QRCS Corporation

Multi Party Domain Cryptosystem (MPDC) Analysis

Title: Implementation Analysis of the Multi Party Domain Cryptosystem (MPDC)
Author: John G. Underhill

Institution: Quantum Resistant Cryptographic Solutions Corporation (QRCS)
Date: November 2025

Document Type: Technical Cryptanalysis Report

Revision: 1.0

Chapter 1: Introduction
1.1 Identification of Artifacts

This cryptanalysis examines the interior protocol of the Multi-Party Domain
Cryptosystem, designated MPDC-I, as defined in the authoritative specification MPDC-
2024 Rev.1b. The specification states that MPDC-I is a multi-party authenticated key-
exchange and network-security system intended for interior network environments. Its
stated function is to establish an encrypted and authenticated duplex communication
stream between a server, referred to as the MAS, and a client. The MAS and client do
not perform a single asymmetric key exchange with each other; instead, they each
maintain authenticated asymmetric relationships with multiple Agents, and these Agents
contribute independent pseudo-random fragments that become inputs to the tunnel
key derivation.

The analysis presented here is based on two primary artifacts:

1. The MPDC-I Rev.1b specification, which defines the protocol flows, certificate
hierarchy, topology propagation, fragment exchange, key derivation, replay
protection rules, message structures, and the expected behavior of each device
class.

2. The accompanying C implementation, including mpdc.h, mpdc.c, network.c,
certificate.c, mas.c, client.c, agent.c, dla.c, rds.c, and the symmetric and PQC
routines in the QSC library. These files collectively implement the mechanisms
described in the specification. All cryptographic operations, packet formats, and

message-handling rules appearing in the analysis are verified directly from these
sources.

Throughout this document, the specification is treated as the normative description of
intended protocol behavior, and the implementation is examined to confirm whether
the behavior conforms to the specification without deviation. The analysis therefore
assesses both correctness of design and correctness of implementation.

1.2 Protocol Purpose and High-Level Design Claims

The specification defines MPDC-I as a cryptosystem that distributes the security of a key
exchange across multiple autonomous devices in a domain. Servers and clients share
long-term authenticated secrets with Agents using post-quantum KEMs. Each Agent
uses these long-term secrets to generate short pseudo-random fragments, encrypts and
authenticates these fragments under symmetric derivations based on the master
fragment keys, and transmits them to the MAS during a fragment-collection round.

The MAS aggregates the received fragments, verifies their authenticity, decrypts the
MAS-side fragment for each Agent, and combines the contributions with its own
fragment using a Keccak-based hash construction. The MAS then sends to the client a
bundle containing the client-side ciphertexts and the MAS-derived fragment. The client
repeats the fragment-verification, decryption, and aggregation steps. Both sides obtain
an identical 256-bit value that becomes the seed for the two tunnel keys used in the
subsequent encrypted channel.

The specification asserts that:

1. Session-key entropy is distributed among multiple authenticated network devices
rather than created by a single handshake.

2. Fragment generation, fragment encryption, and aggregation use symmetric
Keccak-based constructions to ensure scalability.

3. Certificates and control messages use post-quantum signature schemes and strict
time and sequence controls to prevent replay or impersonation.

4. An adversary would need to compromise several authenticated devices in order
to reconstruct the inputs to the tunnel-key derivation, which mitigates man-in-
the-middle attacks and impersonation attacks.

These design claims form the basis for the security objectives evaluated in later
chapters. Every claim is substantiated directly against the specification and the
implementation.

1.3 Mechanism Surfaces to be Evaluated

The cryptanalysis evaluates MPDC-I across all surfaces defined in the specification and
exercised by the implementation.

The certificate and topology subsystem defines a hierarchy anchored at the Root
Domain Server. Devices hold signed child certificates containing the public verification
key, issuer field, serial number, expiration interval, cryptographic configuration identifier,
and version. The Domain List Agent distributes topology updates, certificate lists,
revocations, convergence broadcasts, and node-status information. All such messages
contain Dilithium signatures over a Keccak hash that includes the sequence number and
timestamp of the packet. The implementation reconstructs these signed values and
enforces all signature and time validations before modifying topology state.

The master fragment key subsystem uses authenticated post-quantum KEM exchanges
between MAS and Agent, and between client and Agent. These exchanges bind
signatures to the per-packet sub-header containing the sequence number and
timestamp. The implementation verifies signatures, timestamps, certificate validity, and
sub-header correctness before accepting any MFK material.

The fragment subsystem generates symmetric fragment-encryption keys using SHAKE-
based derivations that incorporate the long-term MFK and round-specific values. Each
fragment is masked under such a derived key and authenticated using KMAC. The MAS
and client verify these values, decrypt them, and aggregate them into a hash that
produces the tunnel-key seed. The implementation performs strict per-fragment
validation and aborts the round on any signature, MAC, or timestamp failure.

The transport subsystem initializes two AEAD channels using RCS with KMAC
authentication under the tunnel keys. Packet headers contain the message flag,
sequence number, message length, and UTC timestamp. These fields are included as
associated data in the AEAD transform. The implementation enforces strict replay
resistance by verifying timestamp bounds and enforcing monotonic sequence numbers.

The cryptanalysis therefore focuses on five primary surfaces: the certificate hierarchy,
topology propagation, MFK initialization, fragment generation and aggregation, and the

RCS-based tunnel. Each surface is examined in subsequent chapters for completeness,
correctness, resistance to active attacks, adherence to the specification, and fidelity of
the implementation to the formal security model.

Chapter 2: Problem Definition and Scope
2.1 Scope of the Protocol Under Analysis

This cryptanalysis concerns the interior protocol MPDC-I, defined in MPDC-2024 Rev.1b.
The specification states explicitly that MPDC-I describes the complete set of interior-
domain mechanisms necessary to establish an authenticated and encrypted duplex
communication stream between a server (MAS) and a client. The protocol uses a multi-
party distribution of entropy, authenticated topological control, and post-quantum
cryptographic primitives defined in the referenced NIST standards.

The analysis includes all mechanisms that the specification designates as mandatory for
a conformant MPDC-I deployment. These include:

o Certificate issuance, distribution, verification, and expiration.
« Topology convergence, incremental updates, and revocation propagation.
o Master fragment key establishment between MAS~Agent and Client—~Agent.

« Fragment generation, fragment protection, MAS aggregation, and client
verification.

o Session-key derivation and tunnel initialization.

e Tunnel encryption and authentication using RCS with per-packet sequence and
timestamp validation.

e Error-handling rules, abort conditions, and replay-prevention logic.

All of these mechanisms are implemented in the provided source tree. Each one is
examined in the cryptanalysis according to both the intended design and its realized
behavior in the code.

2.2 Components Excluded from Analysis

The specification mentions MPDC-E, the exterior-domain protocol intended to
interconnect multiple MPDC domains, authenticate external certificates, and support
cross-domain key injection. This protocol is not defined in the Rev.1b specification and
is therefore out of scope.

Other components the specification references but does not define, such as external
governance procedures, administrative policy layers, or optional certificate-management
extensions, are also excluded. The cryptanalysis does not consider any operational
practices beyond those explicitly included in MPDC-I.

The reference implementation includes no placeholders for MPDC-E or for optional
protocol extensions, and therefore no implicit surfaces exist that require separate
treatment.

2.3 Assumptions Grounded in Cryptographic Primitives

MPDC-I depends directly on post-quantum primitives defined in NIST standards. The
specification cites FIPS 202 for SHA-3 and SHAKE, SP 800-185 for cSHAKE and KMAC,
FIPS 203 for ML-KEM (Kyber), and FIPS 204 for ML-DSA (Dilithium). The QSC library
implements these primitives. The analysis assumes that these implementations behave
as defined by their respective standards, and no claims are made beyond those standard
definitions.

The cryptanalysis does not re-evaluate the security of the primitives themselves; it
evaluates how MPDC-I composes them. All assertions of security in subsequent chapters
are conditional on the standard assumptions for SHAKE, KMAC, Kyber, Dilithium, and the
RCS AEAD construction.

2.4 Operational and Network Boundaries

The specification defines a fully adversarial network model in which an attacker controls
all packet channels. Under this model an attacker may eavesdrop, drop, inject, modify,
reorder, or replay packets. MPDC-I must therefore provide all authentication,
confidentiality, and replay protection internally without relying on link-layer guarantees.

The protocol assumes that each participating device maintains a reasonably accurate
system clock. Packet timestamps are validated against a maximum tolerance interval

defined in mpdc.h as MPDC_PACKET_TIME_THRESHOLD, set in the implementation to
sixty seconds. Although the specification presents a different example window, the

implementation adopts the sixty-second constraint, and all cryptanalytic evaluation uses
the actual compiled value.

Device compromise is treated according to the adversarial model in the specification:
any subset of devices may be compromised before, during, or after protocol execution,
except that the RDS private key is assumed uncompromised. The analysis evaluates
MPDC-I's behavior under these partial-compromise conditions.

Network topology and certificate propagation rely entirely on cryptographically signed
DLA broadcasts and incremental updates. No out-of-band trust channels or auxiliary
validation authorities are assumed.

These boundaries define the complete environment within which the MPDC-| protocol is
evaluated throughout this document.

Chapter 3: Model and Assumptions
3.1 Domain Architecture

The MPDC-I specification defines a hierarchical interior-domain architecture composed
of five distinct device classes: the Root Domain Server (RDS), the Domain List Agent
(DLA), the Management and Authentication Server (MAS), Clients, and Agents. Each
device class has a separate cryptographic purpose, distinct certificate type, and defined
interaction surface.

The RDS is the root trust anchor. It issues and signs all child certificates used by the DLA,
MAS, Clients, and Agents. These certificates contain the device's signature verification
key, issuer field, validity interval, configuration-set identifier, and a signature over the
certificate hash. The specification treats the RDS key as uncompromised for the entire
domain lifetime. The implementation enforces this through the functions in certificate.c,
which require all certificates to verify under the RDS public key before acceptance.

The DLA distributes topological information, certificate updates, resignations,
revocations, and convergence states. All DLA-issued messages are signed using
Dilithium and include the timestamp and sequence number inside the signed hash
input. The implementation performs these operations in dla.c and network.c, with strict
rejection on any failed signature or time check.

The MAS serves as the key-derivation endpoint for the tunnel. It receives fragment
ciphertexts from all participating Agents, authenticates and decrypts them using the
MAS«<~Agent master fragment key (mfk), generates its own MAS fragment, aggregates
all contributions using a Keccak-based accumulator, and performs the tunnel-key
derivation. The MAS also acts as the server endpoint in the encrypted data channel.

The Client interacts with the MAS to establish the tunnel. It receives the MAS-generated
fragment bundle, verifies the authenticity of each fragment using the Client—Agent
mfks, decrypts its fragments, and reconstructs the same hash that seeds the tunnel keys.

Agents contribute entropy. Each Agent establishes a separate mfk with both the MAS
and the Client. During a fragment-collection round, an Agent derives ephemeral
fragment-encryption keys from its mfk, generates a fragment using SHAKE-256,
encrypts and authenticates the fragment under the derived keys, and returns
corresponding ciphertexts to the MAS.

The architecture therefore forms a directed trust structure with the RDS at the root, the

DLA as the authenticated distributor of topology, MAS and Client as tunnel participants,
and Agents as entropy contributors. The specification and implementation both adhere
to this structure without deviation.

3.2 Roles, Authorities, and Certificate Hierarchy

Each device class operates under a certificate issued by the RDS. The certificate hierarchy
is strictly enforced. Child certificates include:

« a Dilithium public verification key,

e anissuer string identifying the RDS,

e aserial number unique within the domain,

e avalidity interval,

e acryptographic configuration-set identifier,

« adesignation field indicating device role,

e and a Dilithium signature binding all certificate fields.

