MPDC-2024 Rev. 1b

Multi Party Domain Cryptosystem - Interior — MPDC-I
Revision 1b, October 26, 2024

John G. Underhill — john.underhill@protonmail.com
This document is an engineering level description of the MDPC authenticated network domain

crypto-system. This document describes the interior network protocol MPDC-I, a multi-party
cryptographic key exchange and network security system.

Contents Page
Foreword 2
1: Introduction 2
2: Scope 4
3: References 5
4: Terms and Definitions 7
5: Protocol Description 10
6: Mathematical Description 25
7: Security Analysis 50
8: Application Scenarios 56
9: MPDC Cryptanalysis 59
10: Internal Functions 65

MPDC-2024 Rev. 1b

Foreword

This document is intended as the preliminary draft of a new standards proposal, and as a basis
from which that standard can be implemented. We intend that this serves as an explanation of
this new technology, and as a complete description of the protocol.

This document is the first revision of the specification of MPDC-I, further revisions may become
necessary during the pursuit of a standard model, and revision numbers shall be incremented
with changes to the specification. The reader is asked to consider only the most recent revision of
this draft, as the authoritative expression of the MPDC-I specification.

The inventor and author of this specification is John G. Underhill, and can be reached at
john.underhill@protonmail.com

MPDC-I, the algorithm constituting the MPDC-I domain crypto-system is patent pending, and is
owned by John G. Underhill and the QRCS Corporation.

1. Introduction

MPDC-I is a multi-party key exchange and network security system. It distributes the security of
a key exchange between a server and a client across multiple devices. Network ‘agents’
contribute a portion of pseudo-random material to client-server session keys.

On an interior network, servers and clients exchange a shared secret with each agent on the
network using an authenticated asymmetric key exchange. The secret is kept for the lifetime of
the devices certificate, and used to generate a unique key-stream to encrypt a small amount of
pseudo-random data. This data is called a ‘key fragment’. Fragments are combined and hashed to
form the primary session keys used between the server and the client to initialize an encrypted
tunnel. In this way, agents on the network that have been authenticated to both the server and
client, can inject entropy into a key exchange through multiple independent cryptographic
processes.

There can be any number of agents on a network, and each one has a certificate signed by the
root domain server. Any attack that utilizes impersonation or ‘man-in-the-middle’ strategies,
would need to simultaneously impersonate multiple network devices. The number of agent
servers that contribute entropy to a client-server key exchange is unlimited, the generation of a
key fragment and fragment encryption use computationally ‘cheap’ symmetric cryptography, and
can scale so that even the most sophisticated impersonation attacks are practically impossible.
Unlike other multi-party key exchange schemes being considered, which use expensive classical
asymmetric cryptographic schemes, MPDC-I explores an asymmetric/symmetric post-quantum
secure cryptographic hybrid, that can provide the security, as well as the scalability and
computational economy necessary if a system of this kind is to be considered for wide-scale
adoption.

Problem Description:
In modern cryptographic systems, the security of key exchanges is increasingly threatened by

advanced classical and emerging quantum attack vectors, many of which exploit weaknesses in
randomness generation. Multi-party key exchange protocols that incorporate multiple

MPDC-2024 Rev. 1b

independent sources of entropy provide a robust defense against these threats. By leveraging
contributions from diverse entropy providers, such as hardware RNGs, network entropy beacons,
and distributed nodes, the protocol ensures high-quality, unbiased randomness. This approach
mitigates risks associated with single-point entropy failures, state recovery attacks, and entropy
manipulation, significantly enhancing the unpredictability of the shared key.

Such enhanced key exchanges are crucial for post-quantum security, as quantum adversaries can
exploit weak or deterministic entropy with powerful algorithms like Grover’s and Shor’s. By
distributing the entropy contributions, the attack surface is widened, making it infeasible for a
quantum attacker to compromise the entire pool of randomness. Furthermore, the inclusion of
multiple entropy sources provides resilience against side-channel attacks, precomputation
attacks, impersonation attacks, and replay attempts, making the scheme well-suited for secure
communications in critical infrastructure, federated applications, and next-generation
decentralized systems. As the threat landscape evolves, integrating multiple dedicated sources of
entropy into key exchange protocols will be vital for ensuring long-term, quantum-resistant
security.

Design Requirements:

The distributed security system is computationally economical, with functions in the primary key
exchange and tunnel being performed solely by symmetric cryptography.

That asymmetric functions be constrained to network control messaging, and device registration
and 1nitialization.

Certificates are used as a means to authenticate devices and the messages they produce during
device initialization and network operations. Each device generates its own asymmetric signature
key-pair, and retains the secret signing key. Each device uses the signature verification key to
create a certificate which must be signed by the root security server, the trust anchor for the
domain.

The network must be scalable, expensive asymmetric operations must be constrained to
registration and key exchange with participating devices, after which operations become
administrative, and devices use the minimal network and hardware resources to function.

The system must be designed to be a form of authenticated key distribution with no tolerance for
failure. Any failure in the exchange between nodes in the scheme, whether it be authentication or
the distribution of keys, packet values, or symmetric or asymmetric authentication failure, causes
the failure of the exchange, and the collapse of the circuit.

1.1 Purpose

MPDC-I provides a distributed security provisioning across multiple autonomous devices.

The MPDC-I crypto-system, has been designed in such a way that:

1) The keying material used in the exchange is distributed across multiple autonomous
devices, strongly mitigating the threat of MITM attacks.

2) Uses an advanced authentication system, across multiple core devices, and a hierarchal
certificate scheme for authentication.

MPDC-2024 Rev. 1b

3) That the model must be scalable, computationally efficient, and provide strong security
guarantees against a wide range of classical and quantum attacks.

2. Scope

This document describes the MPDC-I (Multi Party Domain Crypto-system - Interior Network)
protocol, which is used to establish an encrypted and authenticated duplexed communications
stream between a server and a host. The protocol is described in this document, and references to
the example C implementation are available, including specific settings and software
components necessary to its design.

The MPDC-I protocol is part of the MPDC protocol set; the interior protocol manages security at
a domain level, whereas the MPDC-E protocol is the exterior protocol, that connects MPDC
networks, authenticates internal and external certificates using a distributed trust model, and
facilitates ‘key injection’ across trusted domains. The MPDC-E protocol is being developed, and
will appear as a future publication with a separate protocol definition.

2.1 Application

The MPDC-I protocol is intended for institutions that implement secure communication streams
used to encrypt and authenticate secret information exchanged between a server and a host.

The network design, key exchange functions, authentication and encryption of messages, and
control message exchanges between devices defined in this document must be considered as
mandatory elements in the construction of an MPDC-I network. Components that are not
necessarily mandatory, but are the recommended settings or usage of the protocol will be
denoted by the key-words SHOULD. In circumstances where strict conformance to
implementation procedures is required but not necessarily obvious, the key-word SHALL will
be used to indicate compulsory compliance is required to conform to the specification, likewise
warnings indicating changes to the specification that are prohibited will be notated with SHALL
NOT.

MPDC-2024 Rev. 1b

3. References

3.1 Normative References

3.1.1 FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable Output
Functions: This standard specifies the SHA-3 family of hash functions, including SHAKE
extendable-output functions. https://doi.org/10.6028/NIST.FIPS.202

3.1.2 FIPS 203: Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM): This
standard specifies ML-KEM, a key encapsulation mechanism designed to be secure against
quantum computer attacks. https://doi.org/10.6028/NIST.FIPS.203

3.1.3 FIPS 204: Module-Lattice-Based Digital Signature Standard (ML-DSA): This standard
specifies ML-DSA, a set of algorithms for generating and verifying digital signatures, believed

to be secure even against adversaries with quantum computing capabilities.
https://doi.org/10.6028/NIST.FIPS.204

3.1.4 NIST SP 800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and
ParallelHash: This publication specifies four SHA-3-derived functions: cSHAKE, KMAC,
TupleHash, and ParallelHash. https://doi.org/10.6028/NIST.SP.800-185

3.1.5 NIST SP 800-90A Rev. 1: Recommendation for Random Number Generation Using
Deterministic Random Bit Generators: This publication provides recommendations for the

generation of random numbers using deterministic random bit generators.
https://doi.0org/10.6028/NIST.SP.800-90Ar]

3.1.6 NIST SP 800-108: Recommendation for Key Derivation Using Pseudorandom
Functions: This publication offers recommendations for key derivation using pseudorandom
functions. https://doi.org/10.6028/NIST.SP.800-108

3.1.7 FIPS 197: The Advanced Encryption Standard (AES): This standard specifies the
Advanced Encryption Standard (AES), a symmetric block cipher used widely across the globe.

https://doi.org/10.6028/NIST.FIPS.197

3.2 Multi Party Cryptographic References

3.2.1 Threshold Cryptography by Yvo Desmedt (1994)
Introduces threshold cryptography for secure, distributed cryptographic operations.
https://onlinelibrary.wiley.com/doi/10.1002/ett.4460050407

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-108
https://doi.org/10.6028/NIST.FIPS.197
https://onlinelibrary.wiley.com/doi/10.1002/ett.4460050407

MPDC-2024 Rev. 1b

3.2.2 Secure Computation with Minimal Interaction by Gilad Asharov, Yehuda Lindell,
Thomas Schneider, and Michael Zohner (2012)

Proposes protocols for secure two-party computation with minimal interaction.
https://eprint.iacr.org/2013/552.pdf

3.2.3 Efficient Secure Two-Party Computation Using Symmetric Cut-and-Choose by
Wenliang Du and Mikhail Atallah (2001)
Presents an efficient protocol for secure two-party computation using cut-and-choose.

3.2.4 SPDZ: An Efficient MPC Protocol for Dishonest Majority by Ivan Damgard, Valerio
Pastro, Nigel Smart, and Sarah Zakarias (2012)

Describes the SPDZ protocol for efficient multi-party computation with dishonest majority.
https://eprint.iacr.org/2011/535.pdf

3.2.5 Overdrive: Making SPDZ Great Again by Marcel Keller, Emmanuela Orsini, and
Peter Scholl (2018)

Presents optimizations to SPDZ for improved efficiency and practicality.
https://eprint.iacr.org/2017/1230.pdf

3.3 Standards and Initiatives

3.3.1 NISTIR 8214A: Towards NIST Standards for Threshold Schemes for Cryptographic
Primitives: A Preliminary Roadmap

Provides a roadmap towards NIST standards for threshold cryptography schemes.
https://csrc.nist.gov/publications/detail/nistir/82 14a/final

3.3.2 ISO/IEC 11770-5:2011: Information technology, Security techniques, and Key
management, Part S: Group key management

Defines procedures for key management in secure group communications.
https://www.iso.org/standard/54527.html

3.3.3 IETF RFC 9380: The Messaging Layer Security (MLS) Protocol
Specifies the MLS protocol for secure and scalable group communication.
https://datatracker.ietf.org/doc/rfc9380/

3.3.4 IEEE P1363.3: Standard for Identity-Based Cryptographic Techniques using Pairings
Defines identity-based cryptographic techniques leveraging pairings.
https://standards.ieee.org/standard/1363 _3-2013.html

3.3.5 ISO/IEC 15946 Series: Cryptographic Techniques Based on Elliptic Curves
Specifies cryptographic techniques based on elliptic curve algorithms.
https://www.iso.org/standard/56026.html

https://eprint.iacr.org/2013/552.pdf
https://eprint.iacr.org/2011/535.pdf
https://eprint.iacr.org/2017/1230.pdf
https://csrc.nist.gov/publications/detail/nistir/8214a/final
https://www.iso.org/standard/54527.html
https://datatracker.ietf.org/doc/rfc9380/
https://standards.ieee.org/standard/1363_3-2013.html
https://www.iso.org/standard/56026.html

MPDC-2024 Rev. 1b

4. Terms and Definitions

4.1 Cryptographic Primitives
4.1.1 Kyber

The Kyber asymmetric cipher and NIST Post Quantum Competition winner.

4.1.2 McEliece
The McEliece asymmetric cipher and NIST Round 3 Post Quantum Competition candidate.

4.1.3 Dilithium

The Dilithium asymmetric signature scheme and NIST Post Quantum Competition winner.

4.1.5 SPHINCS+

The SPHINCS+ asymmetric signature scheme and NIST Post Quantum Competition winner.

4.1.6 RCS

The wide-block Rijndael hybrid authenticated symmetric stream cipher.

4.1.7 SHA-3

The SHA3 hash function NIST standard, as defined in the NIST standards document FIPS-202;
SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

4.1.8 SHAKE

The NIST standard Extended Output Function (XOF) defined in the SHA-3 standard publication
FIPS-202; SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

4.1.9 KMAC

The SHA3 derived Message Authentication Code generator (MAC) function defined in NIST
special publication SP800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and
ParallelHash.

4.2 Network References

4.2.1 Bandwidth

The maximum rate of data transfer across a given path, measured in bits per second (bps).

4.2.2 Byte
Eight bits of data, represented as an unsigned integer ranged 0-255.

4.2.3 Certificate

MPDC-2024 Rev. 1b

A digital certificate, a structure that contains a signature verification key, expiration time, and
serial number and other identifying information. A certificate is used to verify the authenticity of
a message signed with an asymmetric signature scheme.

4.2.4 Domain

A virtual grouping of devices under the same authoritative control that shares resources between
members. Domains are not constrained to an IP subnet or physical location but are a virtual
group of devices, with server resources typically under the control of a network administrator,
and clients accessing those resources from different networks or locations.

4.2.5 Duplex

The ability of a communication system to transmit and receive data; half-duplex allows one
direction at a time, while full-duplex allows simultaneous two-way communication.

4.2.6 Gateway: A network point that acts as an entrance to another network, often connecting a
local network to the internet.

4.2.7 IP Address

A unique numerical label assigned to each device connected to a network that uses the Internet
Protocol for communication.

4.2.8 IPv4 (Internet Protocol version 4): The fourth version of the Internet Protocol, using 32-
bit addresses to identify devices on a network.

4.2.9 IPv6 (Internet Protocol version 6): The most recent version of the Internet Protocol,
using 128-bit addresses to overcome IPv4 address exhaustion.

4.2.10 LAN (Local Area Network)
A network that connects computers within a limited area such as a residence, school, or office
building.

4.2.11 Latency
The time it takes for a data packet to move from source to destination, affecting the speed and
performance of a network.

4.2.12 Network Topology
The arrangement of different elements (links, nodes) of a computer network, including physical
and logical aspects.

4.2.13 Packet
A unit of data transmitted over a network, containing both control information and user data.

4.2.14 Protocol
A set of rules governing the exchange or transmission of data between devices.

MPDC-2024 Rev. 1b

4.2.15 TCP/IP (Transmission Control Protocol/Internet Protocol)
A suite of communication protocols used to interconnect network devices on the internet.

4.2.16 Throughput: The actual rate at which data is successfully transferred over a
communication channel.

4.2.17 UDP (User Datagram Protocol)
A communication protocol that offers a limited amount of service when messages are exchanged
between computers in a network that uses the Internet Protocol.

4.2.18 VLAN (Virtual Local Area Network)
A logical grouping of network devices that appear to be on the same LAN regardless of their
physical location.

4.2.19 VPN (Virtual Private Network)
Creates a secure network connection over a public network such as the internet.

MPDC-2024 Rev. 1b

5. Protocol Description

The Multi-Party Domain Cryptosystem — Interior Protocol (MPDC-I) is a cryptographic protocol
designed to facilitate secure communication between entities in a domain. It leverages a
combination of public-key cryptography, symmetric cryptography, and certificate management
to establish an encrypted tunnel between participating devices. MPDC-I is engineered with both
classical and quantum-resistant security in mind, utilizing robust cryptographic primitives to
ensure confidentiality, integrity, and authentication of an encrypted communications stream.

5.1 Objectives

The primary objectives of MPDC-I are:

1.

Establish Secure Communication Channels: Use public-key cryptography, certificate
management, and entropy injection to create secure communications channels between
participating devices.

Ensure Forward Secrecy and Post-Quantum Resistance: Provide security against both
classical and quantum attacks in key exchange operations.

Flexibility and Scalability: Adapt to various network environments, including IoT,
enterprise, and critical infrastructure.

Prevent Common Cryptographic Attacks: Defend against man-in-the-middle (MITM),
replay, and key compromise attacks while ensuring integrity and authenticity.

Provide a scalable and efficient MPC scheme: Create an Multi Party Cryptographic
scheme that is highly scalable, relatively lightweight, and computationally efficient.

