Multi-Party Domain Cryptosystem

MPDC-I Technology Integration Guide

Revision: 1.0
Date: October 14, 2025

1 Introduction

The Multi-Party Domain Cryptosystem — Interior protocol (MPDC-I) is a post-quantum,
multi-party key exchange and network security system. Instead of relying on a single
key-exchange between a client and server, MPDC-I distributes the exchange across several
independently authenticated devices: root domain security (RDS), domain list agent (DLA),
managed application server (MAS), Agents, and Clients. Each agent contributes
pseudo-random fragments that are combined by the MAS and client using a hybrid
post-quantum scheme (Kyber/McEliece KEMs, Dilithium/SPHINCS+ signatures) and hashed via
cSHAKE to derive session keys. This distributed entropy injection means an adversary would
need to compromise multiple devices at once to reconstruct the session key, making
impersonation and man-in-the-middle attacks extremely difficult. MPDC-I employs a symmetric
cipher (RCS) with cSHAKE-based key expansion and KMAC authentication to encrypt and
authenticate traffic. The design is scalable, computationally efficient and resistant to both
classical and quantum attacks.

This guide explains MPDC-I's architecture, describes the API and main functions, and provides
practical steps for deploying MPDC in payment networks, cloud platforms, SCADA/industrial
systems and loT environments.

2 Architecture and Roles

MPDC-I operates with five device types:

Entity Role Key responsibilities
Client | End-user device Generates a certificate, gets it signed by RDS
initiating secure (directly or via DLA), exchanges master fragment
communication keys (mfk) with agents and MAS, combines key

fragments to derive session keys and
encrypts/decrypts traffic.




Managed | Central application Generates its own certificate, validates client
Application | server certificates, contacts agents to obtain key fragments,
Server (MAS) combines them with its MAS fragment key to derive
session keys and operates the encrypted tunnel.

Agent | Trusted network Generates its own certificate, obtains a root-signed
device injecting certificate, produces key fragments using symmetric
entropy ciphers, and transmits fragments to MAS and clients.

Agents may run in separate physical devices to
diversify entropy sources.

Domain List | Network registry Holds the network topology and certificate list,
Agent (DLA) verifies device certificates, issues incremental
updates, manages join/resign requests and
revocation broadcasts.

Root Domain | Root certificate Generates and manages the root certificate, signs
Security (RDS) | authority device certificates, and acts as the ultimate trust
anchor. RDS should operate in a secure environment
and may act via DLA proxies for convenience.

Key exchange and session derivation

During an MPDC-I session, the client and MAS independently perform asymmetric KEM
exchanges with each agent to obtain per-agent shared secrets. Each agent uses its symmetric
key stream (derived from the KEM secret) to generate key fragments. The client and MAS collect
all fragments, combine them along with a MAS-specific fragment key, and feed them into
cSHAKE to derive the final session keys. Because every session key depends on contributions
from multiple agents, compromising a single device does not expose the entire session key. RCS
with KMAC authenticates and encrypts traffic, while Dilithium/SPHINCS+ signatures authenticate
the initial certificate and KEM keys. The hybrid design provides strong forward secrecy and
guantum resistance.

Topology management

The DLA maintains a master list of devices and distributes certificates, updates and revocations.
Each device holds a child certificate signed by the RDS, indicating its role and expiration. The
MAS and clients validate incoming certificates using the root certificate. Port numbers for each
component are defined in mpdc.h: clients default to port 37761, DLA 37762, IDG 37763, RDS
37764 and MAS 37765.



3 Cryptographic and Certificate APIs

MPDC-I maps directly to QSC's cryptographic primitives via macros in mpdc.h. Key functions

include

Certificate creation and management

MPDC's certificate API allows creation, serialization, encoding and verification of root and child

certificates. Important functions are:

mpdc_certificate_root_create(root, pubkey, expiration, issuer): create a root certificate
structure with the given public key, expiration and issuer.

mpdc_certificate_root_encode(enck, root) / mpdc_certificate_root_decode(root, enck):
convert between a root certificate structure and its human-readable string
representation.

mpdc_certificate_child_create(child, pubkey, expiration, issuer, designation): create a
child certificate specifying the device designation (client, MAS, agent or DLA).

mpdc_certificate_child_encode(enck, child) / mpdc_certificate_child_decode(child,
enck): encode or decode child certificates.

mpdc_certificate_child_is_valid(child): verify format and expiration.

mpdc_certificate_message_hash_sign(signature, sigkey, message, msglen) and
mpdc_certificate_child_message_verify(message, msglen, signature, siglen, child): sign
and verify messages using certificate keys.