The implementation validates certificates using the routines in certificate.c, which
recompute the certificate hash, verify the Dilithium signature, verify issuer and

designation fields, and check validity intervals. Devices never accept unsigned or self-
signed certificates. MAS, Client, Agents, and DLA all perform these verifications prior to
any state update.

Topology events, including incremental updates, convergence responses, and status
messages, are signed under the DLA certificate or under the device's own certificate,
depending on the event type. The sub-header containing the packet’'s sequence and
timestamp is always included in the signed region. The implementation validates this
through network_certificate_signed_hash_verify and related functions in network.c. Any
mismatch results in immediate rejection.

The certificate hierarchy therefore functions exactly as described in the specification: a
single-root PKI with role-specific child certificates and strict verification at each hop.

3.3 Network Assumptions

MPDC-I assumes a fully adversarial network. The specification states that an attacker
may observe, modify, inject, drop, reorder, or replay any message exchanged between
devices. No link-layer security assumptions are made. All cryptographic protections
must be provided by the MPDC protocol itself.

Time is a required component of all messages. Each packet contains a 64-bit UTC
timestamp. Every device must maintain a clock sufficiently synchronized that incoming
packets fall within the permitted time window. The implementation enforces this using
mpdc_packet_time_valid, which checks that the timestamp difference does not exceed
the configured MPDC_PACKET_TIME_THRESHOLD. In the provided implementation this
threshold is sixty seconds.

The network is assumed to provide eventual connectivity. If a device does not receive
topology broadcasts or certificate updates, it will not accept stale information and will
refuse communications. This is an intentional design constraint. The specification
identifies this as part of MPDC-I's security posture, preferring fail-closed behavior over
incorrect acceptance of stale or replayed data.

Sequence numbers are strictly monotonic per direction. Out-of-order messages are
rejected. Packets are not accepted if they repeat a sequence number or if the expected
increment does not match. This behavior appears in the decrypt pipeline in mpdc.c and
is required for replay resistance.

These assumptions are consistent across the specification and the implementation.
3.4 Time, Synchronization, and Replay Tolerance

Time and replay control are central to MPDC-I. The specification states that every
control-plane message includes a timestamp and a sequence number, and that both
values must be included in the signed or MAC-authenticated portion of the message.
The implementation serializes the sequence and timestamp into the sub-header and
hashes them together with the message body before signature or MAC operations.

The timestamp tolerance window restricts packet acceptance to those arriving within the
configured threshold. Replay of older packets is prevented because the timestamp in
the signed or MAC-authenticated region will fall outside the permitted window. The
implementation enforces this rule consistently, and no code path bypasses the time
check.

Sequence numbers provide a second layer of replay and ordering protection. Each
connection direction maintains an independent 64-bit counter. Transmitters increment
their counters monotonically; receivers verify that the incoming packet sequence
matches exactly the expected value. The implementation rejects any packet with an
incorrect sequence value. This blocks replay of previously valid packets, reflection of
traffic from one direction to the other, and any attempt to reorder traffic.

Together, timestamp validation and sequence enforcement provide strong replay
protection in accordance with the specification. The implementation matches this design
without deviation.

Chapter 4: Related Work and Context
4.1 Cryptographic Domain and Notation

MPDC-I is situated within the domain of multi-party authenticated key establishment
and symmetric-tunnel construction. The protocol uses a combination of post-quantum
asymmetric primitives (ML-KEM Kyber and ML-DSA Dilithium), Keccak-based KDF and
MAC functions (SHAKE, cSHAKE, KMAC), and an AEAD stream cipher (RCS). All primitives
are standard and defined in FIPS 202, FIPS 203, FIPS 204, and SP 800-185, and the
implementation adheres to the input and output conventions of these standards
through the QSC library. No notation in MPDC-I contradicts these underlying standards.

All variables used in the analysis that represent keys, hashes, fragments, or ciphertexts
map to the fields and structures defined in mpdc.h and the associated code paths.

4.2 Background on Post-Quantum Components

The cryptographic components used in MPDC-I align with current NIST standardization.
Kyber provides IND-CCA-secure KEM operations used for the establishment of master
fragment keys. Dilithium provides EUF-CMA security for certificates, topology
propagation, and authenticated network messages. SHAKE-256 provides an extendable-
output source for fragment generation and tunnel-key derivation. cSSHAKE and KMAC
are used for domain-separated symmetric-key derivation and message authentication.

These primitives collectively support MPDC-I's requirement that the protocol remain
secure even after the hypothetical emergence of large-scale quantum computers. Their
use is consistent across the specification and the C implementation.

4.3 Context in Domain-Based Network Security

Traditional domain-based network-security architectures rely on certificate hierarchies
and single-endpoint AKE protocols. MPDC-I extends this by distributing the entropy of
the session key across multiple authenticated Agents within the domain. This approach
incorporates aspects of hierarchical PKI, multi-device coordination, and symmetric-
tunnel establishment. The RDS anchor, DLA control and distribution mechanism, and the
MAS-Client tunnel are all part of this controlled interior-domain architecture. The aim is
to reduce reliance on a single handshake or single device for session-key derivation.

In this sense, MPDC-I belongs to a class of protocols designed for controlled network
environments in which multiple authenticated devices contribute to trust and entropy,
but where only two primary devices (MAS and client) ultimately derive the tunnel keys.

4.4 Previous Work in Multi-Agent Entropy Distribution

Few deployed protocols distribute entropy across multiple independent entities. Some
distributed randomness-generation systems combine entropy from semi-trusted
contributors, but these are often tied to threshold cryptosystems or decentralized
ledgers rather than secure tunnel establishment. Other multi-party constructions, such
as group key agreement protocols, require that all participants derive the same shared
key, which is not the case in MPDC-I.

The specification explicitly states that MPDC-I is not a group key-agreement protocol
and that Agents do not derive the final session keys. Instead, Agents provide
independently generated fragments that the MAS and client use to construct a tunnel
key known only to these two endpoints. This design is unique compared to classical AKE
frameworks in that it creates a two-party tunnel whose entropy is sourced from a multi-
party environment.

4.5 Distinguishing Characteristics of MPDC-I

MPDC-I differs from conventional key-exchange protocols in several ways that are
central to the analysis performed in this document.

First, the session keys are not derived from a single public-key handshake, but from a
collection of short pseudo-random fragments produced by authenticated Agents.
Second, the trust architecture enforces the use of RDS-signed certificates and DLA-
signed topology updates that incorporate timestamps and sequence numbers,
preventing replay and certificate downgrades. Third, the MAS contributes its own
fragment to the session, and both MAS and client perform identical aggregation
operations to derive the tunnel key. Fourth, the data path uses a Keccak-based AEAD
cipher and binds packet metadata tightly to the authenticated encryption layer. These
properties cause MPDC-I to behave differently from classical two-party designs and
motivate the cryptanalytic questions addressed in later chapters.

4.6 Analytical Position

The analysis in the remaining chapters evaluates MPDC-I in reference to the properties
enumerated in the specification: entity authentication, session-key secrecy, forward
secrecy, predictive resistance, replay resistance, downgrade resistance, and robustness.
Each mechanism in the protocol is examined in the context of these properties. The
evaluation considers both the formal behavior described in the specification and the
realized behavior in the implementation.

This document does not assume any properties not explicitly stated in the specification
or demonstrated in the code. Each conclusion is derived from either standardized
cryptographic assumptions or observable behavior in the provided implementation.

Chapter 5: Preliminaries

5.1 Notational Conventions

This document uses notation consistent with the MPDC-I specification and the variables
present in the implementation. Lowercase italic letters denote scalar values such as
timestamps t, sequence numbers s, or counters c. Uppercase italic letters denote
structured data such as certificates C, messages M, or keys K. Vectors such as fragment
ciphertext pairs use boldface sequences in prose, but the underlying data structures
correspond directly to the arrays defined in mpdc.h and network.c. All cryptographic
functions are written in standard form, for example SHAKE256, KMAC, or ML-KEM,
without nonstandard symbols.

Where notation appears in the specification, such as hashed certificate fields or
concatenated message structures, it is mapped directly to the serialized forms
implemented in network.c, certificate.c, and mpdc.c. No alternative notation is
introduced.

5.2 Cryptographic Primitives Used in MPDC-I

MPDC-I uses a fixed set of cryptographic primitives defined in NIST standards.
Certificate signatures use ML-DSA (Dilithium), and key-encapsulation operations for
master fragment keys use ML-KEM (Kyber). Optional alternative configurations can use
combinations of McEliece and ML-KEM or McEliece and SPHINCS+ (SLH-DSA).
Parameter sets are defined in the adjoining QSC cryptographic library for each of the
asymmetric ciphers and signature schemes.

Fragment generation, fragment-encryption key derivation, and tunnel initialization use
SHAKE-256 or cSHAKE with domain-separated input as defined in SP 800-185. MAC
operations on fragments use KMAC with keys derived from ephemeral fragment-
encryption keys. Tunnel encryption uses the RCS authenticated cipher (or optionally
AES-GCM), which uses a Keccak sponge to generate keystream and KMAC-derived tags.

The implementation uses the QSC library directly for all of these primitives. No
wrappers, modifications, or protocol-level adaptations alter the expected input or
output structure of these functions. All cryptographic semantics therefore match the
referenced standards.

5.3 Packet Structure and Sub-Header Binding

Each MPDC packet consists of a 22-byte header followed by a message payload. The
header contains the packet flag, message length, sequence number, and UTC
timestamp. These fields are defined in mpdc.h and serialized by routines in mpdc.c.

The specification states that the sub-header, consisting of the serialized sequence
number and timestamp, must be hashed into every signature or MAC operation
covering control-plane messages. The implementation follows this by constructing the
sub-header explicitly and including it in the hash passed to the signature or MAC
functions. Tunnel packets bind the entire header as associated data into the RCS cipher.
This ensures that none of these fields can be altered without detection.

These structures are central to MPDC-I's replay and downgrade resistance and are part
of the formal definitions examined later.

5.4 Certificate Structures and Field Semantics

Certificates in MPDC-I contain fields for the device's Dilithium public key, issuer,
expiration interval, serial number, cryptographic configuration identifier, and
designation. The child certificates are signed by the RDS. The specification defines these
fields in normative form, and the implementation stores them in the
mpdc_certificate_child structure.

The certificate signature covers a SHA-3 hash over the serialized certificate body. The
implementation recomputes this hash and verifies the signature before accepting any
certificate. The semantics of these fields, including validity windows and configuration
identifiers, are later used in the formal evaluation of authenticity and downgrade
resistance.

5.5 Master Fragment Keys and Derivation Context

The master fragment key mfk is a shared secret established between an Agent and the
MAS, and separately between an Agent and the Client. These keys are generated using
Kyber encapsulation and decapsulation during the MFK exchange defined in the
specification. Once established, the mfk forms the root for all fragment-encryption keys
efk and all MAC keys used in fragment authentication.

The implementation derives per-round efk values by hashing together the mfk with the
certificate-hash values corresponding to the participants and with the MAS-supplied

token for the round. These derivations are implemented using Keccak-based functions
consistent with the specification.

Understanding how these keys are derived and used is essential for later analysis of
confidentiality, predictive resistance, and forward secrecy.

5.6 Fragment Construction and Ephemeral Keys

A fragment consists of a 256-bit value generated via SHAKE-256, masked under an efk
derived from the mfk, and authenticated using a KMAC tag derived from the same efk.
Each Agent generates two such ciphertexts for each fragment: one intended for the
MAS and one for the Client. These structures correspond to the fields in the
mpdc_fragment_query_response structures in network.c.

Fragments are strictly ephemeral. After a fragment-collection round completes, the
fragment values, the efk, and any per-round metadata used in their derivation are not
used in subsequent rounds. This property is important for predictive-resistance
arguments, which assume that future efk values cannot be computed from previously
observed state.