5.2 Key Components and Their Roles

MPDC operates with five key devices:

1. Client: Initiates communication and key exchanges with the MPDC enabled Application
Server.

2. MAS (MPDC Application Server): Acts as the server managing communications with
Clients. The MAS is an application server on the local network, this can be a file server,
database server, or any other type of network resource used by Clients that requires a
secure connection.

3. Agent: A trusted network device that injects entropy into the key exchange process.

4. DLA (Domain List Agent): The network authority managing device registration and
certificate validation.

5. RDS (Root Domain Security): The root authority responsible for signing and managing
device certificates.

5.2.1 Client

Role: An end-user network device that initiates secure communication with the MAS.

Functions:

10

MPDC-2024 Rev. 1b

= QGenerates a certificate and stores the secret signing key.

= The certificate is signed by the RDS, directly or by proxy through the DLA.

= Exchanges master fragment keys (mfk) with Agents and MAS servers, to facilitate
fragment key encryption.

= Combines key fragments provided by the Agents along with the MAS fragment key,
which are used to derive a set of secure session keys.

= Encrypts and decrypts messages using the session keys in a duplexed encrypted and
authenticated tunnel.

5.2.2 MAS (Application Server)
Role: Central server managing secure communications with Clients.
Functions:

o Generates a certificate and stores the secret signing key.

e The certificate is signed by the RDS, directly or by proxy through the DLA.

o Validates Client certificates using the RDS root certificate.

o Communicates with the Agents to obtain key fragments.

o Derives the session key to securely interact with the Client.

e Encrypts and decrypts messages using the session keys in a duplexed encrypted and
authenticated tunnel.

5.2.3 Agent
Role: Provides additional entropy to the key exchange process.
Functions:
o Generates a certificate and stores the secret signing key.
o The certificate is signed by the RDS, directly or by proxy through the DLA.
o Generates key fragments (entropy) for session key generation.
e Securely transmits key fragments to both the MAS and Client.
o Enhances the randomness and security of the session key.
5.2.4 DLA (Domain List Agent)
Role: Manages device registration and certificate validation.
Functions:
e Generates a certificate and stores the secret signing key.
o The certificate is signed by the RDS.
o Validates device certificates against the RDS certificate.

e Maintains a master list of trusted devices (network topology).
o Distributes certificates and updates to devices.

11

MPDC-2024 Rev. 1b

e Manages device certificate revocation and resignation.
o Handles topological queries from network devices.

5.2.5 RDS (Root Domain Security Server)
Role: Acts as the certificate authority for the network.
Functions:

e Generates and manages the root certificate (trust anchor).

o Signs device certificates to verify identity and authenticity.
e Can connect to the DLA enabling a certificate signing proxy function.

5.3 Network Initialization
5.3.1 Root Server Initialization
Root Certificate Generation:
e The RDS generates its signature key-pair (public/private keys).
e Creates a public root certificate containing its signature verification key, serial number,
issuer, configuration set, version, and expiration period.
o Securely stores the private key used for signing.
5.3.2 DLA Initialization
Certificate Generation:
o The DLA generates its signature key-pair.
o Creates a public certificate and stores the secret signing key.
o The RDS signs the DLA's certificate, establishing it as a trusted entity.
Network Management:
o The DLA begins managing device registrations and maintaining the network topology.
5.3.3 Device Initialization (Agent, Client, MAS)
Certificate Generation and Signing:
o Each device generates its own signature key-pair and certificate.
o Certificates are signed by the RDS directly or by proxy via the DLA.

o The RDS signs each device's certificate, establishing trust.

Registration with DLA:

12

MPDC-2024 Rev. 1b

Devices register with the DLA, which validates their certificates.

Devices are added to the network topology maintained by the DLA.

Devices build partial copies of the topology, with knowledge of only the devices with
which they interact.

5.3.4 MAS and Agent Integration

MAS Integration:

The MAS contacts the DLA to join the network.

Receives a list of available Agents from the DLA.

Establishes secure channels with each Agent through an asymmetric key exchange that
exchanges master fragment keys.

Agent Integration:

Agents exchange master fragment keys with Clients and MAS devices using an
asymmetric key exchange.

Agents establish secure communication with the MAS and Clients, using the mfk keys to
encrypt key fragments.

5.3.5 Client Integration

Client Integration:

The Client joins the network by registering with the DLA.
Receives a list of available Agent and MAS servers.
Exchanges certificates with Agent and MAS servers.
Exchanges mfk keys with Agents and MAS servers.

5.4 Network Initialization

MPDC network devices are initialized in a sequence:

1.

Nk

RDS — Trust anchor

DLA — Network management
Agents — Entropy provider
MAS — Application server
Clients — End user device

The root security server (RDS) signs the certificate of each device, either directly or once the
DLA is initialized, through the DLA proxy signing feature.

Each device generates its own asymmetric signature verification/signing keypair. The public
signature verification key is a member of the certificate that each device generates
independently. Certificates and signing keys are the sole responsibility of the device itself, and
only the originating device has knowledge of the secret signing key.

13

MPDC-2024 Rev. 1b

The master fragment encryption keys mfk, shared between the devices, is used to derive fragment
encryption keys (efk), ephemeral keys which encrypt key fragments exchanged between devices.
When the certificate expiration time is exceeded, the mfk becomes invalid and a new certificate
and master fragment key must be exchanged.

The maximum expiration time set in a certificate must not exceed the root certificate expiration
time.

When a certificate is signed by the root, the certificate is hashed, and the hash is signed by the
root signing key. The root signed hash is added to the child certificate, as well as the root
certificate serial number, and if the user defined expiration time exceeds that of the root, the
expiration time is set to the root’s expiration time. No device certificate can have an expiration
time that exceeds the root certificate’s expiration time. Once the root certificate has expired,
devices on the network must renew their certificates, and rejoin the network.

Each exchange in MPDC, whether it is a network message, part of the key exchange, or traffic
on the encrypted tunnel, all of these functions use a packet valid-time feature. This adds the UTC
time in seconds to the packet header at the point of packet creation. If the time in the packet
valid-time parameter received by the remote host exceeds the packet valid-time field by the
packet time threshold (60 seconds by default), the message is deemed invalid and the circuit is
torn down.

The packet creation timestamp and packet sequence number are added to the signature hash on
network messages, where the packet message is hashed along with the valid-time timestamp and
the packet sequence number, then signed by the devices asymmetric signing key.

During the tunnelling phase, the sequence number and packet creation time (s¢) are added to the
additional data function of the symmetric cipher MAC used to encrypt and authenticate
messages in the encrypted tunnel (the AEAD authenticated stream cipher RCS). In this way,
message replay attacks are strongly mitigated, and all MPDC messaging is protected from attack
schemes that use packet header tampering, message alteration, or re-transmission of packet data.

5.4.1 Root certificate creation

The Root Domain Security server generates a signature key-pair.

Generate
Signature Siora— Signing Key
Key-Pair

A J

The signature verification key is

Verification Key added to the root public certificate.

| Serial # |

Y | Issuer |
Root ——

Certificate | Expiration |

| Configuration |

| Version |

14

MPDC-2024 Rev. 1b

Figure 5.4.1 Root certificate generation.

The RDS generates a signature key-pair, stores the secret signing key, and adds the public
signature verification key to the root certificate. The root certificate is made up of the following
fields:

o The signature verification key, used to verify a root signature.

o The issuer string, identifies the certificate identity and formal name.

e The serial number, a unique 128-bit string used to identify the certificate.

o The expiration time, the valid to0 and from times, the time period during which the
certificate is valid.

e The configuration set name, identifies the cryptographic primitives used by the key
exchange from a set.

e The version number, the MPDC protocol version number.

The serial number and issuer fields identify the certificate and the originating device.

The expiration time is the starting time and expiration time of the certificate in UTC seconds
from the epoch. All certificates signed by the root, expire when the root expires.

The algorithm set name identifies which cryptographic set is used in the implementation, this can
be the combination of asymmetric cipher and signature scheme families; Kyber-Dilithium,
McEliece-Dilithium, and McEliece-SPHINCS+, further subdivided by the parameter sets used by
each cipher and signature scheme.

The version number ensures that local and remote versions are synchronized.

The RDS root certificate is distributed to every device on the network and installed during device
initialization, cached by those devices and used to authenticate certificates signed by the root
domain security server.

5.4.2 DLA Initialization

15

MPDC-2024 Rev. 1b

The Domain List Agent server generates a signature key-pair.

Generate
Signature Store—| Signing Key
Key-Pair

h 4

Verification Key

The signature verification key is added to the DLA public certificate.
The cerfificate is signed by the RDS and installed on the DLA.

Y

DLA DLA
Ceriificate Ceriificate
{unsigned) (signed)

Transport Transport
) Root
RDS Sign Signs Certificate

Figure 5.4.2a DLA certificate initialization

The DLA and all other child certificates have two additional parameters to the root certificate,
the signature parameter which holds a copy of the RDS signed hash of the child certificate, and
the root certificate serial number parameter.

Child certificate parameters:

o The certificate signature, generated by hashing the certificate, and signing the hash with
the RDS signature key.

o The root serial number of the RDS server that signed this certificate.

o The signature verification key, used to verify a message signed by the corresponding
signing key.

o The issuer string, identifies the certificate’s origin identity and formal readable network
name.

e The serial number, a unique 128-bit string used to identify the certificate.

o The expiration time, the valid to and from times, the time period during which the
certificate is valid.

o The configuration set name, identifies the cryptographic primitives used by the key
exchange from a set.

e The version number, the MPDC protocol version number.

Once the DLA certificate has been signed by the RDS server, the DLA server can be brought
online and is ready to handle registration requests and other administrative duties.

16

MPDC-2024 Rev. 1b

An MPDC network device sends the DLA a certificate to sign.
X{cert||st|| S (H (cert || st))} — D.

DLA

[—Request—
MFDC Device

Response—»

R 1
maues Response

RDS

The RDS signs the ceriificaie and sends it back to the DLA.
D{cert?||st||Sx(H (cert? || st))} =+ X

¥

Sign Certificate

Figure 5.4.2b DLA proxy signing

The DLA certificate can be loaded onto the RDS to enable the proxy signing feature.

The RDS server is deliberately isolated, it has only one message capability, and this is to
remotely sign a certificate as requested only by the DLA server. The DLA can act as a proxy for
the signing of device certificates, allowing the isolation of the root server from other network
devices. The RDS stores the DLA certificate, and can only accept signing requests that have
been issued and signed by the DLA.

5.4.3 Agent Initialization

17

MPDC-2024 Rev. 1b

Agent 1) The Agent sends a signed network registration request to the DLA.
g Afcert||st||Su(H(cert || st))}
Request ResInnse
DLA 2) The DLA verifies the signed message, and stores the device cerificate.
Vigus (o(H (cert || st))) = H(cert || st)
Verify

3) The node information is added to the DLA topology.

Signature Verify n = (i,s,ea,h),TU{n}

Register

4) The DLA sends back its own signed certificate and timestamp in the response.

Topology D{cert||st]| Su(H(cert || st))} — A

Figure 5.4.3 Agent network registration.

The Agent sends the DLA a registration request. The DLA verifies the signature field of the
Agent certificate using the RDS public certificate. A hash of the certificate is compared to the
signature hash to validate the certificate.

The registration request message has been signed by the Agent signing key, the message is
authenticated, a message hash is generated and compared to the signature hash.

If the Agent certificate and the message have been validated, the certificate is stored, and the
certificate is used to populate a topological node structure, which is added to the DLA
topological database.

5.4.4 MAS Initialization

18

MPDC-2024 Rev. 1b

1) The MAS sends a signed network 5) The DLA sends back its own certificate
registration request to the DLA. and the update list in the response.
[——Request—M
MAS DLA
l—Response——

2) The DLA verifies the signed message, Verify

and adds the MAS to the topology.

Signature Verify

3) The certificate is stored and the Update 4) Create an update list
node information is added to the of Agents on the network
DLA topology
Topology

Figure 5.4.4a MAS network registration.

The MAS sends the DLA a registration request. The DLA verifies the signature field of the
Agent certificate using the RDS public certificate. A hash of the certificate is compared to the
signature hash to validate the certificate.

The registration request message has been signed by the MAS signing key, the message is
authenticated, a message hash is generated and compared to the signature hash.

If the MAS certificate and the message have been validated, and the timestamp and sequence
number are correct, the certificate is stored, and the certificate is used to populate a topological
node structure, which is added to the DLA topological database.

The DLA assembles an update list for the MAS. The list contains the node information for every
Agent on the network. The topological node contains all of the information that the MAS
requires to contact and verify the Agent; IP address, the certificate serial number, issuer name,
certificate expiration time, and the certificate hash. When the MAS contacts these devices and
receives their certificates, the certificate hash value in the topological node is compared to a hash
of the certificate. The serial number, issuer name, expiration time, and [P address must all match
the values in the topological node received from the DLA.

19

MPDC-2024 Rev. 1b

The MAS sends an update request to each agent in the update
list, containing the Agents serial number and a timestamp.
M{rser || st} —+ A

MAS

Response F‘:h

Request Response

Request

Response

Agent 1 Agent 2 Agent 3

The Agenis respond with their cerfificates, and a signed hash of the message.
Afcert||st||Sou(Hcert || st))} —+ M

Figure 5.4.4b MAS agent update.

The MAS contacts each of the Agents in the DLA update list, and exchanges certificates. The
certificates signatures are verified, and the certificate is hashed and compared to the signature
hash. The verified certificates are stored on the MAS, and topological node entries for each
Agent are added to the MAS topological database.

20

MPDC-2024 Rev. 1b

The MAS sends the Agent its cerfificate serial number, and the signed hash of the serial
number and timestamp.

MAS ——{ ser||st|| S (H(ser |

Sﬂ]}—b Agent

The Agent authenticates the message signature, generates a hash of the message and
validates the message. The Agent generates an asymmefric cipher key pair, hashes the
public key and the timestamp, signs the message, and sends the message back to the MAS.

MAS «—{pubk||st|| S (H (pubk || st)) }— Agent

The MAS creates a shared secret mfl, encapsulates it using the public cipher key, hashes
the ciphertext and timestamp. and sends the message to the Agent.

MAS ——{cpt||st||Su(H(ept || st))}—> Agent

The Agent authenticates the message signature, generates a hash of the message and
validates the message. The Agent decapsulates the shared secret, and if the key exchange
succeeds, sends a key synchronized message to the MAS.

MAS «— {m||st||Sa(H(m || 5t))} —— Agent

Figure 5.4.4c MAS to agent mftk exchange.

The MAS then sends each Agent a signed mfk key exchange request. The Agent generates an
asymmetric cipher key-pair and timestamp, signs the public key and timestamp, and sends it to
the MAS.

The MAS verifies the signed key and timestamp and encapsulates a shared secret, hashes the
ciphertext and signs the hash. The signed ciphertext is sent back to the Agent, which verifies the
signed hash, and decapsulates the shared secret.

The shared secret mfk key, 1s associated with the device certificate serial number of the relative
remote device in an internal list, and stored on the Agent and MAS.

5.4.5 Client Initialization

21

MPDC-2024 Rev. 1b

The Client exchanges certificates and performs an mfk exchange
with Agents and MAS servers.

Agent 1
Exchange
Client Exchange— Agent 2
Exchange Exchange
MAS Agent 3

Figure 5.4.5 Client to MAS and Agent certificate and mfk exchange.

The Client registration undergoes an identical exchange of certificates and mfk keys with each
Agent. The update list the DLA prepares for a Client also contains a list of MAS servers. The
Client contacts each MAS server in the update list and exchanges certificates and master
fragment keys.

Once the Clients have been initialized, the network is considered synchronized, and ready for
encrypted tunnel connections between Clients and MPDC application servers.

5.5 Key Exchange and Encrypted Tunnel

The Client initiates a key exchange with an MPDC application server (MAS). The MAS server
and the Client have previously exchanged master fragment keys, which are used to derive
fragment encryption key (efk) used to encrypt pseudo-random fragments keys.

5.5.1 Fragment Collection Request

22

MPDC-2024 Rev. 1b

The Client sends a fragment collection request to the MAS.

Client MAS

Y

mefk = KDF(mfk||t||chash || mhash)

C{ser||t||Mpesi(ser || £)} =+ M
Figure 5.5.1 Client to MAS connection request.

The Client creates a fragment collection request, the Client-to-MAS mfk key, a random token,
and the Client and MAS certificate hashes are used to key a KDF (¢cSHAKE), and create a MAC
key. The serial number and token are added to the message, and a MAC code is created by
hashing the message and key.

