
Dual-Key Tunnelling Protocol 

DKTP Technology Integration Guide 

Revision: 1.0 

Date: October 11, 2025 

 

1 Introduction and Scope 

Dual-Key Tunnelling Protocol (DKTP) is a post-quantum, symmetric/asymmetric tunnelling 

protocol designed to replace legacy PKI-dependent VPNs and TLS tunnels. 

It combines two independent sources of entropy; an asymmetric key-encapsulation mechanism 

(KEM) and a pre-shared symmetric key (PSK), to derive separate transmit and receive channel 

keys. 

The handshake authenticates both peers using post-quantum signatures and derives two 

channel keys, providing perfect forward secrecy and post-compromise security. After each 

handshake the PSKs are ratcheted by hashing them with the new tunnel keys. DKTP operates 

independently of traditional certificate authorities, making it suitable for payment networks, 

cloud services, SCADA infrastructure and high-value IoT deployments. 

This guide provides practical instructions for integrating DKTP into different domains. It draws 

on the official specification, executive summary and source-code API. 

2 Protocol Overview 

2.1 Composite Handshake 

1. Key generation. Each host maintains a dktp_local_peer_key structure containing: 

▪ expiration: expiry time (seconds since epoch); 

▪ config: 48-byte configuration string identifying the KEM, signature scheme, hash 

function and symmetric cipher; 

▪ keyid and peerid: unique 16-byte identities for the local device and its peer; 

▪ pss: the pre-shared secret (PSK); 

▪ sigkey and verkey: post-quantum signature signing and verification keys. 

2. Dual-entropy key exchange. During the handshake each side exchanges KEM 

ciphertexts and signatures. The shared secret derived from the KEM is XORed with the 



PSK to produce two secrets: one for the transmit channel and one for the receive 

channel. Separate transmit and receive keys prevent bidirectional correlation and allow 

independent ratcheting. 

3. Authenticated encryption. Once keys are derived, data packets are encrypted with the 

RCS stream cipher in AEAD mode. Packet headers (flags, sequence number, timestamp, 

payload size) are authenticated using KMAC to ensure replay protection and integrity. 

4. Ratcheting. After a handshake completes, the protocol hashes the PSK with the new 

channel keys (via cSHAKE) to update both local and remote PSKs. If 

DKTP_ASYMMETRIC_RATCHET is enabled, peers may send an asymmetric ratchet request 

to inject a new KEM secret mid-session. 

2.2 API Summary 

The client.h and dktp.h headers expose the integration API: 

Function Description 

void dktp_generate_keypair(dktp_remote_peer_key* enckey, 

dktp_local_peer_key* deckey, const uint8_t 

keyid[DKTP_KEYID_SIZE]) 

Generates a key pair. enckey 

(public) is distributed to peers; 

deckey (private) is kept secret. 

dktp_errors dktp_client_connect_ipv4(dktp_local_peer_key* lpk, 

dktp_remote_peer_key* rpk, const qsc_ipinfo_ipv4_address* 

address, uint16_t port, void 

(*send_func)(dktp_connection_state*), void 

(*receive_callback)(dktp_connection_state*, const uint8_t*, 

size_t)) 

Initiates a duplex connection 

to a remote host over IPv4. 

Supply your local peer key, 

the remote peer’s public key, 

the server address/port, and 

callback functions. A similar 

function exists for IPv6. 

dktp_errors dktp_client_listen_ipv4(dktp_local_peer_key* lpk, 

dktp_remote_peer_key* rpk, void 

(*send_func)(dktp_connection_state*), void 

(*receive_callback)(dktp_connection_state*, const uint8_t*, 

size_t)) 

Starts a listener on the 

specified port to accept one 

inbound connection. A 

corresponding IPv6 version is 

available. 

bool 

dktp_send_asymmetric_ratchet_request(dktp_connection_state* 

cns) 

Sends a ratchet request to 

renegotiate session keys 

mid-session (requires 

DKTP_ASYMMETRIC_RATCHET 

enabled). 



dktp_errors dktp_packet_encrypt(dktp_connection_state* cns, 

dktp_network_packet* packetout, const uint8_t* message, 

size_t msglen) 

Encrypts a message into an 

output packet using the 

current transmit key. 

dktp_errors dktp_packet_decrypt(dktp_connection_state* cns, 

uint8_t* message, size_t* msglen, const dktp_network_packet* 

packetin) 

Decrypts and authenticates a 

received packet using the 

receive key. 

void dktp_local_peer_key_serialize/deserialize(...) Serializes or restores a 

dktp_local_peer_key to/from a 

byte array for storage. 