5.7 Tunnel-Key Derivation and Cipher Initialization

Once the MAS and the Client have processed the same set of fragments and validated
their authenticity using the appropriate MAC keys, both sides compute a Keccak-based
hash over the ordered fragment sequence and the MAS contribution. This produces a
256-bit value denoted h in the specification. This value is expanded into transmit and
receive keys for the RCS cipher.

The implementation performs this key expansion through SHAKE-256 and initializes
separate RCS states for each communication direction. Sequence counters are initialized
to zero. This step marks the transition from the control-plane establishment process to
the encrypted data-plane.

5.8 Replay Window and Temporal Constraints

MPDC-I incorporates time into both control-plane and data-plane message validation.
The timestamp included in each header is compared against the device’s local time
using the threshold value defined in MPDC_PACKET_TIME_THRESHOLD. This threshold,
set to sixty seconds in the implementation, bounds the acceptable time difference for all
messages.

Because the sub-header binds the sequence number and timestamp together into
signatures and MACs, any replayed message with a timestamp falling outside the
window will be rejected before authentication, and any replay using a valid timestamp
but mismatched sequence will be rejected due to sequence monotonicity.

Understanding this temporal model is essential for analyzing replay, reflection, and
downgrade resistance in later chapters.

Chapter 6: Protocol Overview
6.1 Architectural Summary

MPDC-| operates through a coordinated set of devices under a hierarchical trust model
anchored by the Root Domain Server. The Domain List Agent distributes signed
topology information, certificate updates, and revocation events. Clients and the
Management and Authentication Server establish and maintain authenticated
relationships with Agents. These relationships are used to generate per-Agent master
fragment keys and to collect pseudo-random fragments that serve as inputs to the final
tunnel-key derivation. The tunnel itself uses the RCS authenticated encryption scheme,
binding packet metadata into the AEAD layer with strict timestamp and sequence

enforcement.

The protocol proceeds through distinct operational phases: certificate acquisition,
topology initialization, master fragment key establishment, fragment collection, key
derivation, and encrypted-channel operation. Each phase has explicit checks for identity,
integrity, freshness, and replay resistance.

6.2 Certificate and Topology Initialization

Every device in the MPDC domain possesses an RDS-signed certificate containing its
post-quantum public key, device designation, issuer information, validity interval, and
configuration identifier. Certificate verification is performed before any device
participates in the protocol.

After certificate validation, a device performs a registration exchange with the DLA. The
DLA returns its own certificate and distributes the initial topology, a signed list of known
MAS servers and Agents. Incremental updates are requested and received through

signed messages that include the packet’s timestamp and sequence number in the
authenticated region.

Topology convergence messages distribute new or updated certificates, revocation
notices, and reorganized lists of domain participants. Both the specification and the
implementation require the DLA signature to validate, and any mismatch or out-of-
window timestamp forces rejection.

6.3 Master Fragment Key Establishment

A master fragment key is a long-term shared secret between each Agent and the MAS,
and between each Agent and the Client. These keys are established through
authenticated Kyber encapsulation. The exchange is structured so that:

1. The initiator sends an authenticated request containing its child certificate and a
signature over the sequence and timestamp of the request.

2. The responder generates a Kyber public key, signs it together with the sub-
header, and returns it.

3. The initiator encapsulates, signs the ciphertext, and sends the establish message.

4. The responder verifies the signature, decapsulates, and obtains the same master
fragment key.

These keys persist until certificate expiration and form the root secrets for deriving all
ephemeral fragment-encryption keys used in fragment-collection rounds.

6.4 Fragment Generation and Distribution

Fragments are generated by Agents in response to MAS-initiated collection requests.
The MAS sends a request containing the Client's serial number and token. For each
Agent, the MAS derives a MAC key from its MFK with the Client and authenticates the
collection query.

An Agent verifies the MAC, derives two ephemeral fragment-encryption keys from its
MFKs with the MAS and Client, and generates a fragment using SHAKE-256. The
fragment is separately masked under each efk and authenticated with a KMAC tag
derived from each efk. The Agent returns a message containing:

e its serial number,

o the fragment ciphertext for the MAS,

« the fragment ciphertext intended for the Client,

e and MACs over the protected fields and sub-header.
The MAS receives all authenticated Agent responses during the round.
6.5 MAS Aggregation and Client Verification

After collecting responses, the MAS decrypts each MAS-side fragment, verifies all MACs,
and updates a Keccak accumulator with each recovered fragment. MAS also adds its
own MAS fragment into the same accumulator.

The MAS then prepares the Client response. It encrypts the MAS fragment under the
MAS«<Client MFK derivation, appends the Client-side ciphertexts for each Agent, and
authenticates the message with a KMAC tag tied to the sub-header. The Client receives
this message, verifies all MACs, derives and decrypts each Agent fragment using its own
MFKs, and reconstructs the same accumulated value.

This accumulated hash value becomes the basis for the tunnel key.
6.6 Tunnel-Key Derivation and Cipher Initialization

Both MAS and Client compute the hash value h representing the aggregation of all
authenticated fragments. This value is expanded via SHAKE-256 into transmit and
receive keys for the RCS cipher. The implementation initializes independent cipher states
for each direction and sets both sequence counters to zero.

From this point onward, all communication is conducted within an authenticated and
encrypted channel. The control plane does not participate further except for topology
updates and revocation reception.

6.7 Authenticated Transport and Replay Resistance

Each tunnel packet contains a header with the packet flag, message length, sequence
number, and UTC timestamp. The RCS cipher authenticates the entire header as
associated data, binding these fields into each ciphertext. The decrypt routine enforces:

e sequence equality with the expected counter,

« timestamp within the permitted threshold,

e correct RCS authentication tag,
« and valid message length.
Any discrepancy results in immediate rejection and session termination.

This transport layer provides confidentiality, integrity, ordering guarantee, and replay
resistance as described in the specification and implemented in the transport functions
of mpdc.c.

6.8 Revocation, Topology Change, and Fail-Closed Behavior

The DLA distributes revocation messages and certificate updates through signed
convergence broadcasts and incremental updates. Devices invalidate local topology
entries that fail signature or timestamp verification. Revocation of an Agent, MAS, or
Client certificate results in immediate discarding of the corresponding relationships,
including master fragment keys and cached fragments.

The implementation is designed to fail closed: any failed signature, MAC, timestamp, or
sequence validation aborts the affected run. This behavior conforms to the robustness
requirement described in the MPDC-I| specification.

Chapter 7: Internal Functions

7.1 Certificate-Processing Functions

MPDC-I defines a set of internal routines responsible for parsing, verifying, and
reconstructing certificates. These operations ensure that all certificate inputs and
topology messages are validated before a device transitions to a dependent state.

The implementation parses certificate structures using the routines in certificate.c,
including functions that deserialize fields, recompute the certificate hash using SHA3,
and verify the signature using the Dilithium verification key of the RDS. The certificate
fields include the device designation, configuration-set identifier, serial number, validity
interval, public verification key, and issuer string. Internal functions validate each of
these fields before the certificate is accepted. Time validity is checked by comparing the
certificate's validity interval with the local clock.

Topology synchronization relies on similar routines where the certificate-hash fields
inside topology messages are verified using the DLA's public verification key. These

functions ensure that devices only accept topology information anchored at legitimate
certificates.

7.2 Sub-Header and Signed-Message Functions

Every authenticated control-plane message in MPDC-I uses a signed or MAC-protected
data structure that includes the serialized sequence number and UTC timestamp. The
internal routines responsible for constructing and verifying these structures appear in
network.c.

Packet header serialization, performed by mpdc_packet_header_serialize in mpdc.c,
yields the full 22-byte header. The sub-header, composed of the sequence number and
timestamp, is extracted from this header and inserted into a signed-message structure
prior to hashing.

Verification functions reconstruct the same sub-header from the received header,
recompute the signed hash, and check the signature or MAC using the appropriate key.
These routines ensure that the message body cannot be separated from its freshness
parameters, enforcing the protocol’s replay bounds.

Internal checks abort execution on any mismatch, ensuring that no later function
processes unverified message contents.

7.3 Master Fragment Key Establishment Functions

The functions implementing the MFK establishment exchange combine Kyber
operations with Dilithium verification and sub-header binding. These functions appear
across network.c, mas.c, client.c, and agent.c.

First, the MFK request message uses network_mfk_exchange_request_packet to populate
fields, attach signatures, and construct the packet. The response is built by
network_mfk_exchange_response_packet, which incorporates a new Kyber public key
and the responder’s certificate verification key, bound by signature.

The establish message uses encapsulation to produce the final ciphertext and shared
secret. The corresponding verification functions reconstruct the sub-header, verify the
signature, and invoke the Kyber decapsulation function to complete the MFK.
Internally, each MFK is stored in the device’s state table, keyed by the agent serial or
MAS/client serial. These persistent keys are used by the fragment-derivation functions
described below.

7.4 Fragment-Derivation and Fragment-Protection Functions

Fragment-encryption keys, denoted efk, and fragment MAC keys are derived from the
master fragment key using SHAKE or cSHAKE. These routines appear in network.c and
agent.c as network_derive_fkey and related helper functions.

Each efk is a function of the master fragment key, certificate hash values of the involved
parties, and the MAS token for the round. These values are concatenated and hashed,
producing a key that is unique for every agent-MAS-client combination and every
fragment-collection round.

Fragment generation uses SHAKE-256 to produce a pseudo-random 256-bit fragment.
This fragment is XOR-masked with the efk for confidentiality, generating two
ciphertexts, one for the MAS and one for the client. Fragment MAC tags are produced
using KMAC with a key derived from the same efk. The internal functions responsible for
these operations enforce that the plaintext fragment never appears on the wire.
Verification functions in MAS and client derive the same efk, recompute the MACs, and
recover the fragment if and only if MAC verification succeeds. Internal error-handling
paths ensure that any failed MAC invalidates the entire fragment round.

7.5 Fragment Aggregation and Hashing Functions

The MAS uses its internal aggregation functions to combine validated fragments into a
single hash value. The primary function performing this aggregation is implemented in
network.c, where the MAS processes each decoded fragment, updates a Keccak sponge
state, and includes the MAS fragment.

These functions treat fragment ordering deterministically. Each fragment is processed
exactly once, and all fragments included in the MAS response to the client correspond
to authenticated Agent responses for that round.

The client uses a mirror function, reconstructing the same fragment accumulator from
the ciphertexts and verifying that its locally computed hash equals the MAS-derived
value. The internal implementation enforces strict equality and aborts if mismatch
occurs.

7.6 Tunnel-Key Expansion and State Initialization Functions

The tunnel key is produced by expanding the final Keccak-derived hash value h into two
symmetric keys through a SHAKE-based KDF. These keys initialize the RCS cipher states
for the transmit and receive channels.

Internal functions allocate new cipher-state structures, set the key material, reset
sequence counters to zero, and transition the device to the established state. These

functions appear in mpdc.c and are triggered immediately after successful fragment
aggregation and hash comparison.

7.7 Transport-Layer Functions and AEAD Enforcement

The internal functions for packet construction and decryption appear in mpdc.c. Packet
creation sets the flag, length, sequence number, and timestamp, serializes the header,
and passes the header as associated data to the RCS cipher.

Decryption verifies the timestamp using mpdc_packet_time_valid, verifies the sequence
number, checks the RCS authentication tag, and deserializes the payload. No packet is
accepted if any of these checks fail.

These internal functions form the foundation of the MPDC-I replay and ordering
enforcement model and directly implement the specification’s requirement that packet
metadata be authenticated.

7.8 Revocation and Topology-Maintenance Functions

The DLA uses internal certificate-hash broadcast routines implemented in dla.c to
propagate topological changes and revocation events. Devices receive these messages
and verify the associated signatures using functions in network.c. Valid updates cause
the device to recompute certificate tables and update internal structures tracking MAS
and Agent availability.

These functions ensure that devices reject stale or revoked certificates and adjust
fragment relationships accordingly. The implementation completely prohibits use of
invalidated certificate entries, preserving the fail-closed behavior required by the
specification.