5.5.2 MAS Fragment Request

The MAS connects to each Agent, requesting a fragment key.
M st||serm||tm||serc||te} — 4

Agent 1
MAS
A
Agent 2
Client
Agent 3

The Agent creates the fragment, copies it, and encrypis one copy using
the MAS-to-Agent key, the other copy using the Client-to-Agent key.

Figure 5.5.2 Agent to MAS agent response.

The MAS connects to each Agent in the topology, and requests a fragment key.

The Agents respond with a fragment key pairing, one copy encrypted with a fragment encryption
key (efk) derived using the mfk shared between the MAS-to-Agent, the other copy encrypted
with an efk key derived using the Client-to-Agent mfk.

5.5.3 MAS Key Generation

23

MPDC-2024 Rev. 1b

k1, ka,n1, g = KDF(fm || fai, fag, ..., fan)

MAS

5= {E_f‘ﬂl ” Efﬂ-hélfd-g, .“.,Qfﬂ-;—,:}

h 4

Client

Figure 5.5.3 MAS to Client fragment transfer.

The MAS server decrypts its copy of the fragment received from each Agent, and generates a
MAS-to-Client fragment key. The MAS encrypts the MAS-to-Client fragment using a fragment
encryption key (efk) derived from the shared Client-to-MAS mfk, and bundles this key with the
Agent fragment keys that were encrypted using Client-to-Agent efk derived from the mfk keys
corresponding to each of the Agent responders.

The MAS sends the Client the encrypted fragment key set.

The MAS combines the fragments as input to a key derivation function (¢cSHAKE), and
generates the MAS-to-Client session keys. The symmetric cipher (RCS) receive and transmit
cipher instances are initialized, the tunnel is raised and ready to transmit data.

5.5.4 Tunnel Establishment

MAS k1,n1, k3, ng = KDF(fm || fay, fag, ..., fan)
TE[kI,HLLR El:kz,ﬂ-j}

2-way tunnel

k1,n0, ka3, ny = KDF(fm || foq, faz, ..., fon)

Client Te(kz,n), B glk1,n1)

Figure 5.5.4 MAS to Client tunnel establishment.

The Client receives the encrypted fragment key bundle from the MAS. The Client derives the efk
keys and decrypts the Agent key fragments, and derives the Client-to-MAS efk and decrypts the
Client-to-MAS key fragment. The fragments are added to the KDF (¢cSHAKE) which generates
the session keys for the transmit and receive channels of the encrypted tunnel. The symmetric
cipher (RCS) instances are initialized, and the tunnel interfaces are raised and ready to transmit
data.

24

MPDC-2024 Rev. 1b

6. Mathematical Description

MPDC uses various messages between devices to accomplish network tasks.

The DLA handles network control messaging, including certificate revocation, network
convergence, certificate announcements, topological queries, registration and resignation
messages.

Messages are also passed between Agents, MAS servers, and Clients, such as certificate updates,
master fragment key exchanges, and fragment collection.

All messages are signed using the senders secret asymmetric signing key, and are verified by the
receiving device using the senders’ certificate. This not only guarantees the authenticity of the
sender, but a packet creation time and sequence number are included in the message hash that is
signed by the originating device, protecting the message from replay attacks.

This section contains a list of message functions used by MPDC-I, and their mathematical
descriptions.

6.1 Announce Broadcast

Overview:

Network announce is an administrative event broadcast from the DLA. The DLA announces a
new Agent to nodes on the network. It broadcasts the new agent’s certificate, which is signed by
the root, and signs the message with the DLA signing key. The receiving device validates the
DLA signature and message hash, validates the root signature and parameters of the certificate,
and checks that the packet timestamp is within the valid-time threshold. If the message is
validated, the receiver adds the new device to its topology list, stores the certificate, and initiates
a master fragment key exchange, trading shared secrets with the remote Agent device.

API:

e mpdc_network_announce_ broadcast()
e mpdc_network_announce_response()

Applies to:
o Client
« DLA
¢« MAS

Mathematical Description:

Let:
e (p° be the root signed certificate of device D.
e H be the hash function.
e Hcs® be the signed certificate and timestamp hash.
e K, be the private signing key.
e Kuub be the signature verification key.
e ¢ be an asymmetric signature.

25

MPDC-2024 Rev. 1b

e Sign be the asymmetric signing function.

e st be the sequence number and valid-time timestamp.

o Verify be the asymmetric signature verification function.
The broadcast includes the certificate and the signature:
Hes® = Signaaxpy-(H(Cp ° || st))
Broadcast(Cp®)= (Cp° Il Hes®)

Devices receiving this broadcast will verify the signature using the DLA’s public verification
key:

Verifyakpus(Hes®) = H(Cp® || st)

If the broadcast message is validated, the certificate is added to the devices certificate store, and
the device exchanges a master fragment key with the new Agent.

Proof of Security:

Correctness: The broadcast is correctly signed by the DLA, ensuring that any recipient can
verify the signature using DLA public key. The verification succeeds if and only if a(H(Cp || st))
was produced using the DLA private key, providing assurance of authenticity.

Proof: Given the definition of digital signatures:

o(H(Cp° || st)) = Signxp(H(Cp° || st))

The verification function computes:

VerifYKpub(G(H(CDG ” St))) = H(CDG H St)

Since Verifykpus 1s the inverse of Signkyr, the signature is valid if it was signed by the matching
private key.

Integrity: Since H(Cp° || s?) is hashed and signed, any change to the certificate or signature
would cause the verification to fail. The hash function used (e.g., SHAKE) is collision-resistant,
ensuring that an attacker cannot forge Cp° or o(H(Cp° || s1)).

Replay Protection: A timestamp and sequence number are included in the hash (s#) and checked

to ensure it is within a specified valid timeframe, so that broadcasts cannot be reused
maliciously.

6.2 Converge Broadcast
Overview:

26

MPDC-2024 Rev. 1b

Network convergence is an administrative event called from the DLA. Each MAS server and
Agent on the network is sent a copy of their topological node database entry. The serialized node
entry for the remote device is hashed along with a timestamp and sequence number, and the hash
is signed by the DLA and sent to the device.

The signature is verified by the device using the DLA's public certificate, the local node entry is
serialized and hashed, and compared with the signed hash. If the hashes match, the entry in the
DLA topological database is synchronized, if the entries do not match, the device serializes the
current topological database entry and the certificate, signs them with the current signature key,
which is signed by the root (RDS), and sends it back to the DLA. The DLA verifies the new
certificate using the RDS certificate. The old entry is purged, a new topological entry is added to
the database, and the new certificate is stored.

* Note that the proper procedure after a certificate update on a MAS or Agent, is to resign from
the network, and then rejoin with a new certificate.

API:

e mpdc_network converge request()
e mpdc_network _converge response()

Applies to:
e Agent
« DLA
e MAS

Mathematical Description:

Let:

e Hrs° be the signed hash of H(7p || s¢?) signed using D’s private key.
e H be the hash function.

. Kpi be the secret signing key.

. Ky be the signature verification key.

e Sign be the asymmetric signing function.

e st be the sequence number and valid-time timestamp.

e Tp be the topological node of device D.

e Verify be the asymmetric signature verification function.

The converge broadcast request:

The DLA creates the converge request using the remote device’s topological node, hashed with
the timestamp and signed.

Hrs® = SigndlaKpri(H(TD || St))
Request(7p) = (Tp Il Hrs®)

27

MPDC-2024 Rev. 1b

The device verifies the DLA’s signature.

Verifyaaxpur(Hrs®) = H(Tp || st)

The converge response:

The responding device signs the response message, and sends it to the DLA.
o = Signespkpri(H(Tp || s1))

Response(Tr) = (Tr |l o)

Proof of Security:

Correctness: The response is only generated if the request is valid. Both the request and the
response signatures are verified using the public key of the respective device.

Proof: The request signature is:

o(H(TDp [| s1)) = Signgpri(H(Tp || s1))

Upon receiving the request, the recipient checks the validity of the signature using:
Verifyxpun(s(H(Tp || s2))) = H(Tp || st)

If the signature verification passes, the recipient knows the request is authentic. The node
structure sent by the DLA, containing information about the remote device including certificate
serial number, issuer, and expiration o and from times, is verified by the receiving device. If the
node values match, the receiver signs its serialized node structure along with the timestamp and
sequence number, and sends it back to the DLA as confirmation that the topology is aligned. If
the values do not match, or the authentication or message is invalid, the receiver sends back an
error message. If the DLA receives an error, or the connection times out, the remote node is
removed from the DLA’s topology, and the device’s certificate is revoked, removing it from the
topology list of every device on the network.

Integrity: The hash H(7)p || st) ensures that the certificate cannot be altered. Any tampering will
result in a failed signature verification.

Replay Protection: A timestamp and sequence number are included in the hash H(7p || #s) and
checked to ensure that broadcasts cannot be reused maliciously.

6.3 FKey Request

Overview:

28

MPDC-2024 Rev. 1b

The FKey request is reserved for MPDC-E, it is used when the Inter Domain Gateway (IDG) is
requesting a fragment key for a device on a remote network, as part of the cross-domain trusted
entropy ‘borrowing’ that can be configured between trusted domains.

API:

e mpdc_network_fkey request()
e mpdc_network_fkey response()

Applies to:
o Agent
« IDG

Mathematical Description:
The key fragment request and response ensure secure transmission of key fragments.

Let:

e (p° be the root signed certificate of the requesting device.
e Fp be the key fragment requested.
e H be the hash function (cSHAKE).
e Hcs® be the signed certificate and timestamp hash.
e Sign be the asymmetric signing function.
e st be the sequence number and valid-time timestamp.
o Verify be the asymmetric signature verification function.
The FKey request:
Hes® = Signiagipn(H(Cp® | 51))
Request(Cp) = (Cp° |l Hcs®)
The FKey response:
Verityiaekpun(Hes®) = H(Fp || st)
Hrs® = Signiagipr(H(ED || 57))
Response(Fp) = (Fp Il Hrs®)
This ensures the integrity and authenticity of the key fragment F'p.

Proof of Security:

Confidentiality: The key fragment Fp is securely transmitted and signed, ensuring that it cannot
be intercepted or modified.

29

MPDC-2024 Rev. 1b

Proof: The key fragment is signed using the sender's private key:
o(H(Fp || s1)) = Signkpi(H(Fp [| 57))

Upon receiving the fragment, the requesting device verifies:
Verifykpus(o(H(Fp | s1))) = H(Fp || st)

This ensures the key fragment's integrity and authenticity.

Replay Protection: A timestamp and sequence number are included in the hash H(Fp || #s) and
checked to ensure that broadcasts cannot be reused maliciously.

6.4 Fragment Collection (Primary Client-to-MAS Tunnel)
Overview

The process begins when a Client sends a fragment key collection request to the MAS (MPDC
enabled Application Server). This involves multiple symmetric-based key exchanges and
cryptographic operations between the Client, MAS, and network Agents. The objective is to
securely gather and validate key fragments from the Agents, derive shared session keys, and
establish an encrypted tunnel between the Client and the MAS.

API:

o mpdc_network fragment_collection_request()
o mpdc_network_fragment_collection_response()
e mpdc_network fragment_query response()

Applies to:
o Agent
o Client
¢ MAS

Step-by-Step Description
Client Request to MAS:

The Client initiates the fragment collection by sending a request to the MAS. This request
includes:

e The Client's certificate serial number.
e A random token generated by the Client.

30

MPDC-2024 Rev. 1b

The MAS generates its own random token, and sends queries to every Agent in the topology.
Fragment Queries to Agents:

The MAS queries all Agents in the network by sending a fragment key request. Each query
includes:

e The Client's certificate serial number and random token.
e The MAS's certificate serial number and random token.

If any Agent fails to respond or returns an error, the entire session is terminated.
Agent Dual Token Encryption:
The random token is copied and encrypted twice, one copy for the MAS the other for the Client:

e One copy is encrypted using a fragment encryption key (efk) derived from the MAS-to-
Agent mfk fragment encryption session key.

e The other copy is encrypted using an efk derived from the Client-to-Agent mfk fragment
encryption session key.

The MAS decrypts its copy of the fragment, and forwards the Client-to-Agent encrypted copies
to the Client as a set. This fragment key-set includes a fragment generated by the MAS server
and encrypted with the Client-to-MAS mfk derived fragment encryption key.

Deriving Session Keys:

The MAS decrypts the fragment keys it has received from the network Agents. The MAS
generates a fragment key, and adds this key, and the decrypted Agent fragment keys to a KDF,
which generates the session keys used to initialize symmetric cipher instances (RCS) for the
transmit and receive channels of the Client-to-MAS tunnel.

The Client performs the same operations, decrypting the MAS fragment key, the Agent fragment
keys, and using a KDF to derive the symmetric cipher session keys.

Mathematical Description:

Let:

cf be the encrypted fragment key.

E/-E be the encryption and decryption function.

efk be the fragment encryption key.

frag be the key fragment.

KDF be the key derivation function (cSHAKE).

lhash be the hash of the local certificate.

M be the MAC function.

mfk be the master fragment key, a shared master secret between two devices.

31

MPDC-2024 Rev. 1b

rhash be the hash of the remote certificate.
ser be the device certificate serial number.
tok be a random session token.

st be the timestamp and sequence number.

The Client calculates the Client-to-MAS fragment encryption key (efk). The token is randomly
generated, added with the Client-to-MAS shared master fragment key (mfk), the MAS certificate
hash, and the Client certificate hash. The KDF generates a key used to initialize the MAC
function, which MACs the request message.

efk%aesnt = KDF(mfkfrilaintH rhashmas || lhashclient || tokclient)

The Client sends the fragment collection request to the MAS containing its serial number and the

random token. The serial number and token are MAC’d using the derived efkSeM fragment

encryption key to initialize the MAC function. The STp message is the client’s certificate serial
number, the Client generated random token, and a MAC tag derived from the message and key.
The packet creation timestamp and sequence number are also added to the MAC.

tag = MefkSlent (ser || tok || st)

Request(STp) = (ser || tok || tag)

The MAS calculates the Client-to-MAS fragment encryption key, and checks the message MAC.
If the MAC validates the message, and the timestamp and sequence number are correct, both
Client and MAS have calculated their session fragment keys. If the MAC fails the MAS sends
the Client an error message and the circuit is torn down.

MefkSient (ser || tok || st) = tag < True

The MAS connects to each agent in its topological map, and requests a key fragment. The MAS
Ry request 1s composed of the MAS certificate serial number and random token, and the Client
serial number and token is the Rc state.

Ry = (Sermas || tOkmas)

Rc= (Serclient || tOkclient)

The request is the pair of serial numbers and unique tokens for both MAS and Client, and the

message MAC tag, derived from the message and ef kg ey, key. The message is sent out to each

Agent on the network, if the Agent is non-responding or returns an error, the key exchange is
aborted.
tag =Mefkggent(Ru || Rc || st)

Request(Ra, Rc) = (Ru || Re || tag)

32

MPDC-2024 Rev. 1b

Where each A; is an agent server in the topology:
Request(Ry, Rc) —{A1, Ao, ..., An}
Each Agent generates a random fragment key, makes a copy, and encrypts them both, the first

copy is encrypted using the MAS-to-Agent fragment encryption key, the second using the Client-
to-Agent fragment encryption key.

The first efk is derived from the MAS-to-Agent mfk, the MAS random token, and the Agent and
MAS certificate hashes. This fragment key Encrypts the MAS copy of the key fragment. The

ef kggent creates two keys, the first is the fragment encryption key, the second is the key used to
MAC the entire message, which will be verified by the MAS.

ef kggent = KDF(MfRgyt, | rhashmas || thashagen || tokmas)

¢fi = Eefkggen(frag)
The second fragment is encrypted using the Client-to-Agent derived key.

efkgzgzg = KDF(mfkg‘lglgzg || rhashc[ient || Zhashagent || tokclient)

cf2=Eefkigent(frag)

The ciphertext from both encrypted key sets are MAC’d and the MAC tag 1s added to the
message. The MAC key is the second half of the (512-bit size) efk key.

tag =Mefk ggen:(cfi || ¢f2 || st)
Agent(cf || cf2 || tag) —MAS.

The MAS verifies the mac tag against the ciphertext, the sequence number and timestamp, and if
they are correct, decrypts its portion of the key-set.

Mefkggent(cfi || ¢f2 || hdr) = tag < True

The MAS copies the encrypted Client fragment keys and Agent serial numbers to a key-set.
Once the MAS has collected keys from every Agent, it sends the set of encrypted Client-to-
Agent keys back to the client, with each fragment encrypted with the respective Client-to-Agent

efk.
Where:

e fset is the set of agent fragment keys.
e as is the agent serial number.
e fc isthe encrypted fragment key.

