) generic brute-force
search, (ii) quantum speedups such as Grover-style attacks, and (iii) unfore-
seen advances in cryptanalysis affecting symmetric primitives.
Consistentwith theRCS security analysis, classical securitymargins scalewith
the symmetric key length and sponge capacity, while post-quantum security is
conservatively estimated under generic quadratic speedup assumptions.

Integrity margin and misuse resistance. In addition to key length, DKTP
emphasizes large authentication margins and strict nonce discipline. Authen-
tication tags and MAC constructions are selected to significantly exceed con-
ventional minimum sizes, reducing the probability of successful forgery even
under high query volumes or partial state exposure.

Relation to compromise protection. Extended symmetricmargins comple-
ment, but do not replace, other compromise-mitigation mechanisms in DKTP,
including: ephemeral key exchange, explicit establishment confirmation, di-
rectional separation of channel state, evolving persistent secretmaterial across
sessions, and mandatory erasure of ephemeral secrets after establishment.
The overall security of DKTP therefore derives from a combination of con-
servative cryptographic margins and strict state lifecycle management, rather
than reliance on any single primitive or assumption.

Scope of claims. All security claims in this document remain computational
in nature and are conditioned on the assumedhardness of the underlying prim-
itives and the correct implementation of the protocol. DKTP does not claim
detection of passive eavesdropping or information-theoretic secrecy, but aims
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to approach the upper bound of achievable security guarantees within a purely
software-based cryptographic framework.

4.5 RCS Key and Nonce Derivation
DKTP derives the RCS channel keys and initial nonces directly from the KEM
shared secrets and the pre-shared secrets in the peering key structures, match-
ing the specification.

Transmit channel derivation. The local transmit channel key and initial
nonce are derived from the locally generated KEM shared secret and the re-
mote pre-shared secret:

(tckl, nl) ← KDFDKTP(secl, pssr).

Receive channel derivation. The local receive channel key and initial nonce
are derived from the remotely generated KEM shared secret and the local pre-
shared secret:

(tckr, nr) ← KDFDKTP(secr, pssl).

Cipher initialization. The receive channel cipher is initialized asRCSrx(tckr, nr)
and the transmit channel cipher is initialized as RCStx(tckl, nl).

PSK update. After establishment confirmation, pre-shared secrets are up-
dated as:

pssl ← Hash(pssl ∥ tckl), pssr ← Hash(pssr ∥ tckr).

This update is persisted in the peering key structures for subsequent hand-
shakes.

4.6 Ratchet Chains and State Evolution
DKTP uses a ratchet that updates symmetric state at each handshake. When a
new handshake occurs during an established session, the KEM shared secrets,
directional PSKs, tunnel keys, and nonces are all refreshed.
Formally, at ratchet step i:

secli+1, secri+1 derived from new KEM operations,

KI→R
root,i+1, KR→I

root,i+1 derived from the new PSKs and new cookie,
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tckli+1, nli+1, tckri+1, nri+1 derived from the new root keys.
Old keys, shared secrets, ephemeral private keys, and provisional handshake
secrets are erased immediately after use.

4.7 Transport Encryption and Associated Data Structure
After the handshake, all application data is exchanged as encrypted transport
packets. Each packet contains a fixed 21 byte header:

header = (flag, seq, len, timestamp),

where:

• flag is a one byte control field,

• seq is an eight byte strictly increasing sequence number,

• len is a four byte payload length,

• timestamp is an eight byte authenticated time value.

The header is authenticated as AEAD associated data under RCS:

ciphertext = RCS.Enctck, nonce(header, plaintext).

The receiver verifies:

RCS.Dectck, nonce(header, ciphertext) before accepting the packet.

The nonce increments according to the sequence number, ensuring no reuse
and guaranteeing replay protection.

4.8 Handshake Pseudo-code Definitions
Client: Connect Request. This function constructs the initial Connect Re-
quest message from the client. It verifies that the long term key material has
not expired, assembles the verification key and configuration fields, computes
the session cookie hash from the configuration and verification keys, and signs
the header and payload using the client long term signature key. The resulting
packet contains no sensitive secret material and establishes the starting point
for the authenticated handshake. The state variable schash is stored for later
use in the encrypted verification step.
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Algorithm 1 ClientConnectRequest
Require: Client kex state kcs, connection state cns
Ensure: Outgoing packet pkt of type connect_request or error
1: t ← UTC_now()
2: if t > kcs.expiration then
3: cns.exflag ← none
4: return key_expired
5: end if
6: pkt.pmessage[0..DKTP_KEYID_SIZE) ← kcs.keyid
7: pkt.pmessage[DKTP_KEYID_SIZE..) ← DKTP_CONFIG_STRING
8: mtype ← connect_request
9: mlen ← KEX_CONNECT_REQUEST_MESSAGE_SIZE
10: HeaderCreate(pkt,mtype, cns.txseq, mlen)
11: shdr ← SerializeHeader(pkt)
12: phash ← SHA3_512(shdr ∥ pkt.pmessage[0..DKTP_KEYID_SIZE +

DKTP_CONFIG_SIZE))
13: sig ← Sign(phash, kcs.sigkey)
14: Write sig into pkt.pmessage immediately after keyid and config
15: kcs.schash ← SHA3_512(DKTP_CONFIG_STRING ∥ kcs.keyid ∥ kcs.verkey ∥

kcs.rverkey)
16: cns.exflag ← connect_request
17: return none

Server: Connect Response. This function processes the client Connect Re-
quest and verifies that the configuration and signature fields are valid. It re-
constructs the packet hash from the received header and payload and checks
it against the client signature. It then computes the session cookie in the same
way the client does and generates a fresh ephemeral KEM key pair for the re-
sponder. The responder signs its ephemeral public key bound to the cookie
and returns this information to the client in the Connect Response. The server
also stores its copy of the session cookie hash for later authenticated steps.
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Algorithm 2 ServerConnectResponse
Require: Server kex state kss, connection state cns, incoming packet pktin
Ensure: Outgoing packet pktout of type connect_response or error
1: t ← UTC_now()
2: if t > kss.expiration then
3: cns.exflag ← none
4: return key_expired
5: end if
6: cfg ← config bytes from pktin.pmessage
7: if cfg ≠ DKTP_CONFIG_STRING then
8: cns.exflag ← none
9: return unknown_protocol
10: end if
11: sig ∥ hm ← tail of pktin.pmessage
12: if ¬Verify(sig, hm, kss.rverkey) then
13: cns.exflag ← none
14: return authentication_failure
15: end if
16: shdr ← SerializeHeader(pktin)
17: hmc ← SHA3_512(shdr ∥ kid ∥ cfg)
18: if VerifyEqual(hm, hmc) ≠ 0 then
19: cns.exflag ← none
20: return verify_failure
21: end if
22: kss.schash ← SHA3_512(DKTP_CONFIG_STRING ∥ kss.keyid ∥

kss.rverkey ∥ kss.verkey)
23: (kss.enckey, kss.deckey) ← KEM.KeyGen()
24: mtype ← connect_response
25: mlen ← KEX_CONNECT_RESPONSE_MESSAGE_SIZE
26: HeaderCreate(pktout, mtype, cns.txseq, mlen)
27: shdr′ ← SerializeHeader(pktout)
28: phash ← SHA3_512(shdr′ ∥ kss.enckey)
29: sig′ ← Sign(phash, kss.sigkey)
30: Write sig′ then kss.enckey into pktout.pmessage
31: cns.exflag ← connect_response
32: return none

