
Multi-Party Domain Cryptosystem 

MPDC-I Technology Integration Guide 

Revision: 1.0 

Date: October 14, 2025 

 

1 Introduction 

The Multi-Party Domain Cryptosystem – Interior protocol (MPDC-I) is a post-quantum, 

multi-party key exchange and network security system. Instead of relying on a single 

key-exchange between a client and server, MPDC-I distributes the exchange across several 

independently authenticated devices: root domain security (RDS), domain list agent (DLA), 

managed application server (MAS), Agents, and Clients. Each agent contributes 

pseudo-random fragments that are combined by the MAS and client using a hybrid 

post-quantum scheme (Kyber/McEliece KEMs, Dilithium/SPHINCS+ signatures) and hashed via 

cSHAKE to derive session keys. This distributed entropy injection means an adversary would 

need to compromise multiple devices at once to reconstruct the session key, making 

impersonation and man-in-the-middle attacks extremely difficult. MPDC-I employs a symmetric 

cipher (RCS) with cSHAKE-based key expansion and KMAC authentication to encrypt and 

authenticate traffic. The design is scalable, computationally efficient and resistant to both 

classical and quantum attacks. 

This guide explains MPDC-I’s architecture, describes the API and main functions, and provides 

practical steps for deploying MPDC in payment networks, cloud platforms, SCADA/industrial 

systems and IoT environments. 

2 Architecture and Roles 

MPDC-I operates with five device types: 

Entity Role Key responsibilities 

Client End-user device 

initiating secure 

communication 

Generates a certificate, gets it signed by RDS 

(directly or via DLA), exchanges master fragment 

keys (mfk) with agents and MAS, combines key 

fragments to derive session keys and 

encrypts/decrypts traffic. 



Managed 

Application 

Server (MAS) 

Central application 

server 

Generates its own certificate, validates client 

certificates, contacts agents to obtain key fragments, 

combines them with its MAS fragment key to derive 

session keys and operates the encrypted tunnel. 

Agent Trusted network 

device injecting 

entropy 

Generates its own certificate, obtains a root-signed 

certificate, produces key fragments using symmetric 

ciphers, and transmits fragments to MAS and clients. 

Agents may run in separate physical devices to 

diversify entropy sources. 

Domain List 

Agent (DLA) 

Network registry Holds the network topology and certificate list, 

verifies device certificates, issues incremental 

updates, manages join/resign requests and 

revocation broadcasts. 

Root Domain 

Security (RDS) 

Root certificate 

authority 

Generates and manages the root certificate, signs 

device certificates, and acts as the ultimate trust 

anchor. RDS should operate in a secure environment 

and may act via DLA proxies for convenience. 

Key exchange and session derivation 

During an MPDC-I session, the client and MAS independently perform asymmetric KEM 

exchanges with each agent to obtain per-agent shared secrets. Each agent uses its symmetric 

key stream (derived from the KEM secret) to generate key fragments. The client and MAS collect 

all fragments, combine them along with a MAS-specific fragment key, and feed them into 

cSHAKE to derive the final session keys. Because every session key depends on contributions 

from multiple agents, compromising a single device does not expose the entire session key. RCS 

with KMAC authenticates and encrypts traffic, while Dilithium/SPHINCS+ signatures authenticate 

the initial certificate and KEM keys. The hybrid design provides strong forward secrecy and 

quantum resistance. 

Topology management 

The DLA maintains a master list of devices and distributes certificates, updates and revocations. 

Each device holds a child certificate signed by the RDS, indicating its role and expiration. The 

MAS and clients validate incoming certificates using the root certificate. Port numbers for each 

component are defined in mpdc.h: clients default to port 37761, DLA 37762, IDG 37763, RDS 

37764 and MAS 37765. 



3 Cryptographic and Certificate APIs 

MPDC-I maps directly to QSC’s cryptographic primitives via macros in mpdc.h. Key functions 

include: 

Certificate creation and management 

MPDC’s certificate API allows creation, serialization, encoding and verification of root and child 

certificates. Important functions are: 

• mpdc_certificate_root_create(root, pubkey, expiration, issuer): create a root certificate 

structure with the given public key, expiration and issuer. 

• mpdc_certificate_root_encode(enck, root) / mpdc_certificate_root_decode(root, enck): 

convert between a root certificate structure and its human-readable string 

representation. 

• mpdc_certificate_child_create(child, pubkey, expiration, issuer, designation): create a 

child certificate specifying the device designation (client, MAS, agent or DLA). 