Chapter 8: Performance and Operational Behavior
8.1 Computational Characteristics of Core Operations

MPDC-I is organized so that the most computationally intensive operations occur
outside the steady-state data path. Certificate verification and authenticated KEM
exchanges use Dilithium and Kyber, which require nontrivial polynomial and lattice-
based computations. These operations occur during certificate acquisition, topology
synchronization, and master fragment key establishment, all of which take place before
the encrypted tunnel is created.

The steady-state operations that occur during fragment-collection rounds and tunnel
maintenance rely primarily on symmetric Keccak-based functions. SHAKE-256, cSHAKE,
and KMAC operations dominate fragment generation, fragment-encryption key
derivation, and fragment MAC verification. These functions are computationally efficient
relative to the post-quantum primitives and impose predictable cost per fragment.

The RCS AEAD cipher uses a Keccak sponge internally and performs authenticated
encryption with a single associated-data binding step per packet. The per-packet cost
consists of header serialization, state absorption of the header, symmetric transform of
the payload, and tag generation. This is significantly less costly than classical block-
cipher modes or hybrid PQC operations and is suitable for high-throughput
communication.

8.2 Certificate and Topology Propagation Overhead

Certificate propagation and topology synchronization are infrequent and occur primarily
during initialization or when the DLA receives updated certificate lists. These operations
involve signature verification of DLA broadcasts and certificate-hash updates. Because
the broadcast messages include Dilithium signatures and certificate structures,
verification costs are dominated by Dilithium signature verification and hash
recomputation.

The implementation performs these checks once per update event. Devices cache valid
certificates and only invalidate or refresh them when the DLA distributes new topology
messages. As a result, the computational overhead of certificate and topology
maintenance remains low in steady state.

8.3 Fragment-Collection Performance

Fragment generation and protection impose linear cost with respect to the number of
participating Agents. Each Agent performs two efk derivations and generates one 256-
bit fragment per round. The MAS processes each Agent response by verifying two MAC
tags, decrypting the MAS-side fragment, and updating the Keccak accumulator. The
client repeats the same operations using its own keys.

The cost per fragment is dominated by two KMAC verifications, one XOR-decryption of
the masked fragment, and one Keccak absorb operation. These are symmetric
operations and scale predictably with the number of Agents. The implementation does

not introduce branching or variable-time execution in this loop, and the cost increases
linearly with the domain's size.

Because fragment rounds occur only at tunnel establishment or periodic rekeying, they
do not affect the steady-state cost of encrypted data transfer.

8.4 Tunnel Establishment and Cryptographic State Initialization

Tunnel establishment occurs after successful fragment aggregation. The cost consists of
two SHAKE expansion operations to derive transmit and receive keys for the RCS cipher.
Initialization of RCS state structures and sequence counters is minimal.

The initialization cost is therefore modest relative to the cost of the KEM operations and
certificate verification performed earlier in the protocol. The implementation initializes
separate transmit and receive channels, ensuring unidirectional independence of the
symmetric keys.

8.5 Data-Plane Throughput

The RCS-based transport layer experiences symmetric overhead per packet. Each packet

requires:
1. serialization of the fixed 22-byte header,
2. absorbing the header as associated data into the RCS state,
3. generating a keystream for the payload length,
4. XOR-transforming the payload, and
5. producing or verifying a KMAC-derived authentication tag.

Because Keccak permutations are computationally efficient, the cost per byte remains
low. The implementation does not allocate or free memory during packet processing
except for the buffers required to hold the packet, and the packet format remains fixed
throughout the session. These properties enable uniform throughput characteristics
independent of message structure.

Sequence-number and timestamp checks impose negligible overhead relative to the
symmetric transformations. Both fields are read from the header and compared in

constant time.

8.6 Topology Convergence and Update Latency

Topology convergence depends primarily on the DLA's broadcast interval and the
number of devices in the domain. Upon receiving a topology broadcast, devices verify
the DLA signature, parse certificate entries, and update internal structures accordingly.
The latency of topology propagation is dominated by broadcast frequency and network
characteristics, not cryptographic operations.

Incremental updates require a request-response exchange and introduce additional
Dilithium verification. These operations remain infrequent relative to data-plane traffic
and do not contribute meaningfully to runtime overhead.

8.7 Revocation and Recovery Behavior

Revocation events occur when the DLA distributes updated certificate hashes indicating
that a certificate has been revoked. Devices receiving such broadcasts verify the DLA
signature, invalidate local records of the revoked device, and remove any cached master
fragment keys associated with the device.

This process involves hash comparisons and small table updates. There are no heavy
cryptographic operations other than signature verification of the broadcast. The
protocol is designed to fail closed on any inconsistency, and devices do not attempt to
continue using stale keys or invalidated associations.

8.8 Reliability and Fail-Closed Operation

MPDC-I is built to fail closed on any signature mismatch, MAC failure, timestamp
violation, sequence error, or certificate inconsistency. This behavior ensures that no
partial or degraded communication state can occur. The consequence is that reliability
depends strongly on correct time maintenance, accurate sequence counters, and
availability of valid topology broadcasts.

Operationally, this model prioritizes cryptographic integrity over message availability.
Lost or out-of-order packets cannot be recovered; instead, the session is terminated and
must be reestablished. This behavior is consistent with the specification and does not
introduce ambiguity into the protocol’s security model.

Chapter 9: Mathematical Description

9.1 Notation and Domain Model

Let C be a child certificate.
Its certificate-hash value is:

h_C = SHA3(C_body)

Verification checks the Dilithium (ML-DSA) signature:
Verify(vk_RDS, h_C, _C) = true

Each MPDC packet header is defined as:

H=(f 4 5s,t)

For signed and MAC-protected messages, the sub-header is:
SH=(s,t)

This sub-header is always included in the authenticated data.
9.2 Certificate Structure and Signed-Message Binding

The signed hash of a control-plane message M is:

h_.M =SHA3(M [sl t)

Signing operation:

o_M = Sign(sk, h_M)

Verification reconstructs the same hash:

h_M’ = SHA3(M [Is [l t)

and checks:

Verify(vk, h_M’, 6_M) = true

Any modification of s or t invalidates the signature.

9.3 Master Fragment Key Exchange

In the authenticated Kyber exchange, the initiator and responder derive the shared
secret:

(ct, k) = Encaps(pk_R)
k" = Decaps(ct, sk_R)

If all signatures verify and k = K’, the resulting master fragment key is:

mfk =k
Each Agent holds:
« mfk A M (Agent & MAS)
« mfk A_C (Agent < Client)
These are long-term secrets used for fragment-key derivation.
9.4 Fragment Generation and Encryption Keys
Each Agent generates a 256-bit fragment F using the QSC random generator.
MAS-side ephemeral key
efk A»MAS = SHA3(mfk_A_M || h_A || h_MAS || 1)
Client-side ephemeral key
efk_A—Client = SHA3(mfk_A_C |l h_A || h_Client || T)
Fragment masking
C_MAS = F XOR efk_ A—>MAS
C_Client = F XOR efk_A—Client
Fragment MAC tags
MAS-side:
tag MAS = KMAC(efk_A—MAS, C_MAS || SH)
Client-side:
tag Client = KMAC(efk_A—Client, C_Client || SH)
Only a party possessing the correct mfk and the current t can recompute these values.
9.5 MAS Aggregation Process
After MAC verification and decryption of Agent fragments:
F_i = C_i_ MAS XOR efk_i-»MAS
The MAS absorbs each fragment into a Keccak state S:

S « Keccak.Absorb(S, F_i)

The MAS generates its own fragment F_MAS and absorbs it:
S « Keccak.Absorb(S, F_MAS)

The final aggregated value is:

h = Keccak.Final(S)

The Client performs the same operations using C_i_Client and efk_i—Client, producing an
identical h only if all authentication checks succeed.

9.6 Tunnel-Key Derivation
Two independent tunnel keys are derived from h:
K_tx = SHAKE256(h || 01)
K_rx = SHAKE256(h || 02)
These initialize the transmit and receive cipher states.
9.7 Packet Authentication Model
For each tunnel packet:
» header H is associated data,
e payload P is encrypted,
« ciphertext C and tag tag are produced by the cipher.
Encryption:
(C, tag) = Enc(K, H, P)
Decryption (accept only if authentication succeeds):
P =Dec(K, H, C, tag)
Since H contains (s, t), sequence and time are cryptographically bound to each packet.
9.8 Replay Acceptance Conditions
A received packet with header (f,#,s,t) is accepted only if all hold:
|t — t_local| < T_max

s = s_expected

tag verifies under the active cipher state
In the reference implementation, T_max = 60 seconds by default.
9.9 Security Invariants
The protocol enforces the following properties:
1. All certificates must validate against the RDS root.
2. The sub-header (s, t) used in authentication matches the received header.
3. Only fragments authenticated with the correct efk are accepted.
4. MAS and Client must compute identical h before tunnel establishment.

5. Tunnel packets are accepted only if sequence, timestamp, and AEAD tag checks
succeed.

6. Session keys differ each round because h depends on ephemeral fragments and
the MAS token t.

These invariants hold in both the specification and the implementation.

Chapter 10: Security Analysis
10.1 Certificate-Chain Security

MPDC-I depends on the authenticity of RDS-signed certificates.

Each certificate is validated by recomputing its certificate hash and verifying the ML-DSA
signature.

A certificate is accepted only if:

Verify(vk_RDS, h_C, 6_C) = true

The implementation performs this check in every certificate-processing path.

Because the DLA cannot forge RDS signatures, impersonation attacks reduce to the
hardness of ML-DSA.

Topology broadcasts, resignation messages, and revocation updates embed the
timestamp and sequence number into their signed data, ensuring that stale or replayed
messages fail validation.

This aligns completely with the specification.
10.2 Authentication and Freshness Binding

All authenticated MPDC messages bind the sub-header in the signed hash:
h.M = SHA3(M [s |l t)

Thus any modification to s or t invalidates the signature.
The receiver reconstructs the authenticated value:

h_M’'=SHA3(M [s Il t)
and accepts the message only if:
Verify(vk, h_M’, 6_M) = true

This simultaneously provides entity authentication and freshness.
Replay is prevented because an attacker cannot produce a valid signature over a
modified timestamp or sequence value.

10.3 Security of Master Fragment Key Establishment

The MFK exchange is an authenticated ML-KEM flow.
The shared key must satisfy:

(ct, k) = Encaps(pk_R)
k' = Decaps(ct, sk_R)
k=K

This equality holds only if the ciphertext is valid under the responder’s key.
Because all MFK messages include signatures over (s, t) and the Kyber public key,
acceptance requires:

Verify(vk, SHA3(M || s | t) , 0_M) = true

Any mismatch aborts the exchange.
Thus, the only way to learn mfk is to break ML-KEM or forge ML-DSA signatures.
The implementation conforms exactly to these conditions.

10.4 Fragment Confidentiality and Integrity

Fragment ciphertexts are produced as:

C_MAS = F XOR efk A->MAS
C_Client = F XOR efk_A—Client

And MAC tags must satisfy:

tag_MAS = KMAC(efk_ A—>MAS, C_MAS || SH)
tag_Client = KMAC(efk_A—Client, C_Client || SH)

A fragment response is valid only if both:

VerifyMAC(tag_MAS) = true
VerifyMAC(tag_Client) = true

Because efk is derived as:
efk = SHA3(mfk | h_A [h X |l T)

an attacker who does not know mfk cannot compute efk.
The use of the MAS token T ensures that efk values are fresh each round, which prevents
prediction of future fragments even if previous fragments were observed.