Client: Exchange Request. This function processes the server Connect Re-
sponse and authenticates the responder through its long term verification key.
It reconstructs the expected header hash, verifies the signature, and then per-
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forms encapsulation against the server ephemeral KEM public key to derive
the client to server shared secret. The client generates its own ephemeral KEM
key pair and sends both the ciphertext and its ephemeral public key to the
server. This message includes a signature that authenticates the client contri-
bution to the handshake transcript. The function stores the first KEM shared
secret for use in the key derivation and ratchet steps.

Algorithm 3 ClientExchangeRequest
Require: Client kex state kcs, connection state cns, server packet pktin (con-

nect response)
Ensure: Outgoing packet pktout (exchange request) or error
1: Parse pktin.pmessage as

sig ∥ hm ∥ pubk
where pubk is server KEM public key

2: if ¬Verify(sig, hm, kcs.rverkey) then
3: cns.exflag ← none
4: return authentication_failure
5: end if
6: shdr ← SerializeHeader(pktin)
7: hmc ← SHA3_512(shdr ∥ pubk)
8: if VerifyEqual(hmc, hm) ≠ 0 then
9: cns.exflag ← none
10: return verify_failure
11: end if
12: (kcs.secl, cpta) ← KEM.Encapsulate(pubk)
13: (kcs.enckey, kcs.deckey) ← KEM.KeyGen()
14: Write cpta then kcs.enckey into pktout.pmessage
15: mtype ← exchange_request
16: mlen ← KEX_EXCHANGE_REQUEST_MESSAGE_SIZE
17: HeaderCreate(pktout, mtype, cns.txseq, mlen)
18: shdr′ ← SerializeHeader(pktout)
19: phash ← SHA3_512(shdr′ ∥ cpta ∥ kcs.enckey)
20: sig′ ← Sign(phash, kcs.sigkey)
21: Append sig′ to pktout.pmessage
22: cns.exflag ← exchange_request
23: return none

Server: ExchangeResponseAndRatchet. This function processes the client
Exchange Request and completes the asymmetric key agreement. It verifies
the client signature and computes the shared secret secr by decapsulating the
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ciphertext received from the client. It then encapsulates to the client ephemeral
key to compute the second shared secret secl. With both directional shared se-
crets available, the function computes the directional tunnel keys and initial
nonces through cSHAKE based expansion and updates both directional pre
shared keys using the DKTP PSK update rule. It initializes the RCS contexts
for transmitting and receiving and prepares the Exchange Response contain-
ing the second ciphertext and the server signature. This function performs the
full server side ratchet and symmetric state initialization.
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Algorithm 4 ServerExchangeResponseAndRatchet
Require: Server kex state kss, connection state cns, client packet pktin (exchange re-

quest)
Ensure: Outgoing packet pktout (exchange response) or error
1: Parse pktin.pmessage as

cpta ∥ pubkC ∥ sig

where cpta is client ciphertext, pubkC is client KEM public key
2: if ¬Verify(sig, khash, kss.rverkey) then
3: cns.exflag ← none
4: return authentication_failure
5: end if
6: shdr ← SerializeHeader(pktin)
7: phash ← SHA3_512(shdr ∥ cpta ∥ pubkC)
8: if VerifyEqual(phash, khash) ≠ 0 then
9: cns.exflag ← none
10: return hash_invalid
11: end if
12: secr ← KEM.Decapsulate(cpta, kss.deckey)
13: if decapsulation fails then
14: cns.exflag ← none
15: return decapsulation_failure
16: end if
17: (secl, cptb) ← KEM.Encapsulate(pubkC)
18: Write cptb into pktout.pmessage
19: mtype ← exchange_response
20: mlen ← KEX_EXCHANGE_RESPONSE_MESSAGE_SIZE
21: HeaderCreate(pktout, mtype, cns.txseq, mlen)
22: shdr′ ← SerializeHeader(pktout)
23: phash′ ← SHA3_512(shdr′ ∥ cptb)
24: sig′ ← Sign(phash′, kss.sigkey)
25: Append sig′ to pktout.pmessage
26: // Derive symmetric keys and perform PSK ratchet, server view
27: prnd ← cSHAKE512_XOF(input = secr, custom = kss.pssl, 2 blocks)
28: tckC→S.key ← prnd[0..63]
29: tckC→S.nonce ← prnd[64..95]
30: Initialize cns.rxcpr as RCS with tckC→S in receive mode
31: kss.pssr ← cSHAKE512(kss.pssr, tckC→S.key[0..31])
32: prnd ← cSHAKE512_XOF(input = secl, custom = kss.pssr, 2 blocks)
33: tckS→C.key ← prnd[0..63]
34: tckS→C.nonce ← prnd[64..95]
35: Initialize cns.txcpr as RCS with tckS→C in transmit mode
36: kss.pssl ← cSHAKE512(kss.pssl, tckS→C.key[0..31])
37: cns.exflag ← exchange_response
38: return none
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Client: Establish Request And Ratchet. This function processes the server
Exchange Response and completes the handshake from the client perspective.
It verifies the server signature, decapsulates the ciphertext from the server to
derive secr, and then computes the directional tunnel keys and initial nonces
through the same cSHAKE based expansion used on the server. It initializes
the RCS contexts for transmitting and receiving, updates both directional pre
shared keys according to the PSK update rule, and constructs the Establish
Requestmessage. Thismessage contains an encrypted confirmation value that
binds the sequence number, timestamp, domain identity string, and session
cookie hash. This function performs the full client side ratchet and symmetric
state initialization.
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Algorithm 5 ClientEstablishRequestAndRatchet
Require: Client kex state kcs, connection state cns, server packet pktin (exchange re-