• mpdc_certificate_child_encode(enck, child) / mpdc_certificate_child_decode(child, 

enck): encode or decode child certificates. 

• mpdc_certificate_child_is_valid(child): verify format and expiration. 

• mpdc_certificate_message_hash_sign(signature, sigkey, message, msglen) and 

mpdc_certificate_child_message_verify(message, msglen, signature, siglen, child): sign 

and verify messages using certificate keys. 

4 Server lifecycle functions 

Each MPDC role provides start, pause and stop functions. These functions initialize network 

resources, load certificates, start command loops and shut down gracefully. Key functions 

include: 

Role Start Pause Stop Description 

Client mpdc_client_st

art_server() 

mpdc_client_pause

_server() 

mpdc_client_stop

_server() 

Initializes sockets, loads 

client certificate, registers 

with the network and 

begins listening for 

connections. Use the 

callback 



mpdc_client_connect_call

back() to accept or reject 

incoming connections. 

MAS mpdc_mas_star

t_server() 

mpdc_mas_pause_

server() 

mpdc_mas_stop_s

erver() 

Loads configuration and 

certificates, initializes 

secure sockets and starts 

the command loop. 

Agent mpdc_agent_st

art_server() 

mpdc_agent_paus

e_server() 

mpdc_agent_stop

_server() 

Handles certificate 

management, topology 

convergence, fragment 

queries and master 

fragment key exchanges. 

DLA mpdc_dla_start

_server() 

mpdc_dla_pause_s

erver() 

mpdc_dla_stop_se

rver() 

Configures network 

listening sockets, loads 

DLA certificate, initializes 

topology database and 

command loop. 

RDS mpdc_rds_start

_server() 

mpdc_rds_pause_s

erver() 

mpdc_rds_stop_se

rver() 

Manages creation, 

storage and signing of 

root certificates and 

coordinates secure 

communications. 

5 Example Configuration and Deployment Workflow 

The Doxygen documentation provides a typical sequence for initializing an MPDC-I network. Key 

steps are summarized below. Note that configuration commands (enable, config, certificate, etc.) 

are executed via the console command loop provided by each server. 

1. RDS Initialization: 

▪ Log into the RDS console and enter enable mode. 

▪ Configure user credentials, device name, IP address and network name. 

▪ Enter configuration then certificate mode. Generate the root certificate using 

generate(days-valid) specifying the validity period. 

2. DLA Initialization: 



▪ Log into the DLA console and enter enable mode. 

▪ Provide the path to the root certificate generated by the RDS. 

▪ Enter certificate mode and generate the DLA certificate. 

3. Sign the DLA Certificate: 

▪ On the RDS, import the DLA certificate and sign it using the sign(certificate-path) 

command. Return the signed certificate to the DLA. 

4. Device Initialization (Agent, MAS, Client): 

▪ For each device, generate a keypair and certificate via 

mpdc_certificate_child_create(). Have the certificate signed by the RDS or via the 

DLA. 

▪ Register with the DLA (register(dla-ip-address)) to join the network and update 

the topology. 

5. MAS and Agent Integration: 

▪ On the MAS, start the server (mpdc_mas_start_server()), then join the network by 

contacting the DLA and obtaining a list of Agents. 

▪ On each Agent, start the server and register with the DLA using register(dla-ip-

address). 

6. Client Integration: 

▪ On each client, enable the network service and register with the DLA. 

▪ Exchange certificates and master fragment keys (mfk) with Agents and the MAS. 

The mpdc_client_connect_callback() can be used to evaluate incoming 

connections. 

▪ To establish a secure session, run connect(mas-ip-address) in server mode. The 

MAS will validate the client certificate and complete the key exchange. 

After initialization, clients and MAS derive session keys by combining key fragments from all 

participating agents and the MAS’s own fragment key. Each secure tunnel uses RCS with KMAC 

to provide authenticated encryption and includes sequence numbers and timestamps to prevent 

replay attacks. 

6 Integration Scenarios 



Payment Networks 

MPDC-I can replace or augment existing payment network security infrastructures. By 

distributing key derivation across multiple agents, the protocol reduces reliance on central HSMs 

and mitigates breach scope. MAS servers can be deployed at payment processors, clients in 

point-of-sale (POS) terminals, and agents in ATM clusters. The DLA maintains the device registry 

and certificate revocation list. Each transaction uses new session keys derived from fresh agent 

fragments, ensuring forward secrecy and post-quantum protection. Integration steps include: 

1. Deploy an RDS within the payment operator’s secure facility and establish DLA servers to 

manage POS and ATM certificates. 