33

MPDC-2024 Rev. 1b

fset={ Fi(as: || fer), Faasz|| fc2), ..., Fulasn || fen) §

The encrypted key-set is sent to the Client, where like on the MAS, the serial number is used to
look up the corresponding Agent mfk, derive the fragment encryption key, and verify and decrypt
the fragment key sent by each agent, along with a key fragment shared between the MAS and the
Client.

Foreachi€ {1,2,...,n},fi = -Eefkifient(cf)

All fragments are added to the hash to create a set of session keys used between the MAS and the
Client to establish an encrypted tunnel. The fragment keys are added to the KDF input, including
the fragment generated by the MAS for the Client:

ki, k2, ni, n2=KDF(f1, f>, ... f)

This generates the session keys for the transmit and receive channels used to create a bi-
directional encrypted tunnel between the MAS and the Client. The symmetric cipher instances
(RCS) used to encrypt data on the receive and transmit channels of the encrypted tunnel are
initialized on both the Client and MAS, and the tunnel interfaces are raised and ready to transmit
data.

Session = {Transmit(Ekl(nl, data))
ession Receive(—Ek2(n2, data))

Proof of Security:

Correctness: Client and MAS servers share a secret exchanged during the master fragment key
exchange. The Client and MAS also share unique secrets with every Agent on the network. This
256-bit secret key is combined with a random session token, and hashes of the local certificate
and the remote certificate. The hash result is a fragment encryption key:

efk = KDF(mfk || rhash || lhash || tok)

The combination of certificate hashes will be unique between devices, this along with the
random token which acts as a session nonce, ensures that every session derives unique fragment
encryption keys. This efk is XOR’d with the key fragment; a 256-bit pseudo-random string
generated by each agent.

¢f = Een (frag)

Proof: Given a cryptographically strong key derivation function, specifically cSHAKE, the
mixing of these inputs will produce a key-stream that is highly diffused and unique to each
session. That key-stream mixed with the random fragment (XOR) will produce output that is
indistinguishable from random, and highly resistant to differential analysis techniques.

34

MPDC-2024 Rev. 1b

Key fragments are input into the KDF, along with the Client-to-MAS session key. The KDF
outputs keys and nonces for the two symmetric cipher instances, that will be the transmit and
receive channels of the encrypted tunnel between the Client and the MAS.

ki, k2, ny, n2=KDF(f1, f>, ... fn)

Utilizing key fragments from Agents on the network, hardens the security of the server-to-client
exchange. The injection of entropy into the key derivation, extends the mathematical hardness of
differential analysis. By distributing the generation of the key across multiple autonomous
devices on the network, impersonation, replay, and man-in-the-middle attacks become more
problematic in proportion to the number of devices contributing to key generation.

6.5 Incremental Update

Overview:

The incremental update functions retrieve a devices certificate. When a device joins the network,
the DLA sends a list of resources available for that device. When a MAS joins the network the
DLA sends it a list of network Agents, when a Client joins the DL A sends a list of Agents and
MAS servers.

The Client and MAS synchronize with devices on the list sent by the DLA, creating a topological
database. The topology is a local list containing information about resources that the device uses
on the network. A topological node is an element in the list that contains important information
like the nodes IP address, issuer, expiration time, certificate hash and serial number. This
information is used to connect to the device, request its certificate, verify the certificate, and
interact with the device on the network.

The mpdc_topology node_state structure defines the state information for a device within the
MPDC topology. This includes details like network address, certificate information, and the
device's designation.

Once the device has obtained the certificate and added the node to its topology, the device can
exchange a shared secret between devices using the master fragment key (mfk) asymmetric key
exchange.

During network registration, the Client and MAS device receive a list of resources they will use
on the network.

The Client or MAS queries each node on this list, requesting the devices public certificate. The
requestor uses the remote devices serial number Sp as the request message.

API:

o mpdc_network _mfk _exchange request()
o mpdc_network _mfk _exchange response()

Applies to:
35

MPDC-2024 Rev. 1b

e Agent

e Client

« MAS
Let

e (p° be the root signed certificate of device D.

e st be the sequence number and valid-time timestamp.

e o0 be the asymmetric signature.

e H be the hash function.

e Hcs® be the signed certificate and timestamp hash.

e K, be the private signing key.

e Ky be the signature verification key.

e serp be the requested certificate serial number.

e Sign be the asymmetric signing function.

e st be the sequence number and packet creation timestamp.
e Verify be the asymmetric signature verification function.

The incremental update request:
The device sends an incremental update request with the remote device certificate serial number.
Request(Sp) = (serp)

The responding device sends the serialized certificate, and a hash of the certificate and the packet
headers valid-time timestamp and sequence number, signed with its secret signing key.

The incremental update response:

Hes® = Signyrespipri(H(Cp? || s1))

Response(Cp®) = (Cp° Il Hes®)

The certificate signature is verified and a hash of the certificate is compared to the signed hash,
and the hash contained in the topological node entry. The certificate hash must match the hash
stored in the node information sent by the DLA. If the certificate is validated, it is added to the
devices certificate store.

Proof of Security:

Correctness: The response is only generated if the request is valid and the serial number in the
request matches the responder’s certificate serial number. The responder’s certificate is verified

by the requestor using the root public certificate. The response message signature is verified
using the received public key of the respective device.

36

MPDC-2024 Rev. 1b

Proof: The response signature is:

o(H(Cp® || 1)) = Signkpi(H(Cp? || 51))

Upon receiving the request, the recipient checks the validity of the certificates’ signature using:
Verityoorpun(s(H(Cp))) = H(C)

The response message including the responder’s certificate and valid-time timestamp are then
verified using the validated responder’s certificate.

Verifydevkpus(o(H(Cp? || 57))) = H(Cp® || 57)

If the root signature verification passes, the certificate is authentic. The certificate is then used to
authenticate that the message is valid and sent by the responding device. If any of these checks
fail; root signature, responder message signature, hashes, sequence, packet creation valid-time, or
the certificate hash comparison with the node hash value sent by the DLA, the certificate is
rejected.

Integrity: The hash H(Cp® || sf) ensures that the certificate cannot be altered. Any tampering will
result in a failed signature verification.

Replay Protection: A timestamp and sequence number are included in the hash H(Cp || #s) and
checked to ensure that the requests cannot be reused maliciously.

6.5 Master Fragment Key Exchange
Overview:

The master fragment key exchange, is an authenticated asymmetric key exchange, where a
shared secret is exchanged between devices. A Client and a MAS exchange master fragment
keys (mfk), and both Client and MAS exchange master fragment keys with Agent servers.

API:

e mpdc_network _mfk_exchange request()
o mpdc_network _mfk _exchange response()

Applies to:
o Agent
e Client
¢ MAS

Mathematical Description:

37

MPDC-2024 Rev. 1b

Let:
e (p° be the root signed certificate of device D.
e ¢t be the asymmetric cipher-text.
e Enc be the asymmetric encapsulation function.
Dec be the asymmetric decapsulation function.
H be the hash function.
Hcs® be the signed certificate and timestamp hash.
HEes® be the signed asymmetric ciphertext and timestamp hash.
Hps® be the signed public cipher key and timestamp hash.
KGen be the asymmetric cipher key generation function.
Ky be the asymmetric signature public key.
K, be the asymmetric signature private key.
mfk be the master fragment key.
pk be the asymmetric cipher public key.
sk be the asymmetric cipher secret key.
Sign is the asymmetric signing function.
ss be the shared secret.
Verify is the asymmetric verification function.

The requestor sends an exchange request to the device. The message contains the requestors
serialized certificate, and a valid-time timestamp.

Note: Agents do not retain Client or MAS certificates.
Hes® = Signyeqixpr(H(CD® || s7))

Request(Cp°) = (Cp° || Hes®)

The responder verifies the certificates root signature.
Verifyroorpun(Cp®) = H(Cbp)

The responder validates the requestors certificate and the valid-time timestamp are then verified
using the validated responder’s certificate.

Verideevaub(HCSG) = H(CDG || St)

The responder generates a keypair using the asymmetric cipher. It stores the private key, hashes
and signs the public cipher key and valid-time timestamp, and sends it to the requestor.

pk, sk = KGen(/, r)

Hps® = Signresprpri(H(pk || s7))

38

MPDC-2024 Rev. 1b

Response(pk) = (pk || Hps®)

The signed public key is sent to the requestor. The signature, hash, and timestamp are verified,
and the requestor uses the public key to encapsulate a shared secret.

ct = Encpi(ss)

The shared secret is retained by the requestor and is the master fragment key. The ciphertext is
hashed along with the valid-time timestamp, and the hash is signed by the requestors signing
key.

Hes® = Signyequpri (H(ct || s1))

Request(ct) = (ct || Hes®)

The responder verifies the message hash using the requestors public verification key, then
compares the hash against the hashed ciphertext and timestamp.

Verityaevkpun(Hes®) = H(ct || s7)
If the ciphertext is validated, the ciphertext is decrypted using the responders private cipher key.
ss = Decg(ct)
Proof of Security:
Correctness: The key exchange consists of three steps:
o The requestor sends a signed hash of its certificate and timestamp to the responder.
o The responder signs a hash of the public cipher key and timestamp and sends it to the
requestor.
o The requestor signs a copy of the ciphertext and timestamp and sends it to the responder.
Proof: Given the definition of digital signatures and the message m:
o(H(m | s7)) = Signg,r(H(m || 57))
The verification function computes:
Verifykpus(o(H(m || 57))) = H(m || s7)
Since Verifykpus 1s the inverse of Signkp, the signature is valid if it was signed by the matching

private key. The hash is generated from the message and compared to the signed hash for
equality.

39

MPDC-2024 Rev. 1b

Integrity: Since H(m || s7) is hashed and signed, any change to the certificate or signature would
cause the verification to fail. The hash function used (e.g., SHAKE) is collision-resistant,
ensuring that an attacker cannot forge Cp or o(H(m || s7)).

Replay Protection: A timestamp and sequence number are included in the hash H(m || zs) and
checked to ensure that broadcasts cannot be reused maliciously.

6.6 Registration Request
Overview:

An Agent registers with the DLA to join an MPDC network. The DLA verifies the agents
certificate, then sends a copy of its own root-signed certificate, and adds the device to the

topology.

API:

o mpdc_network_register request()
e mpdc_network_register response()

Applies to:
o Agent
« DLA

Mathematical Description:

Let:

Cp° be the root signed device certificate.

H be the hash function.

Hcs® be the signed certificate and timestamp hash.

K, be the private asymmetric signing key.

Kyu» be the public asymmetric verification key.

Sign be the asymmetric signing function.

o be the signature.

Verify be the asymmetric signature verification function.

The Agent requestor sends a register request to the device. The message contains the requestors
serialized certificate, and a signed hash of the certificate and the valid-time timestamp.

The registration request:
Hes® = Signagenthri(H(CDG || St))

Request(Cp°) = (Cp° |l Hes®)
40

MPDC-2024 Rev. 1b

The DLA responder validates the requestors certificate and the valid-time timestamp are then
verified using the validated responder’s certificate.

Verifyoopun(s(H(Cp)) = H(Cp)

Verifyagenikpun(Hes®) = H(Cp® || st)

The registration response:

The DLA hashes and signs its certificate and valid-time timestamp and sends it to the Agent.
Hes® = Signatakpi(H(Cp® || s7))

Response(Cp®) = (Cp° Il Hes®)

The Agent verifies and stores the DLA certificate, generates a topological node for the DLA, and
is registered on the network.

Verifylﬁoothub(G(H(CD)) = H(CD)

Verityaaxpun(Hes®) = H(Cp® || st)

6.7 Register Update Request
Overview:

When a Client or MAS registers with the DLA to join an MPDC network. The DLA verifies the
devices certificate, then sends a list of topological nodes that are available for that device, a copy
of its own root-signed certificate, and adds the device to the topology.

API:

o mpdc_network register update request()
e mpdc_network register _update response()

Applies to:
e Client
e DLA
e MAS

Mathematical Description:

Let:
e (p° be the root signed device certificate.

41

MPDC-2024 Rev. 1b

H be the hash function.

Hcs® be the signed certificate and timestamp hash.

Hcrs® be the signed certificate, list, and timestamp hash.
K, be the private asymmetric signing key.

e Ky be the public asymmetric verification key.

e [ist be the list of nodes.

e Sign be the asymmetric signing function.

e o be the signature.

e Verify be the asymmetric signature verification function.

The requestor sends a register update request to the DLA. The message contains the requestors
serialized certificate, and a signed hash of the certificate and the valid-time timestamp.

The registration update request:
HCS(j = Signrethpri(H(CDG || St))
Request(Cp°) = (Cp° Il Hes®)

The DLA responder validates the requestors certificate root signature and the valid-time
timestamp are then verified using the validated responder’s certificate.

VerifYroothub(G(H(CD)) = H(CD)
Verityievkpun(Hes®) = H(Cp® || st)

The DLA generates a list of topological nodes for the device; MAS servers receive a list of
Agent servers, and Clients receive the list of Agent and MAS servers.

The DLA hashes and signs the list, its certificate, and valid-time timestamp and sends it to the
Agent.

The registration update response:

list={ D1, D2, ... Dn } where D; is a topological node.

Hers® = Signaaxy-(H(Cp® || list || st))

Response(Cp° || list) = (Cp° || list || Hers®)

The requestor verifies and stores the DLA certificate, generates a topological node for the DLA,
and is registered on the network. The requestor adds the list of nodes to the topological list, and
will synchronize certificates with each device using the incremental update function, and then

exchange master fragment keys using the master fragment key exchange. Once the device has the
certificate and master fragment key of each device, its topology is considered synchronized.

Verifyoorpun(s(H(Cp)) = H(Cp)

42

MPDC-2024 Rev. 1b

Verifyaaxpun(Hers®) = H(Cp® || list || st)

6.8 Remote Signing Request
Overview:

The root domain security (RDS) server only has a single networked function. Remote signing
allows only the DLA to connect to the RDS, to act as a proxy for certificate signing. The DLA
can sign certificates for devices on the network by connecting to the RDS, and forwarding the
certificate to be signed. The RDS has a copy of the DLA certificate, allowing it to verify the
signing request message.

API:

e mpdc_network remote_signing request()
e mpdc_network _remote_signing response()

Applies to:
« DLA
¢ RDS

Mathematical Description:

Let:

Cp be a device certificate.

H be the hash function.

Hcs® be the signed certificate and timestamp hash.

Ky be the private asymmetric signing key.

Kyu» be the public asymmetric verification key.

Sign be the asymmetric signing function.

o be the signature.

Verify be the asymmetric signature verification function.

The DLA sends a remote signing request to the RDS. The message contains the serialized
certificate to be signed, and a signed hash of the certificate and the valid-time timestamp.

The remote signing request:
Hes® = Signaakpi(H(Cp || s¢))
Request(Cp) = (Cp Il Hes®)

The RDS validates the DLA’s remote signing request signature, the certificate hash, and the
valid-time timestamp.

43

MPDC-2024 Rev. 1b

Verityaiaxpus(Hes®) = H(Cp || st)

The RDS signs the certificate, and sends it back to the DLA.

The remote signing response:

Cp° = Signrootkpri(H(Cp))

Response(Cp°)

The DLA verifies the root signature, and can now forward the certificate to the network device.

VerifYroothub(G(H(CD)) = H(CD)

6.9 Resign Request
Overview:

A Client, MAS, or an Agent can resign from the network by sending a resign request to the
DLA. The DLA sends out a revoke request broadcast removing the device’s certificate and nodal
information from every node on the network.

API:

e mpdc_network resign_request()
e mpdc_network_resign_response()

Applies to:
o Agent
e Client
e DLA
¢ MAS

Mathematical Description:

Let:

H be the hash function.

Hss® be the signed serial number and timestamp hash.
Ky be the private asymmetric signing key.

Kyu» be the public asymmetric verification key.

list be the list of nodes.

Sign be the asymmetric signing function.

o be the signature.

44

MPDC-2024 Rev. 1b

e Verify be the asymmetric signature verification function.

The requestor sends a resign request to the DLA. The message contains the requestors certificate
serial number, and a signed hash of the serial number and the valid-time timestamp.

The resignation request:
Hss® = Signdevari(H(SD || St))
Request(Sp) = (Sp Il Hss®)

The DLA looks up the serial number in its topology, loads the device certificate and validates the
signed message.