sponse)
Ensure: Outgoing packet pktout (establish request) or error
1: Parse pktin.pmessage as

cptb ∥ sig

2: if ¬Verify(sig, hm, kcs.rverkey) then
3: cns.exflag ← none
4: return authentication_failure
5: end if
6: shdr ← SerializeHeader(pktin)
7: hmc ← SHA3_512(shdr ∥ cptb)
8: if VerifyEqual(hmc, hm) ≠ 0 then
9: cns.exflag ← none
10: return verify_failure
11: end if
12: secr ← KEM.Decapsulate(cptb, kcs.deckey)
13: if decapsulation fails then
14: cns.exflag ← none
15: return decapsulation_failure
16: end if
17: // Derive symmetric keys and perform PSK ratchet, client view
18: prnd ← cSHAKE512_XOF(input = kcs.secl, custom = kcs.pssr, 2 blocks)
19: tckC→S.key ← prnd[0..63]
20: tckC→S.nonce ← prnd[64..95]
21: Initialize cns.txcpr as RCS with tckC→S in transmit mode
22: kcs.pssl ← cSHAKE512(kcs.pssl, tckC→S.key[0..31])
23: prnd ← cSHAKE512_XOF(input = secr, custom = kcs.pssl, 2 blocks)
24: tckS→C.key ← prnd[0..63]
25: tckS→C.nonce ← prnd[64..95]
26: Initialize cns.rxcpr as RCS with tckS→C in receive mode
27: kcs.pssr ← cSHAKE512(kcs.pssr, tckS→C.key[0..31])
28: // Build establish request with encrypted cookie
29: mtype ← establish_request
30: mlen ← KEX_ESTABLISH_REQUEST_MESSAGE_SIZE
31: HeaderCreate(pktout, mtype, cns.txseq, mlen)
32: shdr′ ← SerializeHeader(pktout)
33: Configure RCS associated data: RCS.SetAD(cns.txcpr, shdr′)
34: st ← SeqTime(pktout.sequence, pktout.utctime)
35: sch ← SHA3_512(st ∥ DKTP_DOMAIN_IDENTITY_STRING ∥ kcs.schash)
36: ciphertext ← RCS.Encrypt(cns.txcpr, sch)
37: Write ciphertext into pktout.pmessage
38: cns.exflag ← establish_request
39: return none
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Server: Establish Response. This function receives the Establish Request,
decrypts it under the newly derived RCS receive context, and verifies the con-
firmation hash against the expected sequence time value and session cookie. If
the valuesmatch, it constructs the Establish Response by computing the server
confirmation hash, encrypting it under the transmit RCS context, and return-
ing it to the client. This step proves that both sides agree on all asymmetric
and symmetric handshake material.

Algorithm 6 ServerEstablishResponse
Require: Server kex state kss, connection state cns, client packet pktin (estab-

lish request)
Ensure: Outgoing packet pktout (establish response) or error
1: shdr ← SerializeHeader(pktin)
2: RCS.SetAD(cns.rxcpr, shdr)
3: hm ← RCS.Decrypt(cns.rxcpr, pktin.pmessage)
4: if RCS authentication fails then
5: cns.exflag ← none
6: return decryption_failure
7: end if
8: st ← SeqTime(pktin.sequence, pktin.utctime)
9: sch ← SHA3_512(st ∥ DKTP_DOMAIN_IDENTITY_STRING ∥ kss.schash)
10: if VerifyEqual(hm, sch) ≠ 0 then
11: cns.exflag ← none
12: return verify_failure
13: end if
14: mtype ← establish_response
15: mlen ← KEX_ESTABLISH_RESPONSE_MESSAGE_SIZE
16: HeaderCreate(pktout, mtype, cns.txseq, mlen)
17: shdr′ ← SerializeHeader(pktout)
18: st′ ← SeqTime(pktout.sequence, pktout.utctime)
19: sch′ ← SHA3_512(st′ ∥ DKTP_DOMAIN_IDENTITY_STRING ∥ kss.schash)
20: RCS.SetAD(cns.txcpr, shdr′)
21: ciphertext ← RCS.Encrypt(cns.txcpr, sch′)
22: Write ciphertext into pktout.pmessage
23: cns.exflag ← session_established
24: return none

Client: Establish Verify. This function processes the Establish Response
and verifies that the server confirmation hash matches the client expected
value. If the decryption and hash comparison succeed, the session is fully es-
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tablished and the tunnel keys, nonces, PSKs, and RCS contexts are active. This
completes the handshake and transitions the client into the established tunnel
state.

Algorithm 7 ClientEstablishVerify
Require: Client kex state kcs, connection state cns, server packet pktin (estab-

lish response)
Ensure: Success or error
1: shdr ← SerializeHeader(pktin)
2: RCS.SetAD(cns.rxcpr, shdr)
3: hm ← RCS.Decrypt(cns.rxcpr, pktin.pmessage)
4: if RCS authentication fails then
5: return decryption_failure
6: end if
7: st ← SeqTime(pktin.sequence, pktin.utctime)
8: sch ← SHA3_512(st ∥ DKTP_DOMAIN_IDENTITY_STRING ∥ kcs.schash)
9: if VerifyEqual(hm, sch) ≠ 0 then
10: return verify_failure
11: end if
12: cns.exflag ← session_established
13: return none

5 Security Definitions
This section defines the security goals forDKTP in terms of oracle based games
between a challenger and an adversary. These games reflect the exact struc-
ture of the DKTP handshake and tunnel, including the cookie based binding
mechanism, the directional shared secrets from the KEM, the mandatory di-
rectional pre-shared keys, and the RCS based authenticated encryption used
for transport packets.
All definitions apply to protocol sessions created by calls to the Send oracle.
A session is denoted by (P, sid) where P is a party and sid is a locally unique
session identifier.

5.1 Partnering
Two sessions (P, sid) and (Q, sid′) are partners if:
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• each session identifies the other as its intended peer,

• both sessions contain the same session cookie,
• both sessions have verified the signature or encrypted confirmation re-
quired by the handshake,

• both sessions completewithout error andderivematching directional shared
secrets and tunnel keys for their respective directions.

Partnering ensures that both parties agree on:

• configuration parameters,

• verification keys,

• the session cookie,

• directional shared secrets secl and secr,
• directional pre-shared keys after update,

• directional tunnel keys tckl and tckr.

5.2 Freshness
A session is fresh when its key material has not been trivially exposed. The
exact conditions differ by game.

Freshness for authentication. A session is fresh for authentication if the
long term signature secret key of the peer being authenticated has not been
revealed at any time prior to completion of the session.