2.3 Choosing Parameter Sets 

DKTP supports multiple post-quantum KEM/signature combinations (Kyber/Dilithium, 

Dilithium/McEliece, McEliece/SPHINCS+). Select the set by defining one of the compile-time 

macros in dktp.h (e.g., DKTP_CONFIG_DILITHIUM_KYBER). For maximum security choose 

McEliece/SPHINCS+; for balanced performance choose Dilithium/Kyber. 

3 Key Management and Provisioning 

1. Generate server keys: Use dktp_generate_keypair() at installation time to create a public 

encryption key (dktp_remote_peer_key) and private signing key (dktp_local_peer_key) 

for each service endpoint. Store the private key securely; distribute the public key to 

client devices. 

2. Assign device identities and PSKs: For each device (POS terminal, cloud microservice, 

PLC, IoT endpoint), assign a 16-byte keyid that uniquely identifies the device and a 

16-byte peerid for its counterpart. Generate a 64-byte PSK (pss) using a hardware 

random source. The PSK should be provisioned into both peers and rotated periodically. 

When the handshake completes, DKTP will ratchet the PSK. 

3. Serialise keys: Use dktp_local_peer_key_serialize() and dktp_local_peer_key_deserialize() 

to store keys in non-volatile memory. On start-up, deserialize the keys into memory. 

Always zeroize keys when decommissioning devices using dktp_local_peer_key_erase(). 

4. Set domain strings: The static DKTP_DOMAIN_IDENTITY_STRING defines a 

domain/device identity used in cSHAKE customization. For multi-domain deployments 

(e.g., separate payment and cloud), modify this string at compile time to reflect the 

domain: e.g., "QRCS:PAYMENT:DKTP1A" for POS networks or "QRCS:SCADA:DKTP1A" for 

control networks. 



4 Integration into Payment Networks 

Payment terminals and ATMs require fast, secure tunnels to authorization servers. DKTP’s 

dual-entropy handshake eliminates dependency on RSA/ECC certificate infrastructures and 

completes quickly (two round trips). It provides forward secrecy and constant-time 

cryptographic operations, reducing vulnerability to side-channel attacks. 

4.1 Architecture 

• Client: Each POS terminal acts as a DKTP client. It holds a dktp_local_peer_key with its 

PSK and signature keys and knows the server’s dktp_remote_peer_key (public encryption 

key). 

• Server: The payment processing gateway runs a DKTP listener. It holds its private 

dktp_local_peer_key and a dktp_remote_peer_key for each registered device (containing 

the device’s public verification key and PSK). 

• Transport: DKTP runs over TCP or UDP sockets (provided by qsc_socket in the QSC 

library). The send/receive callbacks interface your network stack. 

4.2 Integration Steps 

1. Provisioning: 

▪ At device manufacturing or enrolment, call dktp_generate_keypair() on a secure 

workstation to generate a server key pair (public rpk, private lpk). Copy the public 

rpk and the device’s lpk into the terminal; copy the private lpk (server side) and 

the device’s public key into the payment server database. 

▪ Generate a 64-byte PSK and store it in both lpk->pss fields. 

2. Implement send/receive callbacks: 

▪ The send callback signature is void send_func(dktp_connection_state* cns). Inside 

this callback, call your OS/network API to transmit the bytes from cns->txcpr 

(DKTP uses qsc_rcs_state to hold cipher state). The send function is triggered by 

the DKTP library when a packet is ready. 

▪ The receive callback signature is void receive_callback(dktp_connection_state*, 

const uint8_t* data, size_t len). When new application data is received (after 

decrypting and authenticating), your callback processes the plaintext (e.g., 

payment authorization request) and may respond by calling 

dktp_packet_encrypt() and writing using send_func. 



3. Establish connection: 

▪ The POS terminal calls dktp_client_connect_ipv4(lpk, rpk, &server_address, 

DKTP_CLIENT_PORT, send_func, receive_callback) where server_address is the IP 

of the payment gateway. This performs the handshake, authenticates the server’s 

signature key and derives dual channel keys. 