Verifyievkpun(Hss®) = H(Sp || s7)

The requesting device erases its topology, and must make a register request to the DLA to rejoin
the network. The DLA sends a revocation broadcast to a subsect of relevant nodes on the
network.

6.10 Revoke Broadcast

Overview:

The revocation request is a broadcast message that instructs nodes on the network that a
certificate has been revoked, and that device is to be removed from the network. Network
members that receive this message, delete the devices certificate and remove it from the local
topological database.

API:

e mpdc_network_revoke broadcast()
e mpdc_network revoke response()

Applies to:
o Agent
e Client
« DLA
¢ MAS

Mathematical Description:

Let:
e H be the hash function.

45

MPDC-2024 Rev. 1b

Hss® be the signed serial number and timestamp hash.
Ky be the private asymmetric signing key.

Kpup be the public asymmetric verification key.

list be the list of nodes.

e Sp be the device certificate serial number.

e Sign be the asymmetric signing function.

e st be the sequence number and valid-time timestamp.

e o be the signature.

e Verify be the asymmetric signature verification function.

The DLA sends a revoke request to a subset of nodes on the network depending on the device
type being revoked:

e Agent revocations are sent to Client and MAS devices.
e MAS revocations are sent to Agent and Client devices.
e Client revocations are sent to Agent and MAS devices.

The revocation message contains a signed copy of the device certificate serial number to be
revoked.

Hss® = Signaxy+(H(Sp || st))

Request(Sp) = (Sp Il Hss®)

The DLA sends the revocation out to a list of devices.
L={Dy,D,,...,Dn}

For each i € L = Broadcast(Li, (Sp Il 6))

6.11 Topological Query Request
Overview:

The Client-requestor sends the hashed and signed issuer string of a remote Client node and the
local certificate serial number to the DLA.

Clients are not updated with each other’s certificates during network registration. This is meant
to scope topology information to the smallest number of nodes required for a given device.
Clients can connect to other Clients, by querying the DLA for a remote Clients node information.
The Client sends the DLA the remote Client’s network (issuer) name, and the DLA returns that
Client’s topological node information to the requestor.

The Client sends its serial number, and the remote nodes issuer string, which is composed of the
network name, device name, and certificate extension. The query interface takes only the device
name, which is resolved to the issuer string for the request. The DLA uses the certificate serial

46

MPDC-2024 Rev. 1b

number to load the requestors certificate, and verify the signature. The requesting Client receives
the remote Clients node information, and uses it to synchronize certificates, and exchange master
fragment keys.

API:

e mpdc_network topological status request()
e mpdc_network topological status response()

Applies to:
e Client
« DLA

Mathematical Description:

Let:

H be the hash function.

Hsrs® be the signed serial number, issuer name, and timestamp hash.
Hns® be the node and timestamp hash.

Ip be the issuer string query.

K, be the private asymmetric signing key.

Kyup be the public asymmetric verification key.

Np be the serialized node.

R; be the remote device issuer name.

Sp be the device serial number.

Sign be the asymmetric signing function.

st be the sequence number and valid-time timestamp.

o be the signature.

Verify be the asymmetric signature verification function.

The Client sends a topological query request to the DLA. The message contains the requestors
certificate number, the remote Client’s issuer name, and a signed hash of the serial number,
issuer name, and the valid-time timestamp.

Hsrs® = Signclienthri(H(SD || R; || St))

Request(/p) = (Sp || R | Hsrs®)

The DLA responder validates the requestors signature, and the valid-time timestamp.

Verityciienkpur(Hsrs®) = H(Ip || Sp || s¢)

The DLA looks up the node in the topological database using the issuer string, hashes and signs
the node, and sends it back to the requestor.

47

MPDC-2024 Rev. 1b

Hns® = Signawk,-(H(Np || s1))

Response(Np) = (Np |l Hns®)

6.12 Topological Status Request
Overview:

The DLA sends a status request to the target Client, verifying it is online and available. It sends a
signed copy of its certificate serial number in the message.

The remote Client receives the signed serial number for the remote node, verifies the hash,
signature, and the serial number.

If the responder is available, it sends its signed serial number back to the DL A requestor.

The DLA verifies the message, and the function signals if the node is available for connect.

API:

e mpdc_network_topological query request()
e mpdc_network_topological query response()

Applies to:
e Client
« DLA

Mathematical Description:
Let:

H be the hash function.

Hss® be the signed serial number and timestamp hash.

Ip be the issuer string query.

Ky be the private asymmetric signing key.

Kpup be the public asymmetric verification key.

Np be the serialized node.

Sign be the asymmetric signing function.

st be the sequence number and valid-time timestamp.

o be the signature.

Verify be the asymmetric signature verification function.

The DLA sends a topological status request to the device. The message contains the DLA’s
certificate serial number, and a signed hash of the serial number and the valid-time timestamp.

Hss® = SigndlaKpri(H(SD || st))

48

MPDC-2024 Rev. 1b

Request(/p) = (Sp Il Hss)

The responder validates the DLA’s signature, serial number, and the valid-time timestamp.
Verifyauxpus(Hss®) = H(Sp || s7)

The responder then echoes back it’s signed certificate serial number to the DLA if it is available.
Hss® = Signaxp-(H(Sp || st))

Response(Sp) = (Sp || Hss®)

49

MPDC-2024 Rev. 1b

7. Security Analysis
MPDC is designed to provide robust security against a wide range of attacks, including classical

and quantum threats. The protocol incorporates multiple layers of security measures to ensure
confidentiality, integrity, authentication, and forward secrecy.

Defense Against Classical Attacks

7.1 Man-in-the-Middle (MITM) Attacks

Threat: An attacker intercepts and possibly alters communication between the Client and MAS,
attempting to impersonate one or both parties.

Defense Strategies:

Certificate Validation:

o Both the Client and MAS use certificates signed by the RDS.

o Each party validates the other's certificate against the trusted root certificate.

e Any unauthorized certificate will fail validation.

e Impersonating a MAS would require impersonation of the entire Agent network,
requiring each device’s signing key be compromised.

Digital Signatures:

o Public keys are accompanied by digital signatures.

o Signatures are verified using the sender's public key.

o Altered public keys result in failed signature verification.

Mutual Authentication:

« Both parties authenticate each other using their respective key pairs and certificates.
o Prevents unauthorized entities from joining the communication.

7.2 Replay Attacks

Threat: An attacker reuses valid data transmissions to deceive a system into unauthorized
actions.

Defense Strategies:
Nonces and Timestamps:

e Incorporate unique nonces and timestamps in messages.
o Ensures each message is fresh and cannot be replayed.

50

MPDC-2024 Rev. 1b

e Messages with old timestamps or used nonces are rejected.
Session Identifiers:

o Unique session IDs associated with each communication session.
e Prevents mixing of messages from different sessions.

7.3 Key Compromise Attacks

Threat: Compromise of a private key could allow an attacker to decrypt communications or
impersonate a device.

Defense Strategies:
Multi-Party Key Contribution:

o Session key derivation involves key fragments from the Agent network.
o Compromising a single private key is insufficient without the Agent's fragment.

Regular Key Refresh:

o Session keys are refreshed periodically based on certificate expiration time.
e Limits the window of opportunity for attackers.

Forward Secrecy:

o Past session keys remain secure even if current private keys are compromised.
o Session keys are not derived solely from long-term private/public keys.

7.4 Entropy Injection and Randomness
Threat: Attacks exploiting weak or predictable keys due to insufficient randomness.
Defense Strategies:

Agent's Key Fragment:

e Provides high-quality entropy from an independent source.
e Enhances randomness in session key generation.

Multiple Entropy Sources:

o Combines entropy from Client, MAS, and Agent.
e Reduces the risk associated with any single point of failure.

Defense Against Quantum Attacks

51

MPDC-2024 Rev. 1b

Quantum computing poses a significant threat to classical cryptographic algorithms. MPDC
addresses this by integrating quantum-resistant cryptographic primitives.

7.5 Post-Quantum Cryptography

Quantum Threat: Quantum algorithms like Shor's algorithm can break RSA, ECC, and other
classical public-key systems.

Defense Strategies:

Quantum-Resistant Algorithms:

o Use lattice-based cryptography (e.g., Kyber, Dilithium) for public-key operations.

e Alternatively use code-based asymmetric cipher McEliece, and hash based signatures
(SPHINCSH).

o Resistant to attacks from quantum computers, with a wide range of security options and
parameter sets to accommodate different expectations of long-term security requirements.

Hash Functions:

o Employ SHAKE (SHA-3 variant) for hashing operations.

o Provides security against quantum attacks due to its collision and pre-image resistance
even in a quantum context.

7.6 Entropy Injection and Randomness

Quantum Threat: Quantum computers could potentially simulate or predict key generation
processes with insufficient entropy.

Defense Strategies:
Agent's Key Fragment:

e Injects additional entropy not predictable by quantum algorithms.
o Enhances the unpredictability of the session key.

Multi-Party Contribution:

e Session key depends on inputs from multiple parties.
o Increases computational difficulty for quantum adversaries.

Mathematical Proofs of Security

7.7 Correctness of Key Exchange

Shared Session Key:
52

MPDC-2024 Rev. 1b

Both MAS and Client compute:

Where:

e fset is the set of fragment keys
e as is the agent serial number
e fc isthe encrypted fragment key

Fragment set shared by MAS and Client:

fset={ Fi(as: || fe1), Faasz|| fc2), ..., Fulasn || fen) §

Each fragment is decrypted.
Foreachi € { 1,2, ...,n},fi=-Eefkiggent(cfi)

Fragments are hashed to create a set of session keys used between the MAS and the Client to
establish an encrypted tunnel. The fragment keys are added to the KDF input, including the
fragment generated by the MAS for the Client:

ki, k2, n1, n2=KDF(f1, f2, ... fn)

Generates the session keys transmit and receive channels used to create an encrypted tunnel
between the MAS and the Client.

Transmit(Ek1(n1, data))

Session = { Receive(—Ek2(n2, data))

Verification:

o Since all inputs are the same and verified, both parties derive the same session key.

o The distribution of keying material across multiple autonomous devices, ensures tamper-
proof key derivation.

o That Client and MAS use different keys to decrypt each fragment, ensures the key
fragments are not tampered with during transport.

o Entropy injected from multiple devices with different source random generators, vastly
increases the mathematical hardness of differential analysis of the keying material.

7.8 Resistance to Attacks

Collision Resistance:

e Hash function is collision-resistant.
o Computationally infeasible to find different inputs that produce the same hash output.

Computational Difficulty:

53

MPDC-2024 Rev. 1b

o Without access to the private keys and the Agent's key fragment, attackers cannot
compute the session key.

e Quantum algorithms do not efficiently solve lattice-based (Kyber, Dilithium), code-based
(McEliece), or hash-based (SPHINCS+) cryptographic problems used in MPDC.

7.9 Forward Secrecy
Session-Specific Keys:

o Each session generates a new, unique session key.
e Session keys are not stored long-term.

Ephemeral Key Fragments:

o Agent's key fragments are unique per session and discarded after use.
e Compromise of long-term keys does not affect past session keys.

Attack Mitigation Strategies

7.10 Certificate Revocation
Certificate Revocation:

e DLA can broadcast a revocation message to all affected devices.
o Devices remove the certificate and topological node from the database.

Comparison with Other Protocols
Strengths of MPDC
Multi-Party Key Exchange:
o Involves multiple entities, enhancing security through distribution of security and
authentication.
e Agent's entropy injection strengthens randomness.

Post-Quantum Readiness:

e Incorporates quantum-resistant algorithms.
o Future-proof against advancements in quantum computing.

Flexibility and Scalability:

e Adaptable to various network sizes and configurations.
o Suitable for IoT, enterprise, and critical infrastructure.

54

MPDC-2024 Rev. 1b

Conclusion

MPDC offers a robust cryptographic protocol that addresses both current and emerging security
threats. Its design emphasizes secure communication through multi-party key exchange,
leveraging contributions from the Client, MAS, and Agent to establish a secure session key. By
integrating quantum-resistant cryptographic primitives and comprehensive attack mitigation
strategies, MPDC ensures long-term security and resilience against sophisticated attacks.

The protocol's flexibility and scalability make it suitable for a wide range of applications, from
IoT devices to enterprise networks. While it introduces additional complexity and reliance on
multiple entities, the enhanced security benefits outweigh these challenges in environments
where security is paramount.

55

MPDC-2024 Rev. 1b

8. Application Scenarios

A multi-party key exchange scheme that incorporates multiple dedicated sources of entropy
enhances security by utilizing distributed randomness to establish a shared key. This model can
be particularly advantageous in environments where strong and unpredictable entropy is crucial
to prevent attacks that exploit weak randomness or deterministic behavior. Here are potential use
cases and applications of such a system:

8.1 Enhanced Client-Server Key Exchange for Critical Infrastructure

Description: In scenarios involving critical infrastructure (e.g., power grids, water treatment
facilities, military, and state applications), secure client-server communication is paramount. A
multi-party key exchange augmented with multiple dedicated sources of entropy can involve
various components of the infrastructure contributing entropy to the key generation process.

Use Case: During the key exchange, the client and server gather entropy from geographically
separated sensors or entropy sources. This approach reduces the risk of entropy failures,
increases randomness, and mitigates single-point vulnerabilities that could be exploited by
attackers.

Benefits:

o Greater resilience against entropy-based attacks, including side-channel attacks.

o Mitigates the risk of predictable keys, which is crucial in long-term infrastructure
deployments.

e Adds strong resistance against impersonation and man-in-the-middle attacks.

o Increased security against both classical and quantum adversaries by ensuring high-quality
randomness.

8.2 Secure Multi-user Messaging Applications

Description: Multi-party key exchange with multiple entropy sources can be utilized in secure
messaging applications where a shared group key needs to be established. Instead of relying
solely on client-provided randomness, each participant (or dedicated entropy provider)
contributes entropy to the key agreement.

Use Case: In a secure group chat application, users connect through a central server. The server
coordinates a key exchange where each client contributes entropy, as well as an independent
entropy provider (e.g., a trusted hardware random number generator or an entropy service).

Benefits:

o Guarantees high-quality randomness for the group key, reducing the risk of key compromise.

e Provides robustness against compromised clients or entropy providers, as no single entity can
control the entire randomness pool.

o Improves forward secrecy and deniability, essential for secure messaging applications like
Signal or WhatsApp.

56

MPDC-2024 Rev. 1b

8.3 Post-Quantum Secure Remote Shell Protocol

Description: In a remote shell protocol (similar to SSH but quantum-secure), using a multi-party
key exchange with multiple entropy sources enhances the security of the session key generation
process. Entropy can be injected from both the client device, server device, and additional
entropy nodes or agents on the network.

Use Case: During the key exchange, the client, server, and a distributed entropy agent (e.g., a
hardware security module or remote entropy service) each provide contributions. The combined
entropy is used to derive session keys, ensuring they are resistant to prediction or manipulation.

Benefits:

o Stronger resistance against entropy manipulation or degradation attacks.

o Enhanced post-quantum security, as the key generation process integrates randomness from
multiple independent sources.

o Suitable for highly sensitive environments, such as financial trading platforms or military
communication systems.

8.4 Secure Federated Learning and Distributed Data Analysis

Description: In federated learning, multiple data providers (e.g., hospitals, financial institutions)
collaborate to train a machine learning model without sharing raw data. A secure multi-party key
exchange with diverse entropy sources can protect the communication channels used to
aggregate local model updates.

Use Case: Each data provider injects its own entropy into the key exchange, ensuring that the
shared model aggregation keys are random and unpredictable. A central coordinator aggregates
these updates securely using the derived keys.

Benefits:

o Prevents data inference attacks that could arise from weak key generation.

o Enhances data confidentiality by ensuring that the shared keys have strong, unbiased
randomness.

e Provides robustness against compromised participants or entropy failures in a decentralized
network.

8.5 Quantum-secure Blockchain Consensus Protocols

Description: In blockchain and distributed ledger systems, consensus mechanisms (e.g., Proof of
Stake, Byzantine Fault Tolerance) require secure communication channels for node-to-node
messaging. A multi-party key exchange using multiple entropy sources can ensure secure key
generation even in the presence of malicious nodes.

Use Case: Nodes participating in the consensus inject entropy into the key exchange, along with

a separate entropy provider (e.g., a random beacon or oracle service). The resulting shared key
secures node-to-node communication and ensures the integrity of the consensus process.

57

MPDC-2024 Rev. 1b

Benefits:

o Increases the unpredictability of the shared key, making it resistant to manipulation by
malicious nodes.

e Supports post-quantum security, protecting the blockchain against future quantum attacks.

o Improves the robustness of consensus mechanisms, reducing the risk of double-spending or
consensus failure.