Freshness for handshake confidentiality. A completed session (P, sid) is
fresh if:

• neither directional tunnel key tckl or tckr for this session has been re-
vealed,

• the ephemeral KEM private keys for this session have not been revealed,

• the adversary has not modified or injected a different cookie into the ses-
sion,

• the long term signing key of the partner was not corrupted prior to com-
pletion.
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Freshness for transport confidentiality and integrity. A transport session
is fresh if:
• neither tunnel key tckl nor tckr has been revealed,
• the sequence number for the ciphertext has not been used before,

• the corresponding PSK for the direction has not been revealed (which the
model forbids entirely).

Freshness for ratchet and PCS. A session is fresh for the ratchet or PCS
games if:
• the adversary may corrupt long term keys prior to the handshake but

• must not reveal the new directional tunnel keys generated by the hand-
shake for which the Test query is issued.

5.3 Authentication Game
Authentication captures the requirement that no adversary may cause a party
to complete a handshake with a peer that did not participate.

Game structure.
• The adversary interacts with the protocol through Send, Corrupt, and
RevealEPH.

• The adversary attempts to cause an honest session (P, sid) to complete and
accept peer identity Q.

• The adversary succeeds if no session at Q partners with (P, sid).
The adversary’s advantage is:

Advauth
𝒜 (𝜆) = Pr[𝒜 wins the authentication game].

This captures impersonation resistance and reliance on the cookie and signa-
ture mechanisms.

5.4 Handshake Confidentiality Game
This game models confidentiality of the initial tunnel keys derived during the
handshake.
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Game structure.
• The adversary runs the protocol and chooses a fresh completed session
(P, sid).

• The adversary queries Test(P, sid).
• The challenger flips a bit b.
• If b = 0, the challenger returns the real directional tunnel key.
• If b = 1, it returns a random key of the same length.

• The adversary continues interacting with all oracles except RevealTun-
nelKey for that session.

• The adversary outputs a guess b′.
The advantage is:

Advconf
𝒜 (𝜆) = ||Pr[b′ = b] − 1

2
|| .

5.5 Ciphertext Integrity Game
This game captures the integrity of RCS encrypted transport packets.

Game structure.
• The adversary may send arbitrary ciphertexts to honest receivers.

• The adversarymayobserve encryptions produced byhonest parties through
Send.

• The adversary succeeds if it causes an honest receiver to accept a cipher-
text that was not produced by the sender under the same sequence num-
ber and header.

The advantage is:

Advint
𝒜 (𝜆) = Pr[𝒜 produces a valid forgery].

5.6 Replay and Reordering Game
This models protection against replay and out of order delivery.
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Game structure.
• The adversary may deliver any encrypted packet with any header.
• Let seqmax denote the highest accepted sequence number in that direction.
• The adversary wins if it causes acceptance of a ciphertext with sequence
number seq ≤ seqmax.

The advantage is:

Advreplay
𝒜 (𝜆) = Pr[𝒜 replays or reorders a packet successfully].

5.7 Forward Secrecy Game
Forward secrecy ensures that compromise of long term secret keys after the
handshake does not reveal past symmetric tunnel keys.

Game structure.
• The adversary interacts with the protocol normally.

• The adversary selects a completed session (P, sid).
• After the handshake completes, the adversary obtains the long term sign-
ing keys of both parties through Corrupt.

• The adversary queries Test(P, sid) on the tunnel key.
Forward secrecy holds if:

Advfs
𝒜(𝜆) = ||Pr[b′ = b] − 1

2
||

is negligible.

5.8 Post Compromise Security Game
PCS models recovery from compromise when a new handshake occurs.

Game structure.
• The adversary learns long term signature keys or previous PSKs through
Corrupt or prior compromise.

• A new handshake is executed.

• The adversary queries Test on the tunnel key derived from the new hand-
shake.
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• The adversary wins by distinguishing real from random.

Directional PSK updates and new KEM shared secrets support recovery.

5.9 Ratchet Game
The ratchet game models the one way evolution of tunnel keys and PSKs be-
tween handshake epochs.

Game structure.
• The adversarymay reveal tunnel keys or ephemeral secrets fromany ratchet
step i.

• The adversary then requests Test on the tunnel key at step i + 1.
• The challenger returns either the real or a random key.

• The adversary outputs a guess.

The advantage is:
Advratchet

𝒜 (𝜆) = ||Pr[b′ = b] − 1
2
|| .

A successful violation would contradict the pseudo-randomness of the KDF
and the independence of the new KEM shared secrets.

6 Security Proofs
This section presents formal reduction based proofs for the security goals de-
fined in the previous chapter. All proofs reflect the exact structure of DKTP
as described in the specification and implemented in the reference code. The
cookie based transcript bindingmechanism,mandatory directional pre-shared
keys, directional KEM shared secrets, and 512-bit tunnel keys appear explicitly
throughout.

6.1 Transcript Integrity Lemma (Including PSK Inputs)
Lemma 6.1 (Transcript Integrity). If an adversary causes an honest session to
accept a handshake inwhich any field ofmessagesM1 throughM4 has beenmod-
ified, reordered, or replaced, then the adversary either breaks the EUFCMA secu-
rity of the signature scheme or the INT CTXT security of the RCS encryption used
in messagesM3 andM4.
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Proof. The session cookie is computed as

cookie = HashDKTP Cookie(config ∥ vkI ∥ vkR)

and appears in cleartext inM1, authenticated by the responder inM2 through
a signature, and encrypted and authenticated inM3 andM4.
If the adversary alters M1 or M2, the cookie used by the responder will not
match the cookie held by the initiator. The signature 𝜎R covers pkkemR ∥ cookie,
so any forged pair implies a signature forgery.
If the adversary alters the encrypted cookie in M3 or M4, the modification
will be detected by the RCS decryption check. A valid ciphertext that was not
produced by the honest peer would constitute an INT CTXT forgery.
Thus, any modification to any handshake message leads to either a signature
forgery or an RCS ciphertext forgery.

6.2 Authentication Proof
Theorem 6.1 (Mutual Authentication). If the post quantum signature scheme
used in DKTP is EUF CMA secure and the cookie binding mechanism functions
correctly, then no efficient adversary can cause an honest party to complete a
handshake that identifies a peer who did not participate.

Proof. Assume an adversary𝒜 causes an honest session at party P to complete
and accept peer identity Q even though Q never participated.
InM2, the responder Qmust emit a signature

𝜎Q = SIG.Sign(skQ, pkkemQ ∥ cookie).