▪ On the server, call dktp_client_listen_ipv4(lpk_server, rpk_device, send_func, 

receive_callback). The server will block until a connection arrives, perform the 

handshake and then return a dktp_connection_state. 

4. Transmit transactions: 

▪ To send a request, the POS terminal constructs a dktp_network_packet and calls 

dktp_packet_encrypt(cns, &packetout, message, msglen). It then calls send_func() 

to write the packet. 

▪ The server calls dktp_packet_decrypt(cns, plaintext, &len, &packetin) on incoming 

data. Validate the return value to ensure no tampering has occurred. 

5. Ratcheting and rotation: 

▪ At the conclusion of the connection or on a schedule, call 

dktp_send_asymmetric_ratchet_request(cns) to inject fresh asymmetric entropy. 

After ratcheting, the PSK is updated. 

▪ Periodically re-generate and provision new key pairs and PSKs during 

maintenance windows. 

4.3 Operational Considerations 

• Latency: DKTP’s handshake is constant-time and runs in ~2 round trips. Because both 

transmit and receive channels derive from independent secrets, the cipher state can 

pre-compute keys, reducing per-packet overhead. 

• Integration with card networks: DKTP can encapsulate ISO 8583/ISO 20022 messages 

within its encrypted payloads. Ensure the application layer handles payment message 

framing. 

• High availability: Use separate PSKs and key IDs for fail-over servers to prevent key 

reuse across clusters. When using load balancers, implement sticky sessions so that 

handshake and ratchet states remain consistent per connection. 

5 Integration into Cloud Platforms 



Cloud services often span multiple micro-services across data centers. DKTP can secure East–

West traffic between services as well as client–server connections. 

5.1 Use Cases 

• Secure micro-service RPC: Replace mutual TLS between micro-services with DKTP to 

avoid certificate management overhead and provide post-quantum security. 

• Hybrid VPN tunnels: Create DKTP tunnels between customer networks and cloud 

gateways for secure remote access. Each tunnel can be bound to a tenant or service 

account. 

• SaaS API protection: Wrap API calls within DKTP packets to protect sensitive data in 

transit. 

5.2 Integration Steps 

1. Key distribution service: Use your existing secret-management system (e.g., HashiCorp 

Vault, AWS KMS) to generate and store dktp_local_peer_key and dktp_remote_peer_key 

objects. Provide an API for micro-services to retrieve their keys and PSKs at start-up. 

2. Service Mesh: For service-mesh architectures (Kubernetes, Istio), implement a sidecar 

that executes the DKTP handshake on behalf of the service. The sidecar performs 

dktp_client_connect_ipv4/ipv6 to remote sidecars, passing messages via shared memory 

or Unix domain sockets. 

3. High concurrency: DKTP supports multiple concurrent connections. Manage connection 

states using the functions in connections.h. When a new service instance starts, allocate a 

dktp_connection_state via dktp_connections_add(), initiate handshake, and store the 

state for subsequent packet encryption/decryption. 

4. Load balancing: Because DKTP handshakes embed the peer ID in the header, inbound 

packets can be routed to the correct connection state. However, ensure that incoming 

packets from a given peer go to the same backend instance; otherwise, handshake state 

will not match. 

5. Monitoring and logging: Use dktp_log_message() and dktp_log_error() to log events. 

Monitor error codes returned from dktp_packet_encrypt/decrypt() and ratchet functions. 

6 Integration into SCADA and Industrial Control Systems 

Industrial systems (power grids, manufacturing lines) require deterministic timing and high 

resilience. Many devices lack hardware cryptography. DKTP offers a lightweight yet 

high-assurance tunnel that can protect Modbus, DNP3 and proprietary protocols. 



6.1 Deployment Architecture 

• Field devices (RTUs/PLCs) act as DKTP clients. Each holds a dktp_local_peer_key and 

knows the control server’s dktp_remote_peer_key. 

• Control center runs a DKTP listener per field network. The control center may maintain 

separate PSKs for each device group (substation, plant area) and may compile DKTP with 

Dilithium/Kyber for moderate performance. 

6.2 Integration Steps 

1. Resource assessment: Evaluate CPU, RAM and network bandwidth. PQ KEMs 

(Dilithium/McEliece) require more cycles than AES; ensure the device can complete the 

handshake within acceptable time (tens of milliseconds on typical ARM microcontrollers). 