10.5 Correctness and Security of MAS Aggregation

The MAS reconstructs each fragment:

F_i = C_i_ MAS XOR efk_i-»MAS

Each reconstructed fragment is added to the accumulator:
S « Keccak.Absorb(S, F_i)

and the MAS fragment contributes:

S « Keccak.Absorb(S, F_MAS)

The final aggregated value is:

h = Keccak.Final(S)

The Client performs symmetric operations and must compute exactly the same:
h_Client = h_MAS

Any mismatch terminates the session.
Thus, h is a function of:

e all authenticated Agent fragments

o the MAS fragment

o the MAS token

« all participating certificate hashes

« all MFK values
No attacker can influence h without forging MACs or signatures.
10.6 Tunnel-Key Secrecy

Tunnel keys are derived from h:

K_tx = SHAKE256(h || 01)
K_rx = SHAKE256(h || 02)

An attacker must therefore reconstruct h to break confidentiality.

To compute h, the attacker must recover all contributing fragments.

Recovering fragments requires recovering all corresponding efk values, which requires
all corresponding mfk values.

Thus, secrecy of the tunnel depends on:
At least one honest Agent per round

If even one Agent remains uncompromised, the attacker cannot derive h, since F is 256-
bit high entropy.

10.7 Forward Secrecy and Post-Compromise Properties

Forward secrecy results from the use of ephemeral fragments and fresh efk keys.
Even if an attacker compromises mfk after a session has completed, reconstruction of
past fragments requires knowing the historical MAS token 7 and all ephemeral efk
inputs, which are not stored.

Thus the attacker cannot reconstruct past:
F_i
nor the past aggregated value:

h_past

For future rounds, predictive resistance follows from the requirement that T be
generated by the MAS after the previous fragment round:

efk_future = SHA3(mfk || h_A || h_X || t_future)

Because T_future is unknown before generation, future fragments remain unpredictable.
10.8 Replay, Downgrade, and Reflection Resistance

Transport-layer packet acceptance requires:

|t — t_local| < T_max
s = s_expected
VerifyTag = true

These conditions ensure that:
« replayed packets fail timestamp or sequence checks
o modified packets fail AEAD authentication
e out-of-order packets fail sequence equality

Downgrade attacks fail because all certificates contain configuration identifiers, and
certificate hashes enter efk derivation:

efk o< (mfk [l h_A | h_B [©)

Thus, a downgrade attempt would cause a certificate-hash mismatch and break MAC

verification.

Reflection is impossible because transmit and receive keys differ:

K tx # K rx

A packet encrypted under one cannot validate under the other.

10.9 System-Level Attack Surface

Certain adversarial conditions remain outside cryptographic control:
« If all Agents contributing to a round are compromised, then:

F_all known = h_known

e MAS compromise reveals both fragments and the derived h, breaking session
secrecy.

e Client compromise likewise reveals h.

e Time desynchronization results in availability failures but does not yield attacker
advantage.

o Suppression of fragment responses can deny service but cannot weaken
cryptographic guarantees.

These limitations are inherent in the system design and align with the specification.

Chapter 11: Verification and Proof Commentary
11.1 Objectives of Formal Verification

The specification for MPDC-I does not include formal proofs; instead, it provides security
claims grounded in the properties of the underlying cryptographic primitives and the
structural assumptions of the protocol. This chapter discusses how the mechanisms
defined in MPDC-I can be related to established proof frameworks for authenticated key
exchange, multi-party entropy distributions, and stateful AEAD channels. The purpose is
not to derive a full formal proof from first principles but to map the protocol's
constructions to proof-relevant components and highlight the conditions under which
the claimed properties hold.

The verification commentary therefore focuses on three categories:

1. Correct instantiation of cryptographic assumptions (ML-DSA, ML-KEM, SHAKE,
KMAC, AEAD).

2. Correct realization of the structural invariants described in the mathematical
model.

3. Correct alignment between the specification and implementing code paths,
ensuring that proofs written over the specification describe the behavior actually
realized in the implementation.

Each of these is examined in the following subsections.

11.2 Certificate-Chain Correctness and Trust Preservation

Formal correctness of certificate-based authentication requires that the certificate chain
functions as an injective mapping between identities and public keys. MPDC-I| satisfies
this requirement because:

1.
2.

The RDS private key is the unique signing authority.

Every certificate includes the device designation, configuration identifier, validity
interval, and public key in the signed region.

The implementation reconstructs the exact certificate-hash input before verifying
the signature.

All topology updates include signed certificate-hash fields and timestamp-bound
freshness constraints.

In a formal setting, this means that the mapping from a device's certificate to its public
key is unambiguous and non-malleable. Because Dilithium is assumed secure under

EUF-CMA and the implementation imposes no deviations from the specified verification

logic, the certificate system satisfies the authentication requirements necessary for

higher-level proofs.

11.3 Soundness of Master Fragment Key (MFK) Establishment

The MFK exchange is an authenticated KEM protocol. To demonstrate its soundness in a

proof framework, one typically shows that:

1.

2.

4.

The party accepting an MFK shares the same secret as the responder.

The secret is indistinguishable from random to an adversary who has not broken
IND-CCA security of Kyber.

The authentication binding through Dilithium signatures ensures correspondence
between senders and responders.

Freshness of the sub-header prevents replay or cross-protocol confusion.

The code implements this correctly: all signatures are validated before any KEM output

is accepted, and timestamps and sequences must match exactly. Given the security of
Kyber and Dilithium, a reduction from MFK secrecy to IND-CCA and EUF-CMA security
exists and is standard for authenticated KEM compositions.

11.4 Correctness of Fragment Construction and Protection

A central part of MPDC's security model is the entropy contributed by Agent fragments.
For correctness in a verification framework, the following must hold:

1. The fragment-generation process is defined as a deterministic function of the
values mfk, h_Agent, h_MAS, h_Client, and 1, which the implementation confirms.

2. Fragment-encryption keys efk are derived in a unique and domain-separated
manner using SHAKE or cSHAKE, which is reflected in the code.

3. Masking must be reversible using the same efk.

4. MAC tags must cover both ciphertext and sub-header, ensuring freshness.
5. Failure in MAC verification must abort the round.

6. No fragment is reused across rounds.

These conditions are all satisfied by the implementation. As a consequence, per-
fragment confidentiality and integrity can be reasoned about using standard PRF-MAC
composition proofs for Keccak-based constructions.

11.5 Correctness of MAS Aggregation and Equality of Hash State
To establish correctness of aggregation, one must verify that:

1. The MAS absorbs every authenticated fragment into a Keccak state in a
deterministic order.

2. The MAS also absorbs its own MAS fragment, computed using the same
generation structure.

3. The Client repeats the same absorption order and reconstructs the same
fragment-list.

4. The final hash output h must match on both sides.
The implementation satisfies these constraints because:

e The MAS processes fragments in the exact order they appear in the response
bundle.

o The Client processes them in exactly the same order and verifies MAC correctness
per fragment.

o Partial or incomplete fragments cause an immediate abort rather than partial
acceptance.

o The Keccak state is not modified outside of the fragment-aggregation loop.

Formal reduction from the correctness of Keccak to the correctness of h is
straightforward, because Keccak’s absorb-final model is fully deterministic.

11.6 Tunnel-Key Derivation and AEAD Security
The tunnel keys are derived from h using SHAKE-256. A correctness argument requires:

1. The KDF output must be indistinguishable from random, given that h has at least
256 bits of entropy.

2. The two derived keys must be domain-separated and independent.

3. The AEAD cipher must provide integrity and confidentiality under normal
assumptions.

4. Associated data must be incorporated correctly to ensure replay and downgrade
protections.

The RCS implementation binds the full 22-byte header, including the sequence number
and timestamp, as associated data. The packet is valid only if:

e sequence equals the local expected counter,
« timestamp satisfies the acceptance window,
o and the authentication tag verifies.

Given the correctness of the key material and the header bindings, RCS provides an
authenticated channel consistent with the specification. A formal proof sketch would
follow standard AEAD security models with additional temporal constraints.

11.7 Replay, Downgrade, and Reflection Safety

The verification of replay and downgrade properties requires demonstrating that no
previously valid message can be accepted when replayed. MPDC-I provides this
through:

1. Strict timestamp verification via mpdc_packet_time_valid.

2. Sequence monotonicity enforced in mpdc_decrypt_packet.
3. Bounded-domain configuration identifiers in certificate verification.
4. Independent transmit and receive keys preventing reflection.

These are implemented exactly as the specification describes, and each check is

enforced unconditionally before message acceptance. A reduction argument can
therefore be constructed from the combination of AEAD authenticity, timestamp
freshness, and sequence ordering, showing that replay acceptance probability is
negligible.

11.8 Robustness and Fail-Closed Guarantees

Robustness requires that any violation of authenticity, signature correctness, MAC
correctness, timestamp validity, or sequence ordering triggers termination. This is a
necessary condition for the assumptions used in earlier security chapters to hold.

Inspection of the implementation confirms that:
o All verify functions return explicit error codes.
e No code path continues processing after detectible authentication failure.
« Connection termination occurs on all such error conditions.

Because the protocol never accepts partially valid state, proofs that rely on invariant
preservation are valid across the entire execution trace.

Chapter 12: Cryptanalytic Evaluation and Attack Surface
12.1 Overview of Adversarial Powers

The MPDC-I adversary model grants the attacker full control of the network and the
ability to compromise any subset of long-term device keys except the RDS signing key.
This includes compromise of MAS keys, Client keys, Agent keys, and DLA keys. The
attacker may perform chosen-ciphertext operations against Kyber and chosen-message
queries to Dilithium. The adversary may replay, reorder, modify, inject, or drop packets.

Cryptanalytic evaluation therefore focuses on how these powers interact with certificate
verification, MFK establishment, fragment confidentiality and integrity, MAS
aggregation, and the RCS-based tunnel.

The evaluation in this chapter examines protocol surfaces where the adversary may
attempt to subvert authentication, reduce entropy, cause key compromise, or disrupt
ordering and replay protections.

12.2 Certificate Forgery and Impersonation Attempts

Because all MPDC-I certificates are signed under the RDS key and all certificate parsing
routines verify the signature, any impersonation attack requires forging a Dilithium
signature or obtaining the RDS private key. The specification treats the RDS key as
uncompromised, and the implementation never bypasses signature verification, so
certificate-forgery attacks reduce directly to the infeasibility of forging Dilithium
signatures.

Topology manipulation through DLA compromise does not circumvent certificate
verification. Even if the DLA is compromised, it cannot issue certificates because it does
not possess the RDS key. It can reorder or delay topology information, but stale or
mismatched timestamps will cause its broadcasts and updates to be rejected.

Thus, the certificate subsystem introduces no viable cryptanalytic attack surface beyond
the stated assumption that the RDS key remains uncompromised.

12.3 Attacks on Master Fragment Key (MFK) Establishment

The MFK establishment process relies on authenticated Kyber encapsulation and
authenticated Dilithium-signed public-key exchange. The attacker may:

1. Replay an old MFK request or response.
2. Inject a modified Kyber public key.
3. Attempt to downgrade or reorder messages.
4. Attempt to force Kyber decapsulation errors.
These attacks fail because:
» Replayed messages contain past timestamps, which fail the freshness test.

e Sub-header mismatch causes signature verification failure.

« Modified Kyber public keys break the responder's Dilithium signature.

o Downgrade attempts are blocked by configuration-set validation inside certificate
parsing.

e Decapsulation errors do not restore adversary control because the session aborts
on any verification failure.

There exists no path in the implementation where an attacker can inject a chosen Kyber
ciphertext and induce acceptance of an attacker-selected shared secret. Therefore, MFK
compromise is infeasible unless Kyber or Dilithium is broken.

12.4 Fragment-Layer Attacks
Fragment Confidentiality Attacks

The attacker obtains the fragment ciphertexts traveling from Agents to the MAS and
from MAS to the Client. To recover a fragment F, the attacker must know the
corresponding efk. Since efk is derived from the long-term MFK and the round-specific
token T, an attacker must compromise both the MFK and the specific T to recover F.

Compromising T before its use is infeasible as it is freshly generated by MAS during
each round and only transmitted in authenticated packets. The implementation never
stores T beyond the round, and the attacker cannot derive it from ciphertexts.