If Q did not participate, then𝒜must have created (pkkemQ , 𝜎Q)without access
to skQ.
The cookie is public but fixed, so ℬ can forward (pkkemQ ∥ cookie) to the EUF
CMA challenger as the message. A successful impersonation corresponds to
a valid forgery under vkQ.
Therefore,

Advauth
𝒜 (𝜆) ≤ AdvSIG

ℬ (𝜆),
which is negligible.

6.3 Key Indistinguishability Proof with PSK
Theorem6.2 (Directional TunnelKey Indistinguishability). Assume theDKTP
KEM is IND-CCA secure and the DKTP KDF is pseudo-random when keyed by
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a secret input unknown to the adversary. Then, for any fresh session in which
the adversary does not learn the relevant KEM shared secret or the relevant pre-
shared secret prior to derivation, the derived tunnel channel keys (tckl, tckr) are
computationally indistinguishable from uniform.
Proof. Fix a fresh session. DKTP derives the local transmit channel key tckl
and nonce nl as:

(tckl, nl) ← KDFDKTP(secl, pssr),
and derives the local receive channel key tckr and nonce nr as:

(tckr, nr) ← KDFDKTP(secr, pssl).
We analyze tckl; the analysis for tckr is analogous.
By IND-CCA security of the KEM, the shared secret secl produced by encapsu-
lation is indistinguishable from uniform to any adversary not in possession of
the corresponding ephemeral decapsulation key during the handshake. Con-
ditioned on freshness, the adversary does not obtain secl.
Given that pssr is a pre-shared secret unknown to the adversary in the fresh
session, the KDF input contains at least one secret component (in fact, two in
the intended setting). Under the assumption that KDFDKTP is pseudo-random
when keyed by such a secret input, the output tckl is computationally indistin-
guishable from uniform.
Directional separation follows because tckl and tckr are derived from differ-
ent KEM secrets and different pre-shared secrets. Therefore compromise or
distinguishability in one direction does not imply compromise in the other di-
rection.
Hence the adversary’s advantage in distinguishing the derived channel keys
from random is negligible.

6.4 Ciphertext Integrity Proof
Theorem6.3 (Ciphertext Integrity). If theRCSauthenticated encryption scheme
is INT CTXT secure, then no efficient adversary can cause an honest receiver to
accept a forged transport packet.
Proof. A forged ciphertextmust pass RCS decryption under the tunnel key tckl
or tckr and the authenticated header. Letℬ simulate the protocol and forward
all encryption queries to the RCS challenger. If 𝒜 produces a valid ciphertext
not created by the sender for the same header, ℬ outputs it as a forgery.
Since the header is part of the associated data, any modification of sequence
number, flag, length, or timestamp would invalidate the tag. Thus,

Advint
𝒜 ≤ AdvRCS

ℬ ,
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which is negligible.

6.5 Replay and Ordering Proof
Theorem 6.4 (Replay and Reordering Resistance). If RCS is INT CTXT secure
and sequence numbers are strictly increasing and authenticated, then replayed
or reordered packets cannot be accepted by any honest recipient.

Proof. Let seqmax be the highest sequence number accepted in a given direc-
tion. The receiver rejects any ciphertext with sequence number seq ≤ seqmax.
If a stale packet was never produced by the sender, it is a ciphertext forgery,
violating INTCTXT. If it was produced earlier, the replaywill be rejected based
on sequence number. Thus, acceptance of a stale packet contradicts either the
authenticated header check or ciphertext integrity.

6.6 Forward Secrecy
Theorem 6.5 (Forward Secrecy). If the KEM is IND-CCA secure then compro-
mise of long term signing keys after the handshake does not reveal directional
tunnel keys derived in the completed session.

Proof. Forward secrecy depends on the secrecy of secl and secr, which are
erased immediately after use. Long term signing keys do not participate in
the derivation of these values. A post handshake corruption of skI or skR gives
no information about the ephemeral KEM secrets, which are required inputs
to the KDF producing the tunnel keys.
Thus the adversary cannot reconstruct the tunnel keys after learning static
signing keys.

6.7 Post Compromise Security
Theorem6.6 (Post Compromise Security). If DKTP performs a new handshake
with fresh KEMkey pairs and updates directional PSKs, then compromise of long
term keys or previous tunnel keys does not compromise the new tunnel keys.

Proof. PCS relies on two factors:

• new KEM shared secrets secli+1 and secri+1,
• new directional PSKs updated from tckli and tckri.
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Even if the adversary knows all long term keys and previous tunnel keys, it
cannot compute the new directional root keys without the new KEM shared
secrets. These are protected by IND-CCA security. The cookie ensures that
the handshake is not downgraded or redirected.
Thus the new tunnel keys remain confidential.

6.8 Ratchet Security
Theorem 6.7 (Ratchet Security). If the KDF is pseudo-random in the quantum
random oracle model, then revealing a tunnel key at ratchet step i does not allow
the adversary to distinguish the tunnel key at step i + 1 from random.

Proof. The ratchet update uses fresh KEM shared secrets and updated PSKs:

Kroot,i+1 = KDF(secli+1 ∥ pski+1 ∥ cookiei+1).

The adversary may reveal tcki but this does not reveal secli+1 or pski+1. The
new tunnel key

tcki+1 = KDFtunnel(Kroot,i+1)
is pseudo-random under the QROM.
Any distinguisher breaks the KDF pseudo-randomness.

6.9 Composition Theorem
Theorem6.8 (Composition). Under the assumptions that the KEM is IND-CCA
secure, the signature scheme is EUF CMA secure, the RCS AEAD is secure, and
theKDF is pseudo-random in the quantumrandomoraclemodel, DKTPachieves
authentication, handshake confidentiality, ciphertext integrity, replay resistance,
forward secrecy, post compromise security, and ratchet security.

Proof. All components are composed in a black box manner. The authenti-
cated handshake builds on signature security and cookie binding. Tunnel con-
fidentiality and integrity follow from theKEMandRCSproperties. Directional
separation and PSK mixing produce independent channels. The ratchet pro-
vides state evolution and recovery. Summing the negligible advantages yields
an overall negligible bound.
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7 Cryptanalysis
This section provides a detailed adversarial analysis of DKTP viewed from the
perspective of a capable network level attacker. The goal is to identify all mean-
ingful attack surfaces, characterize the power of adversaries allowed by the
formal model, explain why attacks fail under the assumptions on the crypto-
graphic primitives, and quantify the contribution of pre-shared keys, cookies,
and ratcheting to the overall security picture. Every vector considered here is
derived fromor explicitly addressed in theDKTP specification and is evaluated
against the formal reductions proven earlier.