Advantages of Using Multiple Dedicated Sources of Entropy

1. Reduced Risk of Entropy Attacks:
By distributing the entropy contribution among multiple independent sources, the risk of a
single point of entropy failure (e.g., faulty hardware RNG, compromised software RNG) is
minimized.

2. Mitigation of Bias and Predictability:
Each entropy source may have different characteristics and potential biases. Combining
contributions from diverse sources helps mitigate any inherent biases and increases the
overall quality of randomness.

3. Resilience Against Compromise:
If one of the entropy sources is compromised or controlled by an attacker, the randomness
provided by the other sources can still ensure the unpredictability of the key, making attacks
significantly harder.

4. Quantum Resistance:
A robust and diverse entropy pool enhances the security of the key exchange against
quantum adversaries, who might otherwise exploit deterministic patterns in key generation.

5. Flexibility and Scalability:
The approach can be adapted to various network configurations, including client-server,
peer-to-peer, and decentralized systems, making it a versatile solution for modern
cryptographic applications.

In conclusion, multi-party key exchanges that leverage multiple sources of entropy provide
enhanced security, reliability, and quantum resistance, making them an essential component of
next-generation cryptographic systems. These schemes address the increasing demand for secure
and scalable communication protocols in distributed and decentralized environments.

58

MPDC-2024 Rev. 1b

10. Cryptanalysis of MPDC-I

10.1 Threat Model and Target Properties
We analyze MPDC-I under an active, adaptive adversary U that

e controls all network links (eavesdrop, drop, modify, replay, reorder);

o compromises at will any subset of long-term keys or certificates held by Client C, MAS
S, Agent A;, DLA D, or RDS R;

o performs chosen-ciphertext queries to the IND-CCA KEM (Kyber / McEliece) and
chosen-message queries to the EUF-CMA signature (Dilithium / SPHINCS+);

e enjoys unlimited classical computing power and, after protocol termination, a large-scale
quantum computer.

Security goals:
Goal Symbolic requirement

Entity Authentication C and S accept iff every certificate chain verifies to RDS and all
message signatures/MACs validate.

Session-key Secrecy The two tunnel keys (k®, k™) are indistinguishable from random
to A.

Forward Secrecy (FS) Compromise of any long-term key after tunnel teardown reveals
no past session keys.

Predictive-Resistance Compromise of client or MAS state before the next fragment

(PR) refresh reveals no future keys.

Replay & Downgrade All MPDC packets embed a sequence number and UTC

Resistance timestamp inside the signed/MAC’d data.

Robustness Any authentication failure aborts the entire handshake, as

mandated in § 5 “Design Requirements”.

10.2 Security Analysis of the Interior Key-Exchange
10.2.1 Fragment-Collection Sub-protocol

1. MAS authenticity — C accepts a fragment bundle only if every included Agent
fragment is MAC’d under an efk that C can reconstruct from its unique mfk with that
Agent and the MAS-supplied token (§ 5.5). Forgery = break KMAC (UF-CMA) or
derive mfk without running the 3-pass authenticated KEM.

2. Entropy injection — Session-key input = (MAS frag || A: frag || --- || A, frag). Each
fragment is 256-bit uniformly random (SHAKE output) and XOR-masked under an
independent efk. Unless all contributing Agents are compromised, the min-entropy of the
concatenation remains > 256 bits.

59

MPDC-2024 Rev. 1b

3. IND-CPA /INT-CTXT — The data tunnel uses RCS+KMAC AEAD (optionally AES-
GSM) with per-packet {seq, utc} as AAD. Confidentiality reduces to PRF-security of
RCS and MAC-unforgeability of KMAC.

10.2.2 Forward & Post-compromise Security

e FS: All TKC entries and mfk-derived efk keys are wiped immediately after use; the
surviving state on C and S contains only {k®, k™}. Compromise of signing keys or mfk
after that point yields no information on past tunnels.

e PR: An attacker that snapshots C before the next fragment cycle cannot compute the
upcoming efk because:

etknext = KDF(mfk_Cai Il Hwvas || Hai Il toknext),

and tokyex is generated by S affer the snapshot. Breaking PR requires predicting a 256-bit nonce
and defeating KDF-SHAKE.

10.2.3 Replay, Reflection, Downgrade

o Every network message binds seqlutc inside the signature/MAC. Re- use fails because
seq is strictly monotone per channel; utc must verify |A| < 1 (default 60 s).

e Protocol version and cryptographic configuration-set 1D are hashed into every certificate
and into the fragment-encryption KDF input, eliminating silent algorithm downgrade.
MDPC Specification

10.3 System-level Attack Surface

Vector Mitigation Residual risk
Single-point CA Root certificate hard-expiry; proxy-signing Short-lived (< 90 d) root
failure (RDS) via DLA; revocation broadcast (§ 6.10). epochs recommended.
Compromised Needs to corrupt al/ Agents contributing toa Diversify geography &
Agent given handshake to bias the KDF; partial HSM vendors of
leakage only reduces entropy. Agents.
Side-channel on mfk lives only in volatile RAM; Harden HSM with DPA
mfk implementations follow QSC constant-time counter-measures.
style.
Traffic analysis Fixed-size packets; optional PAD frames Correlation on packet
under consideration (§ 5 “Design rate still possible.

Requirements”).

10.4 Expanded Comparison with Representative Multi-Party Cryptography
(MPC) Schemes

60

MPDC-2024 Rev. 1b

The table below refines § 10.4 by contrasting MPDC-I with three well-known families of multi-
party protocols, weighing them along five axes that matter in real deployments:

Dimension MPDC-1 MLS/ Threshold- SPDZ-
TreeKEM
(RFC ECDH / 2k
(actively
9380, 2024) TSS
(GG- secure MPC)
18 / GG-20)

Primary goal Post-quantum Large-scale group Distributed General secure
client—server messaging w. FS & signing / computation
tunnel with PCS decryption over arithmetic
entropy without circuits
splitting across revealing key
n Agents

Cryptographic Kyber + TreeKEM (X25519); Elliptic-curve ~ Packed secret-

core McEliece Ed25519 sig.; HPKE- DKG; sharing;
KEM; ChaCha20-Poly1305 interactive homomorphic
Dilithium / Zero- MACs; OT +
SPHINCS+ knowledge; GMW
sig.; Paillier
RCS+KMAC
AEAD

Post-quantum /' (native) X (classical) A (research A (if using

PQ-TSS lattice OT)
variants)

Forward v freshKEM V' asymratchet per v (fresh N/A (offline pre-

secrecy (FS) keys each epoch nonce in DKG) = processing)
session

Post- v mandatory v (Leaf & Group X (no built-in N/A

compromise symmetric + TreeKEM update) ratchet)

security (PCS) optional asym
ratchets

MitM surface All handshake TreeKEM signatures Interactive Requires
msgs signed on Update/Commit; proofs authenticated
by MAS & HPKE authenticated authenticated = OT channel;
validated to channel; PKI root CA over mutually ~ MitM breaks
RDS; Agents trusted channel = correctness if
MAC their — MitM OT not
fragments — blocked if one authenticated
MitM must honest party
break EUF-

CMA or IND-
CCA

Handshake 3RTIT (C~D, 2RTT (init)+ 1 RTT 2-5RTT Dozens of OT &

round-trips CeS, per epoch dependingon ~ MAC rounds
S« Agents) TSS variant

61

MPDC-2024 Rev. 1b

Scalability

Online perf. at
256-bit sec.

Replay /
downgrade
defense

Indispensable
trust

Typical
deployment

Linear in
#Agents (n <8
typical)

~ 1.8 ms KEM
+ 2 KB traffic
(n=4)

seqlutc in
every
signed/MAC’d
field; cfg hash
bound into
KDF
Root-signed
RDS +
majority of
Agents honest
Fintech VPN,
fleet mgmt.,
SCADA

Key Take-aways

Security strength

Log: M members
(balanced tree)

~09ms DH + 1 KB

(M = 32)

Epoch + transcript

hash

One honest member

per epoch

Encrypted chat
(Signal, Matrix)

All-to-all or
dealer — O(n?)

25-40 ms per
party, 30 KB

Depends on
application
layer

One honest
key-share
holder

Crypto-wallet,
HSM quorum

Quadratic
comm. in party
count

> 100 ms, > 1
MB per gate

Depends on OT-
auth

Honest majority
(t<n/3)

Privacy-
preserving
analytics

e Post-quantum assurance — MPDC-I adopts lattice + code-based KEMs and hash-
based / lattice signatures, whereas MLS and today’s production TSS still rely on
classical elliptic curves.

e MitM robustness — MPDC-I signs every control packet (including Agent fragments) and
embeds a configuration-ID hash in its KDF, removing downgrade vectors. MLS signs
only epoch commits; intermediate handshake traffic is HPKE-authenticated but not
globally transcript-bound, leaving room for exotic prefix attacks if the application layer
forgets to enforce the transcript hash.

e Resilience to single-party compromise — Thanks to entropy splitting, MPDC-I
preserves > 256-bit min-entropy so long as one Agent remains honest; TreeKEM
collapses to 128-bit if any member’s leaf secret leaks; most 2-0f-3 TSS deployments lose
the entire signing key if two shares collude.

Performance

e MPDC-I’s online cost grows linearly with the number of contributing Agents; in realistic
setups (Agent quorum < 8) it stays below 3 ms on commodity x86, only double MLS

while delivering PQ security.

e Threshold-ECDH and SPDZ incur interactive, all-to-all rounds; latency dominates in
WAN deployments and renders them unsuitable for “open tunnel in <10 ms targets.

62

MPDC-2024 Rev. 1b

Offline, MPDC-I lets Agents pre-compute fragment caches, cutting MAS handshake
CPU by = 80 %.

Man-in-the-Middle (MitM) exposure

Scheme Earliest point MitM can inject without Reason
being detected

MPDC-I After MAS sends FINISH packet — but Every packet signed/MACed,
MAC/Sig check fails immediately seq# monotone

MLS During Welcome if DS identity not pinned DS leaf not signed by

TreeKEM external CA

GG-20 TSS After key-generation until signature Messages authenticated per
aggregation — MitM can force abort but not share
forge

SPDZ-2k Any OT channel if lacking TLS — will corrupt ~ OT not integrity-protected by

output silently design

Summary

MPDC-I strikes a middle ground:

It offers quantum-resistant, tunnel-oriented security stronger than today’s MLS or TSS
yet avoids the heavy-weight arithmetic of generic MPC.

Its MitM surface is narrower than MLS because of full-transcript signatures and
sequence-number binding.

Performance stays practical (< 3 ms, <3 KB) for the intended small-to-medium operator
pools, whereas full MPC protocols remain orders of magnitude slower.

For infrastructures that already trust a root CA and can deploy 3—8 hardened Agents, MPDC-I
delivers a uniquely strong, efficiently deployable alternative to classical group key-exchange or
threshold-ECDH solutions.

10.5 Recommendations

b s

Root-key rotation & CRLite-style revocation to cap RDS compromise impact.
Length-hiding padding option (PAD flag) to mitigate traffic-shape leakage.

Public audit of RCS wide-block cipher; provide AES-GCM fallback for FIPS zones.
Automated Agent health checking—MAS aborts handshake if fewer than ¢ fragments
arrive, where ¢ is policy-configurable quorum.

10.6 Conclusion

Under standard assumptions (IND-CCA KEM, EUF-CMA signatures, PRF-secure
SHAKE/KMAC, and honest-majority Agents), MPDC-I achieves entity authentication, strong

63

MPDC-2024 Rev. 1b

session-key secrecy, forward & predictive security, and robustness against replay and downgrade
attacks, even against quantum-equipped adversaries. Its entropy-splitting design offers a
measurably higher security margin than single-source tunnels and positions MPDC-I as a
practical, post-quantum-ready alternative to MLS or classic SSH/TLS in environments where
centralized trust and scalable, lightweight operations are paramount.

64

MPDC-2024 Rev. 1b

10. Internal Functions

10.1 MPDC Certificate API Documentation

10.1.1 Function: mpdc_certificate algorithm_ decode
Purpose: Decodes a protocol-set string into its enumerated form for internal use.
Parameters:

e name (Type: const char*): A string representing the protocol-set.

Returns: mpdc_configuration_sets - The protocol-set enumerator corresponding to the provided
string.

10.1.2 Function: mpdc_certificate_algorithm_enabled
Purpose: Tests if a specific protocol-set is enabled on this system.
Parameters:

e conf (Type: mpdc_configuration sets): The protocol-set enumerator.

Returns: bool - Returns true if the protocol-set is enabled.

10.1.3 Function: mpdc_certificate algorithm_encode
Purpose: Encodes the protocol-set enumerator to a string format.
Parameters:

e name (Type: char*): The output protocol-set string.
e conf (Type: mpdc_configuration_sets): The protocol-set enumerator.

Returns: void

10.1.4 Function: mpdc_certificate child are equal

Purpose: Compares two child certificates for equivalence.

65

MPDC-2024 Rev. 1b

Parameters:

e a(Type: const mpdc child certificate*): The first certificate.
e b (Type: const mpde_child_certificate*): The second certificate.

Returns: bool - Returns true if the two certificates are equal.

10.1.5 Function: mpdc_certificate_child copy
Purpose: Copies data from one child certificate to another.
Parameters:

e output (Type: mpde child certificate*): The destination certificate for copied data.
e input (Type: const mpdc_child_certificate*): The source certificate to copy.

Returns: void

10.1.6 Function: mpdc_certificate child create
Purpose: Initializes a new child certificate with provided parameters.
Parameters:
o child (Type: mpdc_child_certificate*): A pointer to the empty child certificate.
e pubkey (Type: const uint8 t*): A pointer to the public signature key (size:
QSMP_VERIFYKEY SIZE).
e expiration (Type: const mpdc_certificate_expiration*): The certificate expiration time structure.
e address (Type: const char*): The certificate IP address string.
e issuer (Type: const char*): The certificate issuer string.

e designation (Type: mpdc network_designations): The certificate designation type.

Returns: void

10.1.7 Function: mpdc_certificate child decode
Purpose: Decodes a child certificate string into a certificate structure.

Parameters:

66

MPDC-2024 Rev. 1b

e child (Type: mpdc_child certificate*): A pointer to the child certificate to populate.
e enck (Type: const charfMPDC_CHILD CERTIFICATE STRING SIZE]): The encoded key array.

Returns: bool - Returns true if the key decoded successfully.

10.1.8 Function: mpdc_certificate child deserialize
Purpose: Deserializes a child certificate from a serialized input array into a structure.
Parameters:

e child (Type: mpdc_child certificate*): A pointer to the child certificate.
o input (Type: const uint8_t*): A pointer to the serialized certificate data.

Returns: void

10.1.9 Function: mpdc_certificate child encode
Purpose: Encodes a child certificate into a readable string format.
Parameters:
e enck (Type: charffMPDC_CHILD_CERTIFICATE _STRING_SIZE]): The buffer to store the
encoded certificate.

e child (Type: const mpdc_child_certificate*): The certificate to encode.

Returns: size t - The size of the encoded certificate string.

10.1.10 Function: mpdc_certificate child erase
Purpose: Deletes the data of a child certificate.
Parameters:
e child (Type: mpdc_child_certificate*): A pointer to the child certificate to erase.

Returns: void

67

MPDC-2024 Rev. 1b

10.1.11 Function: mpdc_certificate child file to struct
Purpose: Loads a child certificate from a file into a structure.
Parameters:

o fpath (Type: const char*): The file path to the serialized certificate.
e child (Type: mpdc child certificate*): A pointer to the child certificate structure to populate.

Returns: bool - Returns true on successful loading.

10.1.12 Function: mpdc_certificate child hash
Purpose: Generates a hash of a child certificate.
Parameters:
e output (Type: uint8_t*): The output buffer for the hash (size:
MPDC CERTIFICATE HASH_SIZE).

e child (Type: const mpdc_child_certificate*): A pointer to the child certificate to hash.

Returns: void

10.1.13 Function: mpdc_certificate child is_valid
Purpose: Checks if a child certificate has a valid format.
Parameters:
e child (Type: const mpde_child_certificate*): A pointer to the child certificate to validate.

Returns: bool - Returns true if the certificate format is valid.

10.1.14 Function: mpdc_certificate_child_message verify
Purpose: Verifies a message signature using the child certificate.
Parameters:

o message (Type: uint8_t*): The buffer to store the verified message output.