MAC-Forging Attacks

Each fragment includes KMAC tags keyed with efk. Forging a MAC requires forging
KMAC under an unknown key derived from the MFK. This reduces to KMAC
unforgeability under the assumed cryptographic model.

Fragment-Manipulation Attacks

If the attacker modifies any byte of a fragment ciphertext or sub-header, MAC validation
fails, and the fragment round terminates.

Given these constraints, fragment-layer cryptanalytic attacks are infeasible under the
stated assumptions.

12.5 MAS Aggregation Attacks and Entropy Reduction

The MAS aggregation surface is central to MPDC's security. Cryptanalytic attempts focus
on:

1. Reducing entropy by suppressing fragment contributions.

2. Injecting false fragments.

3. Reordering or mixing fragments to alter h.

4. Constructing collisions in the aggregation hash.
Suppression Attacks

If an attacker prevents some Agents’ fragments from reaching the MAS, the entropy
contributed by those Agents is removed. However, security requires only one
uncompromised Agent fragment. Entropy remains sufficient unless the attacker
suppresses all honest Agents simultaneously.

Injection Attacks

The attacker cannot inject false fragments because fragment ciphertexts must be
accompanied by correct KMAC tags. Without knowing efk, the attacker cannot forge
these.

Reordering Attacks

Fragment order is fixed and authenticated. MAS and Client process fragments in the
same order transmitted in the MAS response. Reordering attempts break MAC
verification or cause hash inequality.

Hash-Collision Attacks

MPDC uses Keccak absorption over independent 256-bit fragment values. Constructing
a collision in the aggregate hash that produces identical h while altering fragments
requires breaking Keccak's collision resistance.

Thus, MAS aggregation introduces no effective attack surface beyond the assumption
that at least one Agent remains uncompromised.

12.6 Transport-Layer Attacks
Replay Attacks
Replay of any tunnel packet fails because:

o timestamps fall outside the acceptance window,

e sequence numbers do not match expected counters, and
o the RCS AEAD tag binds the full header.
Reflection Attacks

Reflection is impossible because the transmit and receive keys differ. A ciphertext valid
in one direction cannot decrypt under the other key.

Bit-Flipping Attacks

Authenticated encryption prevents adversary-controlled modification. Any alteration
invalidates the tag.

Key-Reuse or Cipher-State Abuse

The implementation never reuses a key across sessions. The RCS state is initialized fresh
per session. No API calls permit rekeying without resetting internal state.

Transport-layer cryptanalytic attacks are effectively prevented by strong binding of the
AEAD header and strict enforcement of sequencing and timestamps.

12.7 Time-Based and Ordering Attacks
The attacker may attempt:
1. Desynchronizing clocks
2. Delaying packets strategically
3. Flooding with stale packets
4. Attempting to align timestamps near the acceptance boundary

Clock drift affects availability, not confidentiality. Messages that do not satisfy the
timestamp threshold are rejected. Sequence checks ensure that even correctly timed
packets cannot be replayed in a different order.

This fail-closed model ensures that time-based adversarial behavior cannot weaken
cryptographic guarantees. It can only force reinitialization of the session.

12.8 Multi-Compromise and Endpoint Attacks

Compromising Some Agents

If the attacker compromises any subset of Agents, the fragments those Agents
contribute become known to the attacker. However, the protocol requires only one
uncompromised Agent to retain at least 256 bits of entropy due to the SHAKE extraction
model.

Compromising all Agents

If all Agents contributing to the fragment round are compromised, then h becomes fully
derivable by the attacker. Under this condition, tunnel secrecy collapses. This is an
inherent property of distributed entropy systems and explicitly acknowledged in the
MPDC specification.

MAS Compromise

MAS compromise gives the attacker full visibility of fragment plaintexts, the MAS
fragment, and h. This compromises tunnel confidentiality. MPDC-| does not defend
against endpoint compromise, and the specification does not claim to.

Client Compromise

Client compromise similarly reveals h and tunnel keys. This does not contradict the
specification.

Thus, cryptanalytic evaluation confirms that security depends on endpoint integrity and
the presence of at least one uncompromised Agent.

12.9 Summary of Residual Risks
Residual attack surfaces remaining after cryptographic enforcement include:

e denial-of-service through suppression of fragment responses or topology
broadcasts,

« denial-of-service through clock desynchronization,
e entropy exhaustion if all Agents are compromised,
e endpoint compromise of MAS or Client,

« operational misconfiguration such as inconsistent certificate deployment.

None of these residual risks stem from cryptographic weakness in the design or
implementation. They arise from the operational environment or from explicitly
assumed threat boundaries in the MPDC specification.

Chapter 13: Verification Testing and Implementation Validation
13.1 Objectives of Implementation Validation

Implementation validation for MPDC-I requires ensuring that every normative
requirement in the specification is reflected in the behavior of the code. This includes
correctness of cryptographic bindings, handling of message formats, state transitions,
replay checks, and reaction to authentication failures. The testing and validation
activities described in this chapter map directly to the cryptographic and structural
invariants established earlier. The purpose is not to exhaustively test all edge cases, but
to confirm that the implementation faithfully and reliably enforces the rules defined by
the protocol.

13.2 Certificate Verification Tests

Validation of certificate behavior requires that:
1. RDS-signed certificates verify correctly under Dilithium.
2. Invalid signatures produce immediate rejection.

3. Certificate fields, including configuration identifiers, designation values, and
validity intervals, are parsed exactly as defined in the specification.

The implementation enforces this through mpdc_certificate_child_verify, which
reconstructs the certificate hash and verifies the signature. Testing confirms that
malformed certificates, incorrect issuer strings, expired validity intervals, or configuration
mismatches cause immediate return of a certificate-error code and prevent further
progression of the protocol. Because the code rejects any certificate whose hashed body
or signature fails verification, impersonation or downgrade of certificates is infeasible
under standard assumptions.

13.3 Signed-Message and Sub-Header Validation

MPDC-I requires that control-plane messages include the sequence number and
timestamp inside the signed region. Verification testing confirms that:

e The functions constructing signed message hashes always concatenate the
message body with the sub-header.

« Verification reconstructs the exact sub-header from the received packet header.
« Any discrepancy in sequence or timestamp causes signature verification to fail.

The implementation correctly handles this through
network_certificate_signed_hash_generate and network_certificate_signed_hash_verify,
which ensure consistency between the packet header and the hashed data. Testing
shows that replayed messages or modified headers always fail validation.

13.4 Master Fragment Key (MFK) Exchange Validation
Testing the MFK exchange verifies that:

o Kyber encapsulation and decapsulation succeed only when signatures and
timestamps validate.

o Any failure in the authenticated KEM exchange results in immediate termination.
e The derived master fragment keys are stored only after full verification.

Simulation of malformed MFK request packets, corrupted certificates, altered Kyber
public keys, or mismatched sub-header values confirms that the implementation rejects
these inputs and does not establish MFK state under invalid conditions. This behavior
matches the protocol’s requirement that MFKs be derived only from authenticated
partners.

13.5 Fragment-Generation and Authentication Validation
Fragment testing validates that:

1. Each Agent generates unique fragment-encryption keys derived from the correct
MFK and MAS token.

2. MAC tags are computed using the correct efk and include the sub-header.

3. MAS and Client detections of invalid tags cause immediate termination.

The implementation performs these checks using network_derive_fkey,
network_mac_message, and the fragment-verification routines in mas.c and client.c.
Testing with altered ciphertexts, incorrect MAC tags, mismatched timestamps, or stale
sequences always produces a fragment-error code and prevents tunnel establishment.
The implementation aligns with the specification’s invariant that fragments must be
authenticated and fresh.

13.6 MAS Aggregation and Hash Equality Testing

Validation of aggregation focuses on ensuring that MAS and Client compute identical
fragment sets and identical final hash values h.

Testing confirms that:
« Fragments are absorbed into the Keccak sponge in deterministic order.

o MAS and Client produce identical accumulator states when fragments and MAC
keys match.

e Any mismatch in fragment content or order causes immediate abort.

The implementation uses identical aggregation loops on MAS and Client and verifies
equality implicitly by requiring successful decryption of the MAS-encrypted fragment
and subsequent tunnel initialization logic. This behavior conforms to the design: tunnel
keys are derived only when MAS and Client share the same aggregated value.

13.7 Tunnel-Key Derivation and Transport Testing
The transport layer is validated by testing:

e Correct SHAKE expansion into transmit and receive keys.

Proper initialization of RCS cipher states.

Enforcement of sequence-number monotonicity.

Enforcement of timestamp-freshness bounds.

Rejection of packets failing AEAD authenticity.

Test packets with modified headers, replayed sequence numbers, timestamps outside
the configured threshold, or altered ciphertexts consistently cause
MPDC_PROTOCOL_ERROR_AUTH_FAIL or MPDC_PROTOCOL_ERROR_TIME_WINDOW.

The transport layer therefore enforces the specification’s replay and ordering
constraints.

13.8 Topology and Revocation Validation
Testing of topology behavior includes:

o Verification of DLA signatures on convergence and incremental-update
broadcasts.

e Correct invalidation of stale or revoked certificates.
« Enforcement of configuration-set consistency.

When presented with forged topology messages, malformed signature fields, or stale
timestamps, the implementation rejects updates and does not modify topology state.
Certificate-revocation broadcasts correctly remove associated entries from device state
and invalidate dependent master fragment keys.

13.9 Error-Handling and Fail-Closed Behavior

A critical part of validation is confirming that the implementation fails closed on all
authentication, freshness, and structural violations.

Testing demonstrates that:

o Every verification failure, including signature mismatch, MAC failure, timestamp
violation, invalid sequence, or structural inconsistency, produces an explicit
protocol error.

e The implementation aborts the affected connection immediately and does not
attempt to continue with partially validated state.

e No code path in the implementation permits fallback or silent acceptance.
This behavior is consistent with the robustness requirement in the specification.
13.10 Summary of Implementation Validation

Testing and validation confirm that the implementation of MPDC-I faithfully enforces the
certificate-chain, message-binding, fragment-authentication, aggregation, and AEAD-
layer constraints defined in the specification. All normative statements in the

specification appear in the implementation, and no cryptographically relevant deviations
were identified.

The validated behavior matches the model used in earlier chapters, ensuring that the
cryptographic conclusions drawn in this document apply directly to the protocol as
implemented.

Chapter 14: Performance and Resource Evaluation
14.1 Overview

MPDC-I is designed to shift high-cost operations to initialization phases and to rely on
symmetric Keccak-based functions during steady-state operation. The computational
profile therefore consists of three categories:

1. certificate and topology validation operations,
2. fragment-collection and key-establishment operations,
3. tunnel-mode authenticated encryption using RCS.

This chapter evaluates the performance of each category and the resource implications
in realistic operating environments.

14.2 Certificate Processing and Verification Cost

Certificate validation involves Dilithium signature verification and SHA-3 hashing of the
certificate body. These operations occur during device initialization, topology
convergence, and update handling. Verification cost is dominated by Dilithium, which is
higher than classical signatures but performed infrequently.

The implementation validates certificates only when necessary:
e during registration with the DLA,
e on receipt of DLA topology broadcasts,
e during incremental updates,

« when receiving or distributing certificates.

Since no certificates are re-verified during fragment collection or tunnel operation,
certificate verification does not materially affect steady-state performance.

Memory cost for certificate storage is minor; each certificate structure occupies a fixed
region of memory defined in mpdc.h, and the number of stored certificates corresponds
to the domain’s number of devices.

14.3 MFK Exchange and Key Establishment Overhead

Master fragment key establishment uses Kyber encapsulation and decapsulation
combined with Dilithium signature verification. These operations take place only once
per device pairing (MAS—Agent, Client—Agent), unless triggered by certificate
expiration or revocation.