7.1 Attack Surfaces in DKTP
DKTP exposes several potential attack surfaces that a network attacker may
attempt to exploit. These can be grouped according to the stage of the protocol.

Handshake surfaces.
• Modification of fields in Connect Request or Connect Response.

• Injection of false ephemeral KEM public keys.

• Replacement of KEM ciphertexts.

• Replay of old handshake messages.

• Substitution of a different session cookie.

The signature on pkkemR ∥ cookie prevents impersonation. The cookie binds
M1 through M4 to the correct session configuration and identity. The en-
crypted cookie in M3 and the encrypted confirmation in M4 prevent manip-
ulation of intermediate handshake state.

Key schedule surfaces.
• Attempt to compute directional root keys without both the shared secret
and the correct PSK.

• Attempt to recompute tunnel keys without the KDF output.

• Attempt to derive the next PSK value without access to the corresponding
tunnel key.

These fail because the KDF treats each direction separately, applies domain
separation through independent secret inputs, andmixes the directional KEM
shared secrets with the persisted peering secrets (pssl, pssr).
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Transport surfaces.
• Attempting to forge RCS ciphertexts.

• Attempting replay attacks by resending old packets.

• Attempting out of order delivery.

• Attempting to guess the header or tamper with associated data fields.

Transport packets use RCS authenticated encryption with associated data that
includes the entire 21 byte header. Nonces never repeat because they are de-
rived from strictly increasing sequence numbers.

Post compromise surfaces.
• Attacks following compromise of static keys.

• Attacks following compromise of previous tunnel keys.

• Attempts to exploit downgraded configuration values.

Anewhandshakewith freshKEMkeys andnewPSKs reestablishes full strength
security.

7.2 Adversarial Capabilities and Limitations
The adversary controls the network completely. It may reorder, inject, replay,
delay, or drop messages. It may interact through the following oracles:

• Send: deliver handshake or transport messages and obtain the peer’s re-
sponse.

• CorruptSig: reveal long term signing keys.

• RevealEPH: reveal ephemeral KEM private keys for a chosen session.

• RevealPSK: reveal persisted peering secrets pssl and/or pssr at a chosen
time.

• RevealTunnelKey: reveal directional tunnel keys for a chosen established
session.

• Test: challenge the indistinguishability of session keys for a fresh session.

Adversarial limitations stem from the cryptographic assumptions:

• it cannot compute secl or secr for a fresh session without the correspond-
ing ephemeral KEM private key,
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• it cannot forge valid handshake signatures over the authenticated tran-
script hash and serialized header fields,

• it cannot compute DKTP KDF outputs without the required secret inputs
for that derivation,

• it cannot modify or forge RCS ciphertexts except with negligible probabil-
ity under the AEAD security bound,

• it cannot induce nonce reuse within a direction when sequence numbers
are enforced and authenticated as associated data.

7.3 Effects of PSK Compromise
This subsection analyzes compromise of the pre-shared secrets stored in the
peering key structures:

pssl (local pre-shared secret), pssr (remote pre-shared secret).

Effect on channel key derivation. DKTP derives channel keys as:

(tckl, nl) ← KDFDKTP(secl, pssr), (tckr, nr) ← KDFDKTP(secr, pssl).

If an adversary compromises pssl and/or pssr, the adversary removes one secret
input from the KDF. Security then depends primarily on the confidentiality of
the corresponding KEM shared secret for that direction.

PSK update and persistence. After establishment confirmation, DKTP up-
dates:

pssl ← Hash(pssl ∥ tckl), pssr ← Hash(pssr ∥ tckr).
Therefore, compromise of an old pre-shared secret does not automatically im-
ply compromise of its updated successor after a fresh handshake in which the
updated state is computed and persisted.

Interaction with long-term key compromise. Compromise of long-term
signature keys enables impersonation at the message authentication layer, but
does not by itself reconstruct past channel keys without breaking the KEM
secrecy for the corresponding sessions and directions.
This analysis assumes the adversary may compromise stored pre-shared se-
crets at arbitrary times; the security games should interpret such compromise
as removal of the corresponding secret KDF input for sessions after the com-
promise event.

45



7.4 KCI and UKS Resistance
Key compromise impersonation resistance. If the adversary compromises
skI, it cannot impersonate R to I because impersonation requires knowledge
of pskR→I. The cookie binds the configuration and identities, so the attacker
cannot introduce a false identity without detection.

Unknown key share resistance. The attacker cannot cause I and R to com-
plete handshakes that share a key but have different peer identities. The cookie
includes both verification keys, so the peersmust independently compute iden-
tical cookies to complete the handshake. A manipulated handshake would
violate the transcript integrity lemma.

7.5 Full Analysis of AEAD and Nonce Construction
DKTP uses RCSAEAD for all encrypted handshakemessages afterM2 and for
all transport packets.

Nonce derivation. Nonces are derived from:

nonce = encode(seq),

where seq is an eight byte strictly increasing counter.
This ensures:
• nonce uniqueness in each direction,

• no possibility of nonce reuse,

• authenticated ordering because the header is part of AEAD associated
data.

Associated data. The associated data includes:

flag ∥ seq ∥ len ∥ timestamp.

These fields cannot be modified without invalidating the authentication tag.

Integrity consequences. Any tampering of:
• sequence number,

• length,
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• timestamp,

• direction flag,

• ciphertext body,

yields rejection under the INT CTXT property of RCS.

7.6 Quantum Random Oracle Considerations
The KDF and cookie hash rely on Keccak based constructions. Keccak is mod-
eled as a quantum random oracle in the formal analysis. Under this model:
• adversarial superposition queries do not reveal input structure,

• the domain separation labels prevent cross protocol interference,

• KDF outputs are pseudo-random even under quantum adversaries,

• collisions on the cookie hash remain negligible.

The security of directional root keys depends on the pseudo-randomness of
KDF outputs given secl, psk, and cookie. All three inputs remain unknown to
the adversary in fresh sessions.

7.7 Summary of Adversarial Bounds
Combining all reductions and attack surface analyses:

Advauth
𝒜 ≤ AdvSIG + 𝜀,

Advconf
𝒜 ≤ AdvKEM + AdvKDF + 𝜀,

Advint
𝒜 ≤ AdvRCS + 𝜀,

Advratchet
𝒜 ≤ AdvKDF + AdvKEM + 𝜀,

Advfs
𝒜 ≤ AdvKEM + 𝜀,

Advpcs
𝒜 ≤ AdvKEM + AdvKDF + 𝜀.