68

MPDC-2024 Rev. 1b

o msglen (Type: size t*): The length of the verified message.

e signature (Type: const uint8_t*): The signed message.

o siglen (Type: size t): The length of the signed message.

e child (Type: const mpdc_child_certificate*): A pointer to the child certificate used for
verification.

Returns: bool - Returns true if the message signature is verified.

10.1.15 Function: mpdc_certificate child_serialize
Purpose: Serializes a child certificate into a byte array.
Parameters:
o output (Type: uint8_t*): The array to receive the serialized certificate (size:
MPDC CERTIFICATE CHILD SIZE).

e child (Type: const mpde_child_certificate*): The child certificate to serialize.

Returns: void

10.1.16 Function: mpdc_certificate_child_struct to_file
Purpose: Saves a child certificate structure to a file.
Parameters:

o fpath (Type: const char*): The file path where the certificate will be saved.
e child (Type: const mpde_child_certificate*): A pointer to the child certificate structure to save.

Returns: bool - Returns true on successful saving.

10.1.17 Function: mpdc_certificate_designation_decode
Purpose: Decodes a network designation string into its enumerated form.
Parameters:

e sdsg (Type: const char*): The string representing the network designation.

Returns: mpdc_network_designations - The enumerated network designation.

69

MPDC-2024 Rev. 1b

10.1.18 Function: mpdc_certificate_designation_encode
Purpose: Encodes a network designation enumerator to string format.
Parameters:
e sdsg (Type: char*): The buffer to store the encoded network designation string.
e designation (Type: mpdc network designations): The network designation enumerator to

encode.

Returns: size t - The size of the encoded string.

10.1.19 Function: mpdc_certificate_expiration_set days
Purpose: Sets expiration days for a certificate.
Parameters:
e expiration (Type: mpdc_certificate_expiration*): Pointer to the expiration structure to
configure.
o start (Type: uint16_t): Number of days before the certificate becomes valid.

e duration (Type: uint16_t): Duration in days for the certificate validity.

Returns: void

10.1.20 Function: mpdc_certificate expiration_set seconds
Purpose: Sets expiration time in seconds for a certificate.
Parameters:
e expiration (Type: mpdc_certificate_expiration*): Pointer to the expiration structure to
configure.
o start (Type: uint64 t): The starting second when the certificate is valid.

e period (Type: uint64 _t): Duration in seconds for the certificate validity.

Returns: void

70

MPDC-2024 Rev. 1b

10.1.21 Function: mpdc_certificate_expiration_time_verify
Purpose: Verifies if a certificate’s expiration time is valid against the current time.
Parameters:

e expiration (Type: const mpdc_certificate expiration*): A pointer to the expiration structure of
the certificate.

Returns: bool - Returns true if the certificate has not expired.

10.1.22 Function: mpdc_certificate_message _hash_sign
Purpose: Hashes a message and generates a signature for the hash.
Parameters:
e signature (Type: uint8_t*): Buffer for storing the generated signature.
e sigkey (Type: const uint8_t*): The private signing key used for signing.
e message (Type: const uint8_t*): The message to sign.

o msglen (Type: size t): Length of the message.

Returns: size t - The size of the generated signature.

10.1.23 Function: mpdc_certificate_root_compare
Purpose: Compares two root certificates for equivalence.
Parameters:

e a(Type: const mpdc root certificate*): The first root certificate.
e b (Type: const mpde_root_certificate*): The second root certificate.

Returns: bool - Returns true if the two root certificates are equal.

10.1.24 Function: mpdc_certificate root create
Purpose: Creates a new root certificate with specified parameters.

Parameters:

71

MPDC-2024 Rev. 1b

e root (Type: mpde root certificate*): Pointer to the root certificate structure.

e pubkey (Type: const uint8_t*): Public key for the certificate.

e cxpiration (Type: const mpdc_certificate expiration*): Certificate expiration time structure.
o issuer (Type: const char*): Issuer name string.

Returns: void

10.1.25 Function: mpdc_certificate_root_decode
Purpose: Decodes a root certificate from an encoded string.
Parameters:

e oot (Type: mpdc root certificate*): Pointer to the root certificate structure to populate.
e enck (Type: const char*): Encoded string representing the certificate.

Returns: bool - Returns true if decoding is successful.

10.1.26 Function: mpdc_certificate_root_deserialize
Purpose: Deserializes a root certificate from a byte array.
Parameters:

e oot (Type: mpdc_root_certificate*): Pointer to the root certificate to populate.
o input (Type: const uint8_t*): Input array containing the serialized certificate data.

Returns: void

10.1.27 Function: mpdc_certificate_root_encode
Purpose: Encodes a root certificate into a readable string format.
Parameters:

e enck (Type: char*): Buffer to store the encoded certificate.
e oot (Type: const mpdc_root_certificate*): Root certificate to encode.

Returns: size t - The size of the encoded certificate string.

72

MPDC-2024 Rev. 1b

10.1.28 Function: mpdc_certificate_root_erase
Purpose: Deletes data from a root certificate.
Parameters:
e oot (Type: mpdc root_certificate*): Pointer to the root certificate to erase.

Returns: void

10.1.30 Function: mpdc_certificate root file to_struct
Purpose: Loads a root certificate from a file into a structure.
Parameters:

o fpath (Type: const char*): Path to the file containing the serialized certificate.
e oot (Type: mpdc root_certificate*): Pointer to the root certificate structure to populate.

Returns: bool - Returns true on successful loading.

10.1.31 Function: mpdc_certificate_root_hash
Purpose: Generates a hash of a root certificate.
Parameters:

e output (Type: uint8_t*): Buffer to store the hash (size: MPDC_CERTIFICATE HASH_SIZE).
e oot (Type: const mpdc_root_certificate*): Pointer to the root certificate to hash.

Returns: void

10.1.32 Function: mpdc_certificate_root is_valid
Purpose: Validates the format and structure of a root certificate.

Parameters:

73

MPDC-2024 Rev. 1b

e root (Type: const mpdc root certificate*): Pointer to the root certificate to validate.

Returns: bool - Returns true if the root certificate is valid.

10.1.33 Function: mpdc_certificate_root_serialize
Purpose: Serializes a root certificate into a byte array.
Parameters:
o output (Type: uint8_t*): Array to receive the serialized certificate (size:
MPDC CERTIFICATE ROOT SIZE).

e oot (Type: const mpde_root_certificate*): Pointer to the root certificate to serialize.

Returns: void

10.1.34 Function: mpdc_certificate_root_sign

Purpose: Signs a child certificate with the root certificate’s signing key.

Parameters:
e child (Type: mpdc_child_certificate*): Pointer to the child certificate to sign.
e root (Type: const mpdc_root_certificate*): Pointer to the root certificate used for signing.
o rsigkey (Type: const uint8_t*): Pointer to the root signing key

(QSMP_SIGKEY_ENCODED_SIZE).

Returns: size_t - The size of the signed certificate.

10.1.35 Function: mpdc_certificate_root signature verify
Purpose: Verifies a child certificate’s signature using the root certificate.
Parameters:

e child (Type: const mpdc_child_certificate*): Pointer to the child certificate being verified.
e oot (Type: const mpdc_root_certificate*): Pointer to the root certificate for verification.

Returns: bool - Returns true if the signature is verified successfully.

74

MPDC-2024 Rev. 1b

10.1.37 Function: mpdc_certificate root_struct to_file
Purpose: Saves a root certificate structure to a file.
Parameters:

o fpath (Type: const char*): Path to the file where the certificate will be saved.
e root (Type: const mpdc root certificate*): Pointer to the root certificate structure to save.

Returns: bool - Returns true on successful saving.

10.1.38 Function: mpdc_certificate_signature_generate keypair
Purpose: Generates an asymmetric key-pair for signing and verification.
Parameters:

e keypair (Type: mpdc_signature_keypair*): Pointer to a container that will hold the generated
key-pair.

Returns: void

10.1.39 Function: mpdc_certificate_signature_hash_verify
Purpose: Verifies a signature over a hashed message using the child certificate.
Parameters:

e signature (Type: const uint8_t*): Pointer to the signed hash.

e siglen (Type: size_t): Length of the signed hash.

e message (Type: const uint8_t*): Pointer to the message hash.

o msglen (Type: size_t): Length of the message hash.

e Icert (Type: const mpdc_child_certificate*): Pointer to the certificate used for verification.

Returns: bool - Returns true if the signature is verified successfully.

10.1.40 Function: mpdc_certificate_signature_sign message

75

MPDC-2024 Rev. 1b

Purpose: Signs a message using an asymmetric private key.
Parameters:
e signature (Type: uint8_t*): Array to store the generated signature
(MPDC_ASYMMETRIC_SIGNATURE _SIZE).
e message (Type: const uint8_t*): The message to be signed.
o msglen (Type: size t): Length of the message.

o prikey (Type: const uint8_t*): Private key used for signing.

Returns: size t - The length of the generated signature.

10.1.41 Function: mpdc_certificate_signature_verify message
Purpose: Verifies a signed message using an asymmetric public key.
Parameters:

e message (Type: const uint8_t*): The message to verify.

o msglen (Type: size t): Length of the message.

e signature (Type: const uint8_t*): The signature to verify.

o siglen (Type: size_t): Length of the signature.

e pubkey (Type: const uint8_t*): Public key used for verification.

Returns: bool - Returns true if the message is verified successfully.

10.2 Crypto.h

10.2.1 Function: mpdc_crypto decrypt_stream

Purpose: Decrypts a stream of bytes.

Parameters:
o output (Type: uint8_t*): Array receiving the decrypted plain text.
e seed (Type: const uint8_t*): Secret seed array (MPDC_CRYPTO_SEED SIZE).
e input (Type: const uint8_t*): The encrypted input array.

e length (Type: size_t): Number of bytes to decrypt.

Returns: bool - Returns true on success.

76

MPDC-2024 Rev. 1b

10.2.2 Function: mpdc_crypto_encrypt_stream

Purpose: Encrypts a stream of bytes.

Parameters:
o output (Type: uint8_t*): Array receiving the encrypted cipher text.
e seed (Type: const uint8 t*): Secret seed array (MPDC_CRYPTO SEED SIZE).
e input (Type: const uint8_t*): Plain text input array.

e length (Type: size t): Number of bytes to encrypt.

Returns: void

10.2.3 Function: mpdc_crypto generate application keychain
Purpose: Generates a secure key chain for application use.
Parameters:

e seed (Type: uint8_t*): Output array for the secret seed.

e seedlen (Type: size t): Length of the seed array.

e password (Type: const char*): Password array.

e passlen (Type: size t): Byte length of the password array.

e username (Type: const char*): Computer's user name.

o userlen (Type: size t): Byte length of the user name array.

Returns: void

10.2.4 Function: mpdc_crypto generate application_salt
Purpose: Generates a unique application salt using OS sources.
Parameters:

e output (Type: uint8_t*): Array for the secret salt.
o outlen (Type: size_t): Length of the salt array.

Returns: void

10.2.5 Function: mpdc_crypto_generate_hash_code

77

MPDC-2024 Rev. 1b

Purpose: Hashes a message and writes it to an output array.
Parameters:

e output (Type: char*): Output array to receive the hash.

e message (Type: const char*): Pointer to the message array.

e msglen (Type: size t): Length of the message array.

Returns: void

10.2.6 Function: mpdc crypto generate mac_code

Purpose: Generates a message authentication code (MAC) for a message and writes it to an
output array.

Parameters:

e output (Type: char*): Output array to receive the MAC.

e outlen (Type: size t): Byte length of the output array.

e message (Type: const char*): Pointer to the message array.
e msglen (Type: size t): Length of the message array.

e key (Type: const char*): Pointer to the key array.

e keylen (Type: size_t): Length of the key array.

Returns: void

10.2.7 Function: mpdc_crypto_hash password
Purpose: Hashes a password and user name and writes it to an output array.
Parameters:

e output (Type: char*): Output array to receive the hash.

o outlen (Type: size_t): Byte length of the output array.

e username (Type: const char*): Computer's user name.

o userlen (Type: size_t): Byte length of the user name array.

e password (Type: const char*): Password array.

e passlen (Type: size_t): Byte length of the password array.

Returns: void

78

MPDC-2024 Rev. 1b

10.2.8 Function: mpdc_crypto_password minimum_check
Purpose: Checks if a password meets a minimum security threshold.
Parameters:

e password (Type: const char*): Password array.
e passlen (Type: size t): Byte length of the password array.

Returns: bool - Returns true if the password meets minimum requirements.

10.2.9 Function: mpdc_crypto_password_verify
Purpose: Hashes a password and user name and compares it to a stored hash value.
Parameters:

e username (Type: const char*): Computer's user name.

o userlen (Type: size t): Byte length of the user name array.

e password (Type: const char*): Password array.

e passlen (Type: size t): Byte length of the password array.

e hash (Type: const char*): Hash array for comparison.

e hashlen (Type: size_t): Byte length of the hash array.

Returns: bool - Returns true if the password and user name hash matches the stored value.

10.2.10 Function: mpdc_crypto_secure_memory_allocate
Purpose: Allocates a block of secure memory.
Parameters:
e length (Type: size_t): Byte length of the memory block to allocate.

Returns: uint8_t* - Pointer to the allocated memory or NULL if allocation fails.

10.2.11 Function: mpdc_crypto_secure_memory deallocate

Purpose: Releases an allocated block of secure memory.

79

MPDC-2024 Rev. 1b

Parameters:

e block (Type: uint8_t*): Pointer to the memory block to deallocate.
e length (Type: size_t): Byte length of the allocated memory block.

Returns: void

10.3 API Documentation MPDC.h

10.3.1 Constants

MPDC_NETWORK_CLIENT_CONNECT

Enables client-to-client encrypted tunnels.
MPDC_NETWORK _MFK HASH_CYCLED
Enables MFK key cycling (default).
MPDC_NETWORK_PROTOCOL_IPV6

Indicates that MPDC is using the IPv6 networking stack.
MPDC_EXTENDED_ SESSION_SECURITY
Enables 512-bit security on session tunnels.

MPDC_ASYMMETRIC_CIPHERTEXT_SIZE

Defines the byte size of the asymmetric cipher-text array.

Value: QSC_KYBER CIPHERTEXT SIZE (variable, depending on the selected cipher).
MPDC_ASYMMETRIC_PRIVATE_KEY_SIZE

Defines the byte size of the asymmetric cipher private key array.

Value: QSC_KYBER PRIVATEKEY SIZE (variable, depending on the selected cipher).
MPDC_ASYMMETRIC_PUBLIC_KEY_SIZE

Defines the byte size of the asymmetric cipher public key array.

Value: QSC_KYBER PUBLICKEY SIZE (variable, depending on the selected cipher).
MPDC_ASYMMETRIC_SIGNATURE_SIZE

Defines the byte size of the asymmetric signature array.

Value: QSC _DILITHIUM_SIGNATURE_ SIZE (variable, depending on the selected signature
algorithm).

MPDC_ASYMMETRIC_SIGNING_KEY_SIZE

Defines the byte size of the asymmetric signing key array.

Value: QSC _DILITHIUM PRIVATEKEY SIZE (variable, depending on the selected signature
algorithm).

MPDC_ASYMMETRIC_VERIFICATION_KEY_SIZE

Defines the byte size of the asymmetric verification key array.

Value: QSC_DILITHIUM PUBLICKEY SIZE (variable, depending on the selected signature
algorithm).

80

MPDC-2024 Rev. 1b

MPDC_ACTIVE_VERSION

Defines the active version of MPDC.

Value: 1
MPDC_ACTIVE_VERSION _ SIZE
Defines the size of the MPDC active version.
Value: 2

MPDC_APPLICATION_AGENT_PORT
Defines the default port number for the Agent.
Value: 37766

MPDC_AGENT_FULL_TRUST

Defines the full trust designation number.

Value: 1000001

MPDC_AGENT MINIMUM_TRUST

Defines the minimum trust designation number.
Value: 1

MPDC_AGENT _NAME_MAX SIZE

Defines the maximum agent name string length in characters. The last character must be a string
terminator.

Value: 256

MPDC_AGENT _TWOWAY_TRUST

Defines the two-way trust designation number.
Value: 1000002
MPDC_APPLICATION_CLIENT PORT
Defines the default port number for the MPDC Client.
Value: 37761
MPDC_APPLICATION_DLA PORT

Defines the default port number for the DLA.
Value: 37762
MPDC_APPLICATION_IDG_PORT

Defines the default port number for the MPDC IDG.
Value: 37763
MPDC_APPLICATION_RDS PORT

Defines the default port number for the RDS.
Value: 37764
MPDC_APPLICATION_MAS PORT

Defines the default port number for the MAS.
Value: 37765

MPDC_CANONICAL_NAME_ MINIMUM_SIZE
Defines the minimum size for a canonical name.
Value: 3

MPDC_CERTIFICATE _ADDRESS SIZE
Defines the maximum IP address length.