2. Issue root-signed certificates to MAS (processor), agents (regional HSMs), and clients 

(POS/ATM terminals). 

3. Use the mpdc_client_start_server() API in the POS firmware to initialize the MPDC client 

and automatically register with the DLA during provisioning. 

4. For each payment session, the client requests fresh fragments from agents and the MAS, 

combines them and derives session keys; transactions are encrypted using RCS with 

KMAC. 

Cloud Platforms and SaaS 

In cloud environments, MPDC-I provides a sovereignty-preserving trust fabric across 

micro-services. MAS servers run in each data-center, while agents may be deployed as separate 

service nodes (or container side-cars) generating entropy. Clients can be API gateways or service 

consumers. The DLA maintains a registry of services and orchestrates revocations. The low 

overhead of MPDC’s key exchange (symmetric operations for fragments) allows large scale 

adoption without significant CPU impact. Integration involves embedding the MPDC client 

library into service frameworks and using MAS as secure ingress points. Certificates and trust 

structures can be stored in secrets managers, with rotation handled via the command loop. 

SCADA / Industrial Control 

MPDC-I is well suited for critical infrastructure because it distributes trust and does not rely on 

always-online certificate authorities. Agents can be placed at substations or control units to 

inject locally generated randomness. MAS servers coordinate control commands and 

monitoring. Clients reside on operator consoles or remote sensors. In this context, the RDS may 

be air-gapped and DLA updates are pushed during maintenance windows. The 

mpdc_agent_start_server() and mpdc_agent_stop_server() APIs allow operators to register or 



decommission agents safely. Sequence numbers and timestamps in each RCS-encrypted packet 

prevent replay and ensure command integrity. 

IoT Networks 

For IoT devices requiring long-term security and minimal overhead, MPDC-I can be combined 

with lightweight QSMP or SKDP transport. The client module can be compiled with MISRA C to 

run on embedded controllers. Agents may be small hubs or gateways providing additional 

entropy. MAS servers run in central aggregators or cloud services. Because MPDC uses 

symmetric cryptography for most operations, low-power devices can participate in multi-party 

key exchange. Device provisioning includes generating a child certificate via 

mpdc_certificate_child_create() and registering with the DLA; subsequent communication uses 

the same session derivation as other domains. 

7 Security and Best Practices 

• Distributed entropy: Always deploy multiple agents; each session key should derive from 

at least one MAS fragment and multiple agent fragments to ensure no single 

compromise exposes the key. 

• Certificate management: Keep the RDS offline except during certificate signing 

operations. Use mpdc_certificate_expiration_set_days() or 

mpdc_certificate_expiration_set_seconds() to set appropriate validity periods. Regularly 

rotate child certificates and update the DLA topology. 

• Port isolation: Use default port assignments defined in mpdc.h or configure custom 

ports behind firewalls. Ensure each server only listens on its designated port to avoid 

cross-role confusion. 

• Command loop security: The MPDC command loop supports different modes 

(user/config/certificate). Restrict access to the enable and certificate modes to privileged 

administrators. Use console idleness timeouts to log out inactive sessions. 

• Trust record management: Use mpdc_trust_serialize() and mpdc_trust_deserialize() to 

back up and restore trust databases. Clear outdated entries with mpdc_trust_clear(). 

• Hybrid cryptography: MPDC-I uses Kyber for KEM and Dilithium for signatures by 

default via macros in mpdc.h. Monitor NIST PQC standard updates and update algorithm 

sets as needed. The certificate API (mpdc_certificate_algorithm_decode() / encode()) 

allows switching to alternative parameter sets. 



• Replay prevention: Ensure that sequence numbers and timestamps included in each RCS 

packet are validated and that out-of-order or duplicate packets are rejected. 

8 Conclusion 

MPDC-I provides a resilient, scalable and quantum-secure alternative to traditional client-server 

key exchange. By distributing trust across multiple independently managed devices and 

combining asymmetric KEMs, hash-based signatures and symmetric ciphers, it resists quantum 

and classical adversaries. The well-structured API; ranging from certificate creation 

(mpdc_certificate_*), network registration (mpdc_dla_*), server life-cycle management 

(mpdc_*_start_server() etc.) and console help (mpdc_help_print_*), allows implementers to 

integrate MPDC-I into payment systems, cloud services, SCADA networks and IoT devices with 

relative ease. Following the configuration workflow and adhering to best practices ensures 

successful deployment and long-term security for sovereign infrastructures. 

 