Directional 512-bit tunnel keys provide a symmetric security level far beyond
NIST Category 5. Even quantum adversaries gain no meaningful advantage
due to the structure of the KDF, the mandatory use of separate PSKs, and the
use of independent KEM shared secrets.
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8 Implementation Conformance
This section verifies that the DKTP reference implementation conforms to
the formal model presented in the previous chapters. The comparison is per-
formed by examining the source code files that implement the handshake, key
schedule, KDF inputs, packet layout, and ratchet update. The goal is to ensure
that the operations described in the formal protocol specification are imple-
mented exactly and that no discrepancies exist that would invalidate the proofs
or reduce security.

8.1 Mapping Between Model and Code
The handshake logic in the implementation matches the formal protocol de-
scription.

Message M1. The Connect Request includes the initiator verification key,
configuration identifier, and session cookie. The cookie is computed from the
configuration and both verification keys using the Keccak based hash with the
correct label. Serialization order matches the formal definition.

MessageM2. TheConnectResponse contains the responder ephemeralKEM
public key and a signature covering (pkkemR ∥ cookie) exactly as described in
the specification. The cookie inM2 is copied verbatim from theM1 input, and
the implementation checks that it matches the expected value.

Message M3. The Exchange message includes the KEM ciphertext and an
encrypted copy of the cookie. The implementation derives the provisional en-
cryption key exactly as specified by using the directional shared secret and
directional PSK prior to root key derivation.

Message M4. The Verification message contains encrypted confirmation of
handshake completion. This matches the formal model where M4 proves the
responder derived the same handshake state.

Key schedule. The implementation constructs the root keys using

KI→R
root = KDF(secl ∥ pskI→R ∥ cookie),

and symmetrically for the other direction. The same domain separation labels
appear in the implementation. The 512-bit tunnel keys and initial nonces are
derived exactly as in the formal specification.
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Transport phase. The header fields (flag, sequence, length, timestamp) ap-
pear in the exact order and with the exact sizes listed in the specification. The
header is passed to RCS as authenticated associated data. The ciphertext is gen-
erated using the appropriate directional tunnel key and nonce. The receiver
performs the exact same RCS call and checks that the header is authenticated.

State machine. The implementation follows the same state transitions as
the formal model: Idle, Handshake, Tunnel Established, Ratchet Ready. Mes-
sages out of order cause immediate failure.

8.2 Algorithm Agility in dktp.h
Algorithm agility is encoded directly in the implementation through compile
time configuration macros in dktp.h. The implementation supports multiple
KEM and signature schemes through the following mechanisms.

Configurable KEM. The KEM key generation and decapsulation functions
are accessed throughwrapperswhose implementation depends on the selected
KEM family. The formal model treats the KEM abstractly, and the implemen-
tation reflects this abstraction correctly.

Configurable signature scheme. The signature functions are selected by
configuration. The implementation can chooseDilithium, SPHINCS+, or other
supported post quantum signature systems. Key serialization and verification
match the exact interface assumed by the formal model.

Invariant protocol structure. Changing the algorithmchoices does not change
the message formats or state transitions. This property aligns with the proto-
col description and ensures that the proofs apply for any approved parameter
sets.

8.3 Constant Time Behavior
The implementation uses constant time cryptographic operations for all oper-
ations that depend on secret data.
• KEM decapsulation uses constant time implementations provided by the
vendor library.

• Signature verification uses constant time routines.

49



• RCS encryption and decryption avoid data dependent branches and table
lookups.

• The comparison of authentication tags and cookies uses constant time
memory comparison functions.

The implementation contains no branches or memory access patterns that de-
pend on tunnel keys, KEM secrets, PSKs, or any intermediate KDF outputs.
This conforms to the assumptions used in the security proofs.

8.4 RNG Requirements and Safety
DKTP requires a cryptographically secure pseudo-random number generator.
The implementation uses the system CSPRNG and has the following proper-
ties:
• The RNG is invoked to generate ephemeral KEM key pairs.

• Nonces for handshake encryption are derived from KDF outputs and not
from the RNG, ensuring determinism and uniqueness.

• Transport nonces are encoded sequence numbers, not RNG output, en-
suring uniqueness in the tunnel.

• RNG failures are detected before the protocol continues.

The security proofs assume correct operation of theCSPRNGonly for ephemeral
KEM key generation.

8.5 Key and State Erasure
The implementation erases sensitive material at the appropriate times:
• ephemeral KEM private keys are zeroed immediately after use,

• directional shared secrets secl and secr are erased after root key derivation,
• tunnel keys are overwritten when ratcheting produces new ones,

• updated PSKs replace old PSKs and overwrite their previous values,

• intermediate buffers used duringRCS encryption anddecryption are cleared.

The erasure functions used are resistant to compiler optimization removal and
match the assumptions required to prevent key recovery by memory inspec-
tion.
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8.6 Validation of Sequence Number and Nonce Handling
The implementation correctly enforces all sequence and nonce properties re-
quired by the formal model.

Sequence numbers. Each direction maintains an unsigned 64 bit sequence
counter. The receiver tracks the highest accepted sequence number seqmax and
rejects packets with sequence numbers less than or equal to it. The implemen-
tation halts the session on sequence overflow.

Nonces. Nonces are encoded sequence numbers. Since sequences never re-
peat and always increase, nonces never repeat. Thismatches the formalmodel
and the assumptions used in the AEAD security reductions.

Associated data. The entire header (flag, sequence, length, timestamp) is
passed as associated data to RCS. Any modification breaks the authentication
tag, preventing replay and reordering attacks.
This completes the implementation conformance analysis and confirms that
the DKTP implementation matches the formal model and specification in all
cryptographically relevant details.

9 Concrete Security Estimates
This section provides concrete security estimates for DKTP based on the pa-
rameter sets commonly selected for theKEMand signature schemes, the strength
added by mandatory directional pre-shared keys, and the 512-bit symmetric
tunnel keys derived at the end of the handshake. Estimates rely on NIST
post quantum security categories and the theoretical bounds of symmetric and
asymmetric cryptographic primitives.

9.1 Security Levels for Select KEM and Signature Choices
DKTP is designed to operate at a consistent 512-bit symmetric security level for
all active secure channels. This security level is achieved through the use of
512-bit directional tunnel keys and cSHAKE 512 based key derivation. The
authenticated encryption used in the tunnel relies exclusively on RCS 512,
which is constructed to match this symmetric strength. The symmetric layer
therefore determines the overall channel security and provides a margin sig-
nificantly above the highest NIST post quantum category.
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The asymmetric components of DKTP, namely the key encapsulation mecha-
nism and the digital signature system, are selected through compile time con-
figuration. The protocol supports a variety of post quantum families, including
lattice based, code based, and hash based systems. To align with the 512-bit
symmetric target, DKTP requires that implementations use only the highest
strength asymmetric parameter sets. These provide approximately 256-bit post
quantum security, which is then combined with mandatory directional pre
shared keys and the 512-bit symmetric layer.
The table below lists the recommended parameter sets and their approximate
classical and quantum security strengths. Only the highest category asymmet-
ric sets are shown, since lower ones do not match the intended strength of
DKTP.