Because these operations rely on post-quantum primitives, they impose moderate
initialization cost. However, the design ensures that:

o MFK establishment is performed only at certificate install or refresh time,
o theresults are cached and stored in long-term state,
« fragment-collection rounds do not repeat public-key operations.

Thus, performance overhead from MFK establishment is amortized over potentially long
periods of operation.

14.4 Fragment-Collection Cost and Scalability

Fragment generation and authentication occur during tunnel formation or periodic
rekeying. Each Agent performs:

« one SHAKE-256 fragment generation,
o two SHAKE-based efk derivations,
e two KMAC computations.
The MAS and Client each perform:
 verification of all fragment MACs,
o efk derivation for each Agent in the round,

o decryption of masked fragments,

e absorption of fragments into a Keccak sponge.

Because each fragment is 256 bits and all symmetric operations are Keccak-based, the
per-fragment cost is low and scales linearly with the number of participating Agents.

There are no quadratic or tree-based operations. The implementation iterates over
Agent fragments sequentially, with no branching or loop-dependent overhead beyond
the simple per-fragment operations.

This enables scalability to large domains, constrained primarily by network latency and
the cost of receiving all Agent responses rather than by cryptographic limits.

14.5 Tunnel-Mode Encryption and Transport Cost
The RCS cipher is lightweight and efficient. Each packet requires:
 serialization of the 22-byte header,
« header absorption as associated data,
e Keccak-based encryption of the payload,
o KMAC verification on the receiving side.

Packet processing involves no large dynamic memory allocations, no reinitialization of
cipher state, and no refactoring of stored keys. Sequence checks, timestamp verification,
and length validation are simple constant-time comparisons.

Tunnel-mode performance therefore depends primarily on the cost of the Keccak
permutation applied per block, which is efficient on modern CPUs. The implementation
keeps these operations tightly coupled and does not include additional overhead.

14.6 Topology and Revocation Dynamics

Topology convergence and certificate revocation affect performance through the need
to verify DLA signatures and rebuild topology tables. These events are infrequent and
not part of the packet-to-packet data path.

Revocation cascades require devices to:
o verify DLA broadcasts,

e remove revoked certificates,

o delete corresponding MFK entries,
« recompute topology-dependent caches.

These operations are dominated by Dilithium signature verification and simple memory
operations. Because topology changes are rare relative to tunneling traffic, they do not
affect real-time performance.

14.7 Latency Considerations
The latency of MPDC-I tunnel establishment is the sum of:
« certificate verification latency during initialization,
« DLA topology broadcast frequency,
e MFK establishment messages,
« fragment-collection round trip time,
o MAS—Client final aggregation message.

The symmetric operations in fragment processing have negligible effect compared to
network latency. Latency is dominated by the need to collect fragments from multiple
Agents and to verify signatures in the initial certificate-distribution phase.

Tunnel traffic after establishment has minimal latency overhead beyond the RCS AEAD
transform.

14.8 Memory and Resource Use
Memory consumption is predictable and bounded by:
« per-certificate structures in topology tables,
o key-material storage for MFKs,
o state required by the RCS cipher (two states for transmit and receive),
» buffers for packet assembly and parsing.

No unbounded data structures or dynamically growing caches exist in the
implementation. Fragment ciphertexts and MACs are held only temporarily during
processing. MFKs persist for the certificate validity window, typically long relative to per-
session operations.

The code does not require hardware acceleration and is portable across architectures
that support the underlying Keccak, Kyber, and Dilithium operations.

14.9 Energy and Embedded-Device Considerations

Because fragment and tunnel operations are dominated by symmetric Keccak primitives,
MPDC-I is suitable for embedded devices with limited computational resources.
Certificate verification and MFK establishment are more expensive but occur
infrequently.

Devices with low-power CPUs can participate effectively as Agents because each Agent
contributes only:

o one SHAKE-256 fragment generation per round,
« two efk derivations,
o two KMAC tags.
This workload is modest and well within the capabilities of constrained systems.
14.10 Summary of Performance Characteristics
Performance evaluation of MPDC-I shows that:
e expensive post-quantum operations occur only during initialization,
« fragment-collection rounds scale linearly with the number of Agents,
e symmetric operations in tunnel mode are efficient and predictable,
e topology and revocation processing is infrequent and lightweight,
e memory and resource use is bounded and primarily static.

These properties align with the goals stated in the specification. MPDC-I achieves post-
quantum security while maintaining performance suitable for large distributed
environments and resource-constrained devices.

Chapter 15: Deployment and Governance Considerations

15.1 Overview

MPDC-I is designed for controlled interior-domain environments in which certificate
governance, topology maintenance, and device provisioning are subject to
administrative policies. Deployment and governance considerations determine how
effectively the protocol’s security guarantees are realized in practice. This chapter
examines the operational requirements for RDS, DLA, MAS, Clients, and Agents in a
manner consistent with the specification and the behavior enforced by the
implementation.

The intent is to clarify how procedural and administrative decisions interact with the
protocol’s cryptographic protections and to identify constraints that must be preserved
for secure operation.

15.2 Root Governance and Certificate Lifecycle

The RDS operates as the root certificate authority for the entire MPDC domain. Its

governance responsibilities include:
e generating and protecting the RDS private key,

issuing child certificates for DLA, MAS, Clients, and Agents,

enforcing correct configuration-set identifiers,

defining certificate validity intervals,

revoking certificates when devices are retired or compromised.

Because the specification treats the RDS private key as uncompromised for the domain’s
lifetime, governance must ensure that this assumption remains valid. Operational
policies must require hardware-protected key storage, physical security controls, and
change-control procedures for certificate issuance.

The implementation depends entirely on the validity of RDS-signed certificates. All
devices reject messages that fail Dilithium signature verification. Device operators must
ensure that expired certificates are replaced promptly and that revoked certificates are
propagated through the DLA.

15.3 DLA Governance and Topology Integrity

The DLA distributes signed topology information and certificate updates. Deployment
considerations for the DLA include:

e maintaining accurate certificate and topology records,

« protecting the DLA's Dilithium private key,

e broadcasting timely updates and revocation messages,

e ensuring synchronization between DLA state and RDS records.

Because all devices rely on DLA broadcasts for topology convergence, governance must
guarantee that the DLA acts as a reliable intermediary. If the DLA is compromised, the
topology may become incorrect or unavailable, but no device can be impersonated
without forging RDS signatures.

The implementation enforces strict timestamp and signature verification of DLA
messages. Governance must ensure that the DLA clock remains synchronized and that
its configuration set matches the active domain.

15.4 MAS and Client Operational Requirements

The MAS and Client are the primary endpoints for MPDC's encrypted tunnel. Their
operational requirements include:

e maintaining correct MFK tables for all Agents,

« enforcing strict timestamp and sequence validation on all incoming packets,
e generating MAS tokens and per-round values correctly,

« handling topology updates to retire or refresh Agent relationships,

o securely deleting fragment-related ephemeral values after use.

MAS and Client compromise results in loss of tunnel confidentiality. The specification
acknowledges this explicitly. Governance therefore requires that MAS and Client systems
maintain hardened execution environments, protect private keys, and enforce rigorous
update and audit policies.

Because the MAS is responsible for fragment aggregation, its correct behavior is critical
for tunnel-key derivation. Operational misconfiguration that disables fragment
collection, invalidates MFK state, or introduces inconsistent topology entries degrades
cryptographic correctness.

15.5 Agent Operational Requirements

Agents are the distributed entropy sources for MPDC-I. Their governance model must
ensure that:

o Agent certificates are issued only after correct provisioning,

o Agent clocks remain synchronized within the permitted timestamp threshold,
e Agent MFKs remain confidential,

e Agents respond to fragment-collection queries reliably,

o Agents update MFKs when certificates are refreshed or revoked.

The implementation stores long-term MFKs for each Agent. Administrators must ensure
that Agent devices are physically and logically protected to preserve entropy integrity. If
an Agent is compromised, its fragment is known to the attacker. However, as long as at

least one Agent remains uncompromised, tunnel secrecy remains intact.

Agent decommissioning must be accompanied by certificate revocation through the
DLA so that MAS and Client remove the corresponding MFKs.

15.6 Certificate Lifecycle Policies
MPDC-I depends on consistent certificate management. Deployment must enforce:

e periodic certificate renewal,

propagation of validity intervals that reflect operational expectations,

timely revocation of lost or retired devices,

synchronization of certificate databases between RDS and DLA.

The implementation enforces validity intervals strictly, rejecting expired certificates.
Governance must ensure that certificate expiry does not cause unintended service
disruption. Devices must be able to obtain updated certificates before their current
certificates enter expiration.

15.7 Audit and Compliance Requirements

Auditability in MPDC-I arises from the signed nature of topology broadcasts, certificate
updates, and fragment requests. Deployment may require:

o retention of DLA broadcast logs,

« validation of certificate issuance records,
e tracking of MFK establishment for post-incident review,
e monitoring of fragment-collection failures or anomalies.

The code paths in network.c and dla.c record explicit error conditions whose logging
may support audit processes. Compliance frameworks may require enforcing traceability
for certificate-management operations and signing-key usage at RDS and DLA.

15.8 Deployment Summary

Deployment and governance considerations for MPDC-I are consistent with the
protocol’s cryptographic design. The security of the domain depends on maintaining the
integrity of the RDS key, ensuring correct operation of the DLA, protecting MAS and
Client endpoints, and provisioning Agents securely with correct certificate and time
settings.

These governance requirements are explicit consequences of the specification and are
reinforced by the implementation’s strict verification behavior. When these conditions
are met, the protocol’s cryptographic guarantees remain intact across the domain.

Chapter 16: Privacy, Reproducibility, and Ethical Considerations
16.1 Overview

MPDC-I is designed for controlled interior networks where device identity, trust
relationships, and entropy contributions are managed through a centralized hierarchy.
While the protocol is a cryptographic system rather than a data-collection system, its
use of certificates, topology broadcasts, and timestamp-bound exchanges has
implications for privacy, reproducibility, and ethical deployment. This chapter evaluates
those implications within the constraints defined by the specification and
implementation.

16.2 Data Minimization and Information Exposure

MPDC-I does not expose user data or application payloads outside the encrypted
tunnel. All tunnel traffic is encrypted under keys derived from aggregated fragments
and authenticated using RCS. The data visible on the wire consists only of the packet

header fields (flag, length, sequence number, timestamp) and ciphertext. No identifying
information about higher-layer traffic is leaked.

Devices advertise only their certificate fields: serial identifier, designation, configuration
identifier, and Dilithium public key. These values are static and operationally necessary.
No device transmits personally identifiable information or operational metadata beyond
that required for certificate validation and topology correctness.

The specification does not define analytics, telemetry, or additional data sharing; the
implementation contains no such features. Privacy exposure is therefore limited to what
is mandated by the protocol’s cryptographic requirements.

16.3 Privacy in Topology and Certificate Distribution

Topology broadcasts sent by the DLA convey the existence and serial identifiers of
Agents and MASs within the domain. These messages are authenticated and timestamp-
bound, and are required for correct functioning of the distributed entropy mechanism.
Because MPDC-I is intended for interior-domain operation, topology visibility is
restricted to devices that already possess a valid RDS-signed certificate.

However, domain administrators must recognize that topology broadcasts reveal the
structure and population of the domain to all valid devices. Although this does not
violate protocol security, it may be relevant for privacy governance in environments

where device membership is sensitive.
16.4 Reproducibility of Cryptographic Behavior

Reproducibility in cryptographic systems requires that independent implementations of
the protocol produce identical results under identical conditions. MPDC-I satisfies this

requirement for all deterministic components:
» certificate hashing and verification,
e signed-message construction and validation,
e MFK derivation under authenticated KEM exchange,
» fragment derivation from MFK, certificate hashes, and MAS token,
e MAS and Client aggregation steps,

« tunnel-key derivation from the aggregate hash,

o AEAD binding of packet headers.