For devices lacking PQ capability, use a proxy gateway to perform DKTP on their behalf. 

2. Key provisioning: Use offline tools to generate key pairs and PSKs for each device. 

Embed the PSK in tamper-resistant memory. Because SCADA networks may be isolated, 

select long key lifetimes (e.g., six months) and schedule maintenance windows for 

rotation. 

3. Connection management: Field devices initiate connections using 

dktp_client_connect_ipv4/ipv6. Control centers call dktp_client_listen_ipv4/ipv6 to accept. 

The handshake ensures mutual authentication and forward secrecy. 

4. Integration with fieldbus protocols: After establishing the tunnel, wrap Modbus/DNP3 

frames into DKTP packets. On the receiving side, decrypt and feed the plaintext into the 

existing protocol stack. Consider adjusting timeouts to account for PQ cryptographic 

processing. 

5. Keep-alive and watchdog: SCADA links often require continuous liveness monitoring. 

Implement periodic keep-alive messages using your application layer, or call 

dktp_send_asymmetric_ratchet_request() regularly to refresh keys and keep the session 

active. 

7 Integration into IoT Devices 

DKTP can protect high-value IoT devices such as smart meters, drones and medical equipment. 

However, PQ cryptography may tax constrained hardware. 

7.1 Integration Guidelines 



1. Select parameter sets: For microcontrollers with limited resources, compile DKTP with 

the Dilithium-Kyber set (DKTP_CONFIG_DILITHIUM_KYBER) to reduce key sizes and 

handshake time. When security is paramount (e.g., medical devices), use 

McEliece-SPHINCS+. 

2. Memory footprint: Use -Os compiler optimization and remove unused features (disable 

DKTP_ASYMMETRIC_RATCHET if frequent ratcheting isn’t required). Set 

DKTP_CONNECTIONS_MAX at compile time to limit the number of concurrent 

connections and reduce memory usage. 

3. Key storage: Store the PSK and key identifiers in secure flash or a trusted platform 

module (TPM). Zeroize memory after handshake. Consider deriving PSKs from device 

secrets using HKDF at start-up to avoid storing long secrets. 

4. Connection initiation: IoT devices typically act as clients. When connecting to cloud or 

local hubs, call dktp_client_connect_ipv6() using the IPv6 address of the gateway. 

Implement event-driven send/receive callbacks integrated with the device’s network 

stack (e.g., lwIP). Use non-blocking sockets to avoid blocking the control loop. 

5. Firmware updates: To update device firmware via DKTP tunnels, ensure the download 

service uses dktp_packet_encrypt() to transmit signed and encrypted update chunks. 

After verifying the update signature, the device can apply the patch securely. 

8 Security Best Practices 

• Protect private keys and PSKs: Always store dktp_local_peer_key.sigkey and pss in secure 

memory. On systems with secure enclaves, isolate these secrets using hardware keys. Use 

constant-time operations when comparing or copying secrets to prevent side-channel 

leaks. 

• Identity management: Use unique keyid and peerid values per connection. Avoid 

reusing the same PSK across multiple devices or services. 

• Certificate independence: DKTP does not require external CA certificates; however, if 

you integrate with legacy systems, ensure certificates are validated separately before 

entering DKTP tunnels. 

• Replay and downgrade protection: DKTP authenticates packet headers (flag, sequence, 

timestamp, payload size) using KMAC. Always check return codes from 

dktp_packet_decrypt() and abort the connection on failure. 

• Ratcheting schedule: Even with PSK ratcheting, plan regular key rotations. Use 

asymmetric ratchet requests during long-lived connections to inject fresh entropy. 



9 Conclusion 

The Dual-Key Tunnelling Protocol offers a high-security, certificate-independent alternative to 

classical VPN and TLS tunnels. By combining post-quantum KEMs with pre-shared symmetric 

keys, DKTP derives two independent channels providing forward secrecy and strong replay 

protection. Its modular API, as demonstrated in the client.h and dktp.h headers, enables 

integration into payment systems, cloud platforms, SCADA networks and high-value IoT devices. 

Adopting DKTP requires careful key management and provisioning, selection of parameter sets 

appropriate to your hardware, and implementation of send/receive callbacks tied to your 

network stack. Following the integration guidelines outlined here will allow you to deploy DKTP 

securely and effectively across diverse infrastructures. 

 