Primitive Parameter Set Type Security Bits
Kyber Kyber 1024 KEM ≈ 256
Classic McEliece mceliece 8192128 KEM ≈ 256
Dilithium Dilithium V Signature ≈ 256
SPHINCS+ SPHINCS+ 256f Signature ≈ 256
RCS RCS 512 AEAD 512
cSHAKE cSHAKE 512 KDF 512
SHA3 SHA3 512 Hash 512

Table 1: Recommended post quantum primitives for DKTP. Asymmetric
primitives use only their highest category parameter sets, and symmetric com-
ponents operate exclusively at the 512-bit security level.

In summary, DKTP combines 256-bit post quantum asymmetric primitives
with a 512-bit symmetric core. The tunnel keys, nonce derivation, PSK up-
date mechanism, confirmation hashes, and all authenticated encryption rely
on 512-bit cSHAKE or RCS. The result is a secure channel construction whose
symmetric strength noticeably exceedsNISTCategory 5 and ensures long term
resistance against quantum capable adversaries.

9.2 Impact of PSK Strength on Overall Security
DKTP uses two persisted pre-shared secrets in the peering key structures:

pssl (local pre-shared secret), pssr (remote pre-shared secret).
These values are mixed with the directional KEM shared secrets during chan-
nel key derivation:

(tckl, nl) ← KDFDKTP(secl, pssr), (tckr, nr) ← KDFDKTP(secr, pssl).
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Security impact. Stronger pre-shared secrets improve robustness against par-
tial compromise scenarios by ensuring that channel key derivation retains se-
cret entropy even if one source is weakened. Conversely, weak or predictable
pre-shared secrets reduce this benefit and shift effective security toward re-
liance on the secrecy of the KEM shared secrets alone.

Update rule and persistence. After establishment confirmation, DKTP up-
dates persisted peering secrets:

pssl ← Hash(pssl ∥ tckl), pssr ← Hash(pssr ∥ tckr).

The updated values are saved and seed subsequent handshakes.

9.3 Security Margins and Comparison to NIST Categories
NIST defines five categories of post quantum security strength, with Category
5 corresponding to approximately 256-bits of security against classical attacks
and 128-bits against quantum Grover style attacks.
In DKTP:

Asymmetric layer. The strength of the handshake depends on the selected
KEM and signature scheme and typically ranges between Category 3 and Cat-
egory 5.

Symmetric layer. The symmetric tunnel keys are 512-bits in each direction.
Under quantum attack, Grover style search reduces symmetric security by a
square root factor, leaving:

Effective quantum symmetric security ≈ 256 bits.

This exceeds NIST Category 5 requirements.

RCS AEAD. RCS uses a Rijndael based permutation and a cSHAKE based
KDF and authentication layer. These have symmetric security levels aligned
with the 512-bit tunnel keys and are far above Category 5.

PSK contribution. Because PSKs are included directly as KDF inputs, the
symmetric strength is preserved across ratchet updates, even when asymmet-
ric primitives are refreshed with lower category parameters.

53



Overall channel security. The final security level of a DKTP channel is:
• 512-bit symmetric strength when viewed against classical adversaries,

• approximately 256-bit symmetric strength against quantum adversaries,

• limited by the lower of the KEM and signature scheme during the initial
handshake,

• increased after ratchet update because the PSK update is driven by 512-bit
tunnel keys.

This provides a significant cushion above the highest NIST post quantum cat-
egory. DKTP retains strong security margins even when conservative parame-
ter sets are chosen for asymmetric primitives.

10 Conclusion
The Distributed Key Tunnel Protocol provides a comprehensive and high as-
surance design for establishing authenticated and confidential channels that
remain secure against classical and quantum adversaries. This paper has pre-
sented a complete formal analysis of the protocol that aligns directly with the
DKTP technical specification and the reference implementation. Every hand-
shake field, key derivation input, directional shared secret, tunnel key, ratchet
update, and transport packet format has been examined and expressed both in
engineering terms and through the formal security model.
The DKTP handshake uses a session cookie to bind configuration values and
verification keys into a consistent and authenticated structure. The session
cookie ensures that both parties agree on the same protocol parameters and
peer identities and prevents any reordering or manipulation of the handshake.
The key schedule uses two independent KEM shared secrets together with di-
rectional pre-shared keys. These values are combined with the authenticated
cookie through a domain separated KDF to produce directional root keys, tun-
nel keys, and initial nonces. The resulting tunnel keys are 512-bit symmetric
keys that provide long term protection well above the highest NIST post quan-
tum category. This provides strong security margins even when the asymmet-
ric primitives are selected from parameter sets that offer lower categories of
security.
The transport phase uses RCS-512 authenticated encryption with sequence
basednonces, authenticatedheaders, and strict replay andordering rules. These
features guarantee confidentiality, integrity, uniqueness of nonces, and resis-
tance to packet manipulation. The ratchet mechanism updates directional
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PSKs and tunnel keys after each handshake and allows the protocol to recover
security even after compromise of long term keys or previous symmetric keys.
The security proofs show that DKTP achieves mutual authentication, hand-
shake confidentiality, ciphertext integrity, replay resistance, forward secrecy,
post compromise security, and ratchet security. Each proof reduces one of
these goals to the assumptions of the underlyingKEM, signature scheme, KDF,
and RCS authenticated encryption. The cookie based transcript binding and
mandatory directional PSKs play central roles in these reductions.
The implementation analysis confirms that the code follows the specification
and the formal model exactly. All cryptographic operations are invoked in
constant time, all sensitive state is erased promptly, and the random number
generator is used only for ephemeral KEM keys. The header structure, nonce
encoding, sequence number checks, and packet layout match the formal de-
scription bit for bit.
Taken together, these results demonstrate that DKTP is a robust, well struc-
tured, and conservatively designed secure channel protocol that provides strong
protections against both classical and quantumadversaries. Its combination of
rigid authenticity, strong symmetric encryption, algorithm agility, and ratchet
based state evolution make it a suitable foundation for high security applica-
tions that require long term confidentiality and resilience against compromise.
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