4 Server lifecycle functions

Each M

PDC role provides start, pause and stop functions. These functions initialize network

resources, load certificates, start command loops and shut down gracefully. Key functions

include

Role

Client

Start Pause Stop Description

mpdc_client_st mpdc_client_pause mpdc_client_stop Initializes sockets, loads

art_server() _server() _server() client certificate, registers
with the network and
begins listening for
connections. Use the
callback



mpdc_client_connect_call
back() to accept or reject
incoming connections.

MAS mpdc_mas_star mpdc_mas_pause_ mpdc_mas_stop_s Loads configuration and
t_server() server() erver() certificates, initializes
secure sockets and starts
the command loop.

Agent mpdc_agent_st mpdc_agent_paus mpdc_agent_stop Handles certificate
art_server() e_server() _server() management, topology
convergence, fragment
queries and master
fragment key exchanges.

DLA mpdc_dla_start mpdc_dla_pause_s mpdc_dla_stop_se Configures network
_server() erver() rver() listening sockets, loads
DLA certificate, initializes
topology database and
command loop.

RDS mpdc_rds_start mpdc_rds_pause_s mpdc_rds_stop_se Manages creation,
_server() erver() rver() storage and signing of
root certificates and
coordinates secure
communications.

5 Example Configuration and Deployment Workflow

The Doxygen documentation provides a typical sequence for initializing an MPDC-I network. Key
steps are summarized below. Note that configuration commands (enable, config, certificate, etc.)
are executed via the console command loop provided by each server.

1. RDS Initialization:
= Log into the RDS console and enter enable mode.
» Configure user credentials, device name, IP address and network name.

» Enter configuration then certificate mode. Generate the root certificate using
generate(days-valid) specifying the validity period.

2. DLA Initialization:



* Log into the DLA console and enter enable mode.
* Provide the path to the root certificate generated by the RDS.
» Enter certificate mode and generate the DLA certificate.

3. Sign the DLA Certificate:

* On the RDS, import the DLA certificate and sign it using the sign(certificate-path)
command. Return the signed certificate to the DLA.

4. Device Initialization (Agent, MAS, Client):

» For each device, generate a keypair and certificate via
mpdc_certificate_child_create(). Have the certificate signed by the RDS or via the
DLA.

= Register with the DLA (register(dla-ip-address)) to join the network and update
the topology.

5. MAS and Agent Integration:

= On the MAS, start the server (mpdc_mas_start_server()), then join the network by
contacting the DLA and obtaining a list of Agents.

» On each Agent, start the server and register with the DLA using register(dla-ip-
address).

6. Client Integration:
= On each client, enable the network service and register with the DLA.

» Exchange certificates and master fragment keys (mfk) with Agents and the MAS.
The mpdc_client_connect_callback() can be used to evaluate incoming
connections.

= To establish a secure session, run connect(mas-ip-address) in server mode. The
MAS will validate the client certificate and complete the key exchange.

After initialization, clients and MAS derive session keys by combining key fragments from all
participating agents and the MAS's own fragment key. Each secure tunnel uses RCS with KMAC
to provide authenticated encryption and includes sequence numbers and timestamps to prevent
replay attacks.

6 Integration Scenarios



Payment Networks

MPDC-I can replace or augment existing payment network security infrastructures. By
distributing key derivation across multiple agents, the protocol reduces reliance on central HSMs
and mitigates breach scope. MAS servers can be deployed at payment processors, clients in
point-of-sale (POS) terminals, and agents in ATM clusters. The DLA maintains the device registry
and certificate revocation list. Each transaction uses new session keys derived from fresh agent
fragments, ensuring forward secrecy and post-quantum protection. Integration steps include:

1. Deploy an RDS within the payment operator’s secure facility and establish DLA servers to
manage POS and ATM certificates.