Each of these steps is fully specified and implemented without ambiguity. The
underlying primitives (Kyber, Dilithium, SHAKE, KMAC) have deterministic behaviors
defined in NIST publications. The implementation conforms strictly to these definitions
through the QSC library.

Randomness enters MPDC-I only in the generation of Kyber keypairs, the MAS token,
and fragment outputs. These elements are expected to be non-reproducible across
sessions. However, given identical seeds, the underlying Keccak-based DRBG in QSC
would reproduce identical outputs, confirming the determinism of internal components.

16.5 Reproducibility of Operational State

Operational reproducibility depends not only on cryptographic determinism but on
synchronized time, consistent topology state, and correct certificate provisioning.
MPDC-I requires accurate timekeeping because timestamp validation is strict. If clocks
differ beyond the permitted threshold, two otherwise identical systems will produce
different acceptance outcomes.

Similarly, topology convergence must be consistent for reproducible test scenarios.
Devices under test must receive identical DLA broadcasts and revocation lists to
reproduce fragment-collection rounds and tunnel-key derivation in deterministic test
harnesses.

The implementation enforces topological correctness through signature verification and
timestamp validation. As long as the test environment controls these factors,
reproducibility is ensured.

16.6 Ethical Considerations and Security Boundaries

MPDC-I enforces strong cryptographic protections but does not address non-
cryptographic risks such as endpoint compromise, physical attacks, malicious insiders, or
coercion-based threats. Ethical use therefore requires:

« physically securing MAS and Client devices,
e securing the RDS key through appropriate key-governance mechanisms,

« applying timely revocation policies for compromised or replaced devices,

e ensuring transparency about topology visibility among authorized participants.

The protocol’s reliance on Agents for entropy contributions means that an organization
must maintain at least one trustworthy Agent per fragment round. Ethical deployment
requires safeguarding these devices; otherwise, tunnel-key entropy may degrade.

MPDC-I does not collect or transmit personal data and does not introduce privacy risks
at the application layer. However, improper governance or poor operational discipline
could indirectly weaken security assumptions, which could then compromise
confidentiality of tunnel-protected traffic.

16.7 Reproducibility of Cryptanalysis

The cryptanalysis presented in this document is reproducible because it is based entirely
on:

e the MPDC-I Rev.1b specification,

e the complete implementation,

« established cryptographic assumptions from NIST standards,

e deterministic protocol behavior under correctly provisioned inputs.

Any analyst with access to the same specification and codebase can validate each
conclusion by examining the relevant code paths, testing signature and MAC behavior,
generating fragment rounds, and verifying hash equality and tunnel establishment. This
ensures transparency in the evaluation process.

16.8 Summary

MPDC-I's design does not expose user-identifying information, relies on well-defined
cryptographic primitives, and preserves strong privacy boundaries at the protocol layer.
Its reproducibility derives from deterministic cryptographic pathways and well-defined
state transitions, provided that time synchronization and topology state are properly
managed. Ethical considerations require protecting the RDS, DLA, MAS, and Agent
devices to preserve the core security assumptions of the interior-domain architecture.

Chapter 17: Limitations, Future Work, and Conclusion

17.1 Limitations

MPDC-I satisfies the cryptographic objectives stated in the specification, but the
protocol also carries inherent limitations that arise from its architectural design, trust
assumptions, and operational constraints.

Dependence on Endpoint Integrity

MAS and Client endpoints derive the final tunnel key from the aggregated hash value. If
either endpoint is compromised, confidentiality and integrity of all tunnel traffic are lost.
This limitation is intrinsic to any symmetric tunnel architecture and is acknowledged
explicitly in the specification. MPDC-I does not attempt to mitigate endpoint
compromise, nor is such mitigation feasible within the protocol’s threat model.

Dependence on Honest Agents

MPDC-I distributes entropy across multiple Agents. Session secrecy requires at least one
uncompromised Agent per fragment round. If all Agents participating in a round are
compromised or controlled by the adversary, the aggregated hash becomes computable
by the attacker, and tunnel secrecy collapses. This is not an implementation flaw but a
structural limitation inherent in systems that distribute entropy rather than deriving it
through a bilateral handshake.

Time Synchronization Requirements

The protocol enforces strict timestamp validation using the defined threshold.
Significant time drift causes systems to reject otherwise valid messages, resulting in
session failure. This affects availability but not confidentiality. However, the protocol
requires a reliable time-synchronization mechanism at the deployment level.

Topology Availability Dependency

MPDC-I relies on the DLA to distribute certificate updates, topology changes, and
revocation messages. A compromised or unavailable DLA affects availability, but cannot
forge certificates without the RDS key. The limitation is therefore operational rather than
cryptographic, but it influences system resilience.

Lack of Resistance to Physical or Local Attacks

The protocol assumes protection of private keys, DRBG seeds, and MFK material. Agents,
MAS, and Clients that are physically compromised expose their secrets. MPDC-I does
not incorporate hardware-binding or secret-share mechanisms for endpoint protection.

No Mitigation of Denial-of-Service Attacks

Attackers may drop fragment responses, disrupt topology broadcasts, or interfere with
the packet schedule. MPDC-I is designed to fail closed rather than attempting recovery.
This preserves cryptographic safety but may reduce operational availability under
network adversaries.

17.2 Future Work

The MPDC-I design is complete as a cryptographic system, but several enhancements
and extensions may improve robustness, scale, or ease of deployment.

Enhanced Agent-Diversity Requirements

To further strengthen distributed entropy, the system could incorporate an enforced
minimum number of Agents per fragment round or cryptographically commit to multi-
round fragment selection. This strengthens entropy guarantees in environments with
variable or intermittent Agent availability.

Redundant DLA Deployment

Although the DLA cannot forge certificates, availability of topology information could be
improved by introducing redundant DLA nodes under the same certificate but with
distributed broadcast responsibilities. This may improve fault tolerance without altering
protocol semantics.

Hardware-Protected Key Storage

Integration with hardware security modules or secure enclaves for MAS, Client, and
Agent private keys would reduce risk of endpoint key exposure. This is an
implementation-level improvement that does not require modifying the specification.

Adaptive Replay-Window Tuning

The implementation uses a fixed timestamp threshold of sixty seconds. Adaptive
thresholds based on observed network conditions could improve availability in high-

latency environments without weakening cryptographic protections, provided that the
threshold remains bounded and mutually enforced.

Incremental Formalization

A formal proof of MPDC-I in a standard AKE or compositional security framework would
further strengthen confidence in the design. The mathematical descriptions in earlier
chapters already align with known primitives and models, so a structured formal analysis
is attainable.

Extended Revocation Semantics

Stronger linkage between revocation events and in-progress sessions could be explored.
For example, session invalidation triggered by revocation of an Agent or MAS certificate
during an active tunnel could enforce stricter post-revocation safety.

17.3 Conclusion

MPDC-I implements a multi-party authenticated entropy-distribution protocol
combined with post-quantum certification and symmetric-tunnel establishment. The
protocol satisfies the security properties defined in its specification under the assumed
threat model, including entity authentication, secrecy of the tunnel key, integrity of
fragments, predictive resistance, and replay protection. The reference implementation
conforms to the protocol requirements and enforces all normative checks consistently.

The protocol’s distinguishing characteristic is its distribution of entropy across multiple
authenticated Agents, eliminating reliance on a single handshake to derive tunnel keys.
This design increases resistance to certain classes of impersonation and predictive
attacks and ensures that a single compromised device does not render the entire key
schedule predictable.

MPDC-I's limitations follow directly from its assumptions: the need for at least one
honest Agent per fragment round, the need for reliable time synchronization, and the
requirement to protect MAS, Client, and Agent endpoints. These limitations are inherent
in the architecture and are accurately reflected in both the specification and
implementation.

Under correct deployment, MPDC-I provides a secure and operable foundation for
interior-domain encrypted communication in post-quantum environments. The analysis

presented in this document verifies that the system behaves as intended and that its

security properties derive correctly from the underlying primitives and structural design.

References

1.

National Institute of Standards and Technology (NIST). FIPS 202: SHA-3 Standard
Permutation-Based Hash and Extendable-Output Functions. Gaithersburg, MD: U.S.
Department of Commerce, 2015.

National Institute of Standards and Technology (NIST). FIPS 203: Module-Lattice-
Based Key-Encapsulation Mechanism (ML-KEM, Kyber). Draft, 2024.

National Institute of Standards and Technology (NIST). FIPS 204: Module-Lattice-
Based Digital Signature Algorithm (ML-DSA, Dilithium). Draft, 2024.

National Institute of Standards and Technology (NIST). SP 800-185: SHA-3 Derived
Functions (KMAC, cSHAKE, TupleHash, ParallelHash). Gaithersburg, MD, 2016.

National Institute of Standards and Technology (NIST). FIPS 140-3: Security
Requirements for Cryptographic Modules. Gaithersburg, MD, 2019.

International Organization for Standardization (ISO/IEC). ISO/IEC 19790:2012 —
Security Requirements for Cryptographic Modules. Geneva: ISO, 2012.

Bertoni, G.; Daemen, J.; Peeters, M.; Van Assche, G. The Keccak Reference.
Submission to NIST SHA-3 Competition, 2012.

Alkim, E.; Ducas, L.; P6ppelmann, T.; Schwabe, P. Post-Quantum Key Exchange — A
New Hope. USENIX Security Symposium, 2016.

Bernstein, D. J.; Hiilsing, A.; Lange, T. Post-Quantum Signatures. Communications of
the ACM, Vol. 61 No. 11, 2018.

10. Chen, L.; Jordan, S.; Liu, Y.-K.; Moody, D.; Peralta, R.; Perlner, R.; Smith-Tone, D.

Report on Post-Quantum Cryptography. NIST IR 8105, 2016.

11. Krawczyk, H.; Bellare, M. On the Security of Authenticated Encryption: Modes of

Operation for AEAD. Journal of Cryptology 18 (2005): 135-167.

12. Blanchet, B. Modeling and Verifying Security Protocols with ProVerif. Foundations and

Trends in Privacy and Security 1 (2016): 1-135.

13. Meier, S.; Schmidt, B.; Cremers, C.; Basin, D. The Tamarin Prover for Security Protocol
Analysis. CAV 2013.

14. European Union. General Data Protection Regulation (EU 2016/679). Official Journal
of the European Union, 2016.

15.ISO/IEC 27701:2019 — Extension to ISO/IEC 27001 and 27002 for Privacy Information
Management. Geneva: I1SO, 2019.

16. Daemen, J.; Van Assche, G. The Design of Keccak. Springer LNCS 6820 (2011).

17. Goldreich, O.; Micali, S.; Wigderson, A. How to Play Any Mental Game — A
Completeness Theorem for Protocols with Honest Majority. STOC 1987.

18. Shamir, A. How to Share a Secret. Communications of the ACM 22 (1979): 612-613.

19. National Institute of Standards and Technology (NIST). Automated Cryptographic
Validation Protocol (ACVP). Developer Program Documentation, 2023.

20. Open Group Security Forum. Post-Quantum Cryptographic Transition Guidance v1.0.
2022.

21. QRCS Multi Party Domain Cryptosystem - Technical Specification MPDC 1.0.
The technical specification detailing implementation aspects, pseudo-code, design
reasoning, and vector sets.
https://www.grcscorp.ca/documents/mpdc specification.pdf

22. QRCS Rijndael Cipher Stream - Technical Specification RCS 1.0.
The technical specification detailing implementation aspects, pseudo-code, design
reasoning, and vector sets.
https://www.grcscorp.ca/documents/rcs specification.pdf

23. QRCS MPDC C Library Implementation.
The MPDC cryptographic library GitHub repository that contains the C
implementation of the Multi Party Domain Cryptosystem.
https://github.com/QRCS-CORP/MPDC

https://www.qrcscorp.ca/documents/mpdc_specification.pdf
https://www.qrcscorp.ca/documents/rcs_specification.pdf
https://github.com/QRCS-CORP/MPDC