2. lssue root-signed certificates to MAS (processor), agents (regional HSMs), and clients
(POS/ATM terminals).

3. Use the mpdc_client_start_server() APl in the POS firmware to initialize the MPDC client
and automatically register with the DLA during provisioning.

4. For each payment session, the client requests fresh fragments from agents and the MAS,
combines them and derives session keys; transactions are encrypted using RCS with
KMAC.

Cloud Platforms and SaaS

In cloud environments, MPDC-I provides a sovereignty-preserving trust fabric across
micro-services. MAS servers run in each data-center, while agents may be deployed as separate
service nodes (or container side-cars) generating entropy. Clients can be API gateways or service
consumers. The DLA maintains a registry of services and orchestrates revocations. The low
overhead of MPDC's key exchange (symmetric operations for fragments) allows large scale
adoption without significant CPU impact. Integration involves embedding the MPDC client
library into service frameworks and using MAS as secure ingress points. Certificates and trust
structures can be stored in secrets managers, with rotation handled via the command loop.

SCADA / Industrial Control

MPDC-I is well suited for critical infrastructure because it distributes trust and does not rely on
always-online certificate authorities. Agents can be placed at substations or control units to
inject locally generated randomness. MAS servers coordinate control commands and
monitoring. Clients reside on operator consoles or remote sensors. In this context, the RDS may
be air-gapped and DLA updates are pushed during maintenance windows. The
mpdc_agent_start_server() and mpdc_agent_stop_server() APIs allow operators to register or



decommission agents safely. Sequence numbers and timestamps in each RCS-encrypted packet
prevent replay and ensure command integrity.

loT Networks

For loT devices requiring long-term security and minimal overhead, MPDC-I can be combined
with lightweight QSMP or SKDP transport. The client module can be compiled with MISRA C to
run on embedded controllers. Agents may be small hubs or gateways providing additional
entropy. MAS servers run in central aggregators or cloud services. Because MPDC uses
symmetric cryptography for most operations, low-power devices can participate in multi-party
key exchange. Device provisioning includes generating a child certificate via
mpdc_certificate_child_create() and registering with the DLA; subsequent communication uses
the same session derivation as other domains.

7 Security and Best Practices

o Distributed entropy: Always deploy multiple agents; each session key should derive from
at least one MAS fragment and multiple agent fragments to ensure no single
compromise exposes the key.

o Certificate management: Keep the RDS offline except during certificate signing
operations. Use mpdc_certificate_expiration_set_days() or
mpdc_certificate_expiration_set_seconds() to set appropriate validity periods. Regularly
rotate child certificates and update the DLA topology.

e Portisolation: Use default port assignments defined in mpdc.h or configure custom
ports behind firewalls. Ensure each server only listens on its designated port to avoid
cross-role confusion.

e Command loop security: The MPDC command loop supports different modes
(user/config/certificate). Restrict access to the enable and certificate modes to privileged
administrators. Use console idleness timeouts to log out inactive sessions.

e Trust record management: Use mpdc_trust_serialize() and mpdc_trust_deserialize() to
back up and restore trust databases. Clear outdated entries with mpdc_trust_clear().

e Hybrid cryptography: MPDC-I uses Kyber for KEM and Dilithium for signatures by
default via macros in mpdc.h. Monitor NIST PQC standard updates and update algorithm
sets as needed. The certificate APl (mpdc_certificate_algorithm_decode() / encode())
allows switching to alternative parameter sets.



e Replay prevention: Ensure that sequence numbers and timestamps included in each RCS
packet are validated and that out-of-order or duplicate packets are rejected.

8 Conclusion

MPDC-I provides a resilient, scalable and quantum-secure alternative to traditional client-server
key exchange. By distributing trust across multiple independently managed devices and
combining asymmetric KEMs, hash-based signatures and symmetric ciphers, it resists quantum
and classical adversaries. The well-structured API; ranging from certificate creation
(mpdc_certificate_*), network registration (mpdc_dla_*), server life-cycle management
(mpdc_*_start_server() etc.) and console help (mpdc_help_print_*), allows implementers to
integrate MPDC-| into payment systems, cloud services, SCADA networks and loT devices with
relative ease. Following the configuration workflow and adhering to best practices ensures
successful deployment and long-term security for sovereign infrastructures.