Value: 22

81

MPDC-2024 Rev. 1b

MPDC_CERTIFICATE_ALGORITHM_SIZE

Defines the algorithm type size.

Value: 1

MPDC_CERTIFICATE_DEFAULT_PERIOD

Defines the default certificate validity period in seconds.
Value: 365 * 24 * 60 * 60 * 1000 (1 year)
MPDC_CERTIFICATE_DESIGNATION_SIZE
Defines the size of the child certificate designation field.
Value: 1

MPDC_CERTIFICATE_EXPIRATION_SIZE

Defines the certificate expiration date length.

Value: 16

MPDC_CERTIFICATE_HASH_SIZE

Defines the size of the certificate hash in bytes.

Value: 32

MPDC_CERTIFICATE_ISSUER_SIZE

Defines the maximum certificate issuer string length. The last character must be a string
terminator.

Value: 256

MPDC_CERTIFICATE_LINE_LENGTH

Defines the line length of the printed MPDC certificate.
Value: 64

MPDC_CERTIFICATE_ MAXIMUM_PERIOD
Defines the maximum certificate validity period in seconds.
Value: MPDC CERTIFICATE DEFAULT PERIOD * 2
MPDC_CERTIFICATE_MINIMUM_PERIOD

Defines the minimum certificate validity period in seconds.
Value: 24 * 60 * 60 * 1000 (1 day)
MPDC_CERTIFICATE_SERIAL_SIZE

Defines the certificate serial number field length.

Value: 16

MPDC_CERTIFICATE_HINT_SIZE

Defines the size of the topological hint.

Value: MPDC CERTIFICATE HASH SIZE + MPDC_CERTIFICATE SERIAL SIZE
MPDC_CERTIFICATE_SIGNED_HASH_SIZE
Defines the size of the signature and hash field in a certificate.
Value: MPDC ASYMMETRIC SIGNATURE SIZE + MPDC_CERTIFICATE HASH_SIZE
MPDC_CERTIFICATE_VERSION_SIZE

Defines the version ID size.

Value: 1

MPDC_CERTIFICATE_CHILD_SIZE

Defines the length of a child certificate.

Value: Calculated based on various field sizes.
MPDC_CERTIFICATE_IDG_SIZE

Defines the length of an IDG certificate.

Value: Calculated based on various field sizes.

82

MPDC-2024 Rev. 1b

MPDC_CERTIFICATE_ROOT_SIZE

Defines the length of a root certificate.

Value: Calculated based on various field sizes.
MPDC_CRYPTO SYMMETRIC KEY_SIZE

Defines the byte length of the symmetric cipher key.

Value: 32
MPDC_CRYPTO_SYMMETRIC_NONCE_SIZE
Defines the byte length of the symmetric cipher nonce.
Value: 32

MPDC_CRYPTO_SEED_SIZE

Defines the seed array byte size.

Value: 64
MPDC_CRYPTO_SYMMETRIC_TOKEN_SIZE
Defines the byte length of the token.

Value: 32

MPDC_CRYPTO _SYMMETRIC_HASH_SIZE

Defines the hash function output byte size.

Value: 32

MPDC_CRYPTO_SYMMETRIC_MAC_SIZE

Defines the MAC function output byte size.

Value: 32 or 64 if MPDC_EXTENDED SESSION SECURITY is enabled.
MPDC_CRYPTO_SYMMETRIC_SECRET_SIZE
Defines the shared secret byte size.

Value: 32
MPDC_CRYPTO_SYMMETRIC_SESSION_KEY_SIZE
Defines the session key security size.

Value: 32 or 64 if MPDC_EXTENDED SESSION SECURITY is enabled.
MPDC_DLA_CONVERGENCE_INTERVAL

Defines the interval between agent convergence checks in seconds.
Value: 86400 (24 hours)

MPDC_DLA _IP_MAX

Defines the maximum IP address length.

Value: 65

MPDC_DLA_PENALTY_MAX

Defines the maximum unreachable penalty before the DLA is deemed unreliable.
Value: 256

MPDC_DLA REDUCTION_INTERVAL

Defines the time in milliseconds before a penalty is reduced for a flapping DLA.
Value: 1000000

MPDC_DLA_UPDATE_WAIT_TIME

Defines the interval in seconds between full topology updates.

Value: 604800 (7 days)

MPDC_ERROR_STRING _DEPTH

Defines the number of error strings.

Value: 26

&3

MPDC-2024 Rev. 1b

MPDC_ERROR_STRING_WIDTH

Defines the maximum size in characters of an error string.
Value: 128

MPDC_MESSAGE_MAX_ SIZE

Defines the maximum message size, including maximum signature and certificate sizes.
Value: 1400000

MPDC_MFK_EXPIRATION_PERIOD

Defines the MFK validity period in seconds.

Value: 5184000 (60 days)
MPDC_MINIMUM_PATH_LENGTH

Defines the minimum file path length.

Value: 9

MPDC_NETWORK_CONNECTION_MTU

Defines the MPDC packet buffer size.

Value: 1500
MPDC_NETWORK_DOMAIN_NAME_MAX SIZE
Defines the maximum domain name length in characters. The last character must be a string
terminator.

Value: 256

MPDC_NETWORK_MAX AGENTS

Defines the maximum number of agent connections in a network.
Value: 1000000

MPDC_NETWORK_NODE_ID SIZE

Defines the node identification string length.

Value: 16

MPDC_PERIOD_DAY_TO_SECONDS

Defines the number of seconds in a day.

Value: 86400

MPDC_SOCKET_TERMINATOR_SIZE

Defines the packet delimiter byte size.

Value: 1

MPDC_PACKET_ERROR_SIZE

Defines the packet error message byte size.

Value: 1

MPDC_PACKET_HEADER_SIZE

Defines the MPDC packet header size.

Value: 22

MPDC_PACKET_SUBHEADER SIZE

Defines the MPDC packet sub-header size.

Value: 16
MPDC_PACKET_SEQUENCE_TERMINATOR
Defines the sequence number of a packet that closes a connection.
Value: OxXFFFFFFFFUL

MPDC_PACKET_TIME_SIZE

Defines the byte size of the serialized packet time parameter.
Value: 8

84

MPDC-2024 Rev. 1b

MPDC_PACKET_TIME_THRESHOLD

Defines the maximum number of seconds a packet is valid.

Value: 600 (default; can be modified)
MPDC_NETWORK_TERMINATION_MESSAGE_SIZE

Defines the network termination message size.

Value: 1

MPDC_NETWORK_TERMINATION_PACKET_SIZE

Defines the network termination packet size, including the header and termination message.
Value: MPDC PACKET HEADER SIZE +

MPDC_NETWORK TERMINATION MESSAGE SIZE

Enums

10.3.2 mpdc_configuration_sets

mpdc_configuration_set_none No algorithm
identifier is set.
mpdc_configuration_set_dilithium1_kyberl _rcs256_shake256 The Dilithium-
S1/Kyber-S1/RCS-
256/SHAKE-256
algorithm set.
mpdc_configuration_set_dilithium3 kyber3 rcs256 shake256 The Dilithium-
S3/Kyber-S3/RCS-
256/SHAKE-256
algorithm set.
mpdc_configuration_set_dilithium5_kyberS rcs256 shake256 The Dilithium-
S5/Kyber-S5/RCS-
256/SHAKE-256
algorithm set.
mpdc_configuration_set_dilithium5 kyber6 rcs512 shake512 The Dilithium-
S5/Kyber-S6/RCS-
256/SHAKE-256
algorithm set.
mpdc_configuration_set_sphincsplus1f mceliecel rcs256_shake256 The SPHINCS+-
S1F/McEliece-

85

MPDC-2024 Rev. 1b

mpdc_configuration_set sphincsplusls mceliecel rcs256 shake256

mpdc_configuration_set_sphincsplus3f mceliece3 _recs256_shake256

mpdc_configuration_set_sphincsplus3s_mceliece3 rcs256 shake256

mpdc_configuration_set_sphincsplusSf_mcelieceS_rcs256_shake256

mpdc_configuration_set_sphincsplusSs_mcelieceS_rcs256_shake256

mpdc_configuration_set sphincsplus5f mceliece6 rcs256 shake256

86

S1/RCS-
256/SHAKE-256
algorithm set.
The SPHINCS+-
S1S/McEliece-
S1/RCS-
256/SHAKE-256
algorithm set.
The SPHINCS+-
S3F/McEliece-
S3/RCS-
256/SHAKE-256
algorithm set.
The SPHINCS+-
S3S/McEliece-
S3/RCS-
256/SHAKE-256
algorithm set.
The SPHINCS+-
S5F/McEliece-
S5a/RCS-
256/SHAKE-256
algorithm set.
The SPHINCS+-
S5S/McEliece-
S5a/RCS-
256/SHAKE-256
algorithm set.
The SPHINCS+-
S5F/McEliece-
S5b/RCS-

MPDC-2024 Rev. 1b

mpdc_configuration_set_sphincsplusSs_mceliece6_rcs256_shake256

mpdc_configuration_set sphincsplus5f mceliece7 rcs256 shake256

mpdc_configuration_set_sphincsplusSs_mceliece7_res256 _shake256

10.3.3 mpdc_network_designations

256/SHAKE-256
algorithm set.
The SPHINCS+-
S5S/McEliece-
S5b/RCS-
256/SHAKE-256
algorithm set.
The SPHINCS+-
S5F/McEliece-
S5¢/RCS-
256/SHAKE-256
algorithm set.
The SPHINCS+-
S5S/McEliece-
S5¢/RCS-
256/SHAKE-256

algorithm set.

mpdc_network_designation_none No designation was selected.
mpdc_network_designation_agent The device is an agent.
mpdc_network_designation_client The device is a client.

mpdc_network designation_dla The device is the DLA.
mpdc_network designation_idg The device is an inter-domain gateway.
mpdc_network_designation_mas The device is a server.

mpdc_network _designation_remote The device is a remote agent.

mpdc_network_designation_rds The device is an RDS security server.

mpdc_network _designation_revoked The device has been revoked.

mpdc_network_designation_all Every server and client device on the network.

87

MPDC-2024 Rev. 1b

10.3.4 mpdc_network_errors

mpdc_network_error_none
mpdc_network error_accept_fail
mpdc_network_error_auth_failure
mpdc_network error_bad_keep_alive
mpdc_network error_channel down

mpdc_network error_connection_failure

mpdc_network error_decryption_failure

mpdc_network_error_establish_failure

mpdc_network_error_general_failure

mpdc_network error_hosts_exceeded
mpdc_network_error_identity_unknown
mpdc_network_error_invalid_input
mpdc_network_error_invalid_request
mpdc_network error_keep alive expired

mpdc_network_error_keep_alive_timeout

mpdc_network_error_kex_auth_failure

mpdc_network error_key not_recognized

mpdc_network_error_key has_expired
mpdc_network error_listener_fail

mpdc_network_error_memory_allocation

mpdc_network_error_packet_unsequenced

mpdc_network error_random_failure
mpdc_network_error_ratchet_fail

mpdc_network _error_receive failure

No error was detected.

The socket accept function returned an error.
The cipher authentication has failed.

The keep alive check failed.

The communications channel has failed.
The device could not make a connection to
the remote host.

The decryption authentication has failed.
The transmission failed at the kex establish
phase.

The connection experienced an unexpected
error.

The server has run out of socket connections.
The identity could not be verified.

The input is invalid.

The request is invalid.

The keep alive has expired with no response.
The keepalive failure counter has exceeded
the maximum limit.

The kex authentication has failed.

The key-id is not recognized.

The certificate has expired.

The listener function failed to initialize.

The server has run out of memory.

The packet was received out of sequence.
The random generator experienced a failure.
The ratchet operation has failed.

The receiver failed at the network layer.

88

MPDC-2024 Rev. 1b

mpdc_network error_transmit_failure The transmitter failed at the network layer.

mpdc_network_error_unknown_protocol The protocol version is unknown.

mpdc_network_error_unsequenced The packet was received out of sequence.

mpdc_network error_verify failure The expected data could not be verified.

10.3.5 mpdc_network_flags

mpdc_network_flag none

mpdc_network flag_connection_terminate_request

mpdc_network flag error_condition

mpdc_network flag fragment_collection_request

mpdc_network _flag_fragment_collection_response

mpdc_network flag fragment request

mpdc_network_flag fragment_response

mpdc_network flag fragment_query_request

mpdc_network_flag fragment_query_response

mpdc_network_flag_incremental_update_request

mpdc_network flag incremental update response

89

No flag was selected.

The packet contains a connection
termination message.

The connection experienced an error
message.

The packet contains a server
fragment collection request message.
The packet contains an agent
fragment collection response
message.

The packet contains a server
fragment key request message.

The packet contains an agent
fragment key response message.

The packet contains a server
fragment key query request message.
The packet contains an agent
fragment key query response
message.

The packet contains an incremental
update request message.

The packet contains an incremental

update response message.

MPDC-2024 Rev. 1b

mpdc_network flag register request

mpdc_network flag register _response

mpdc_network flag register update request

mpdc_network flag register update response

The packet contains a join request
message.

The packet contains a join response
message.

The packet contains a join update
request message.

The packet contains a join update

response

10.3.6 mpdc_network_flags enumeration documentation

mpdc_network flag register update response

mpdc_network flag keep alive_request

mpdc_network flag keep alive response

mpdc_network_flag mfk_establish

mpdc_network_flag mfk request

mpdc_network flag mfk response

mpdc_network flag mfk_verify

mpdc_network_flag network_announce_broadcast

90

The packet contains a join
update response message.

The packet contains a keep alive
request.

The packet contains a keep alive
response.

The packet contains a server
master fragment key establish
message.

The packet contains a server
master fragment key request
message.

The packet contains a client
MFK exchange response
message.

The packet contains a server
master fragment key verify
message.

The packet contains a topology

announce broadcast.

MPDC-2024 Rev. 1b

mpdc_network flag network converge request

mpdc_network_flag network_converge_response

mpdc_network flag network converge update

mpdc_network flag network resign request

mpdc_network flag network resign_response

mpdc_network flag network_revocation_broadcast

mpdc_network flag network signature request

mpdc_network flag system_error_condition

mpdc_network _flag_tunnel_connection_terminate

mpdc_network_flag tunnel_encrypted_message

mpdc_network_flag tunnel_session_established

mpdc_network_flag_tunnel_transfer_request

mpdc_network flag topology query request

mpdc_network flag topology query response

mpdc_network flag topology status request

91

The packet contains a network
convergence request message.
The packet contains a network
convergence response message.
The packet contains a network
convergence update message.
The packet contains a network
resignation request message.
The packet contains a network
resignation response message.
The packet contains a certificate
revocation broadcast.

The packet contains a certificate
signing request message.

The packet contains an error
condition message.

The packet contains a socket
close message.

The packet contains an
encrypted message.

The exchange is in the
established state.

Reserved - The host has received
a transfer request.

The packet contains a topology
query request message.

The packet contains a topology
query response message.

The packet contains a topology

status request message.

MPDC-2024 Rev. 1b

mpdc_network flag topology status response The packet contains a topology
status response message.
mpdc_network flag topology_status_available The packet contains a topology
status available message.
mpdc_network flag topology status synchronized The packet contains a topology
status synchronized message.
mpdc_network flag topology status unavailable The packet contains a topology
status unavailable message.
mpdc_network flag network remote_signing request The packet contains a remote
signing request message.
mpdc_network flag network remote_signing response The packet contains a remote

signing response message.

10.3.7 mpdc_protocol_errors

mpdc_protocol_error_none No error was detected.
mpdc_protocol_error_authentication_failure The symmetric cipher had an

authentication failure.

mpdc_protocol_error_certificate_not_found The node certificate could not be
found.

mpdc_protocol_error_channel_down The communications channel has
failed.

mpdc_protocol_error_connection_failure The device could not make a

connection to the remote host.
mpdc_protocol_error_connect_failure The transmission failed at the KEX

connection phase.
mpdc_protocol_error_convergence failure The convergence call has returned an

error.
mpdc_protocol_error_convergence synchronized The database is already synchronized.
mpdc_protocol_error_decapsulation_failure The asymmetric cipher failed to

decapsulate the shared secret.

92

MPDC-2024 Rev. 1b

mpdc_protocol_error_decoding failure The node or certificate decoding
failed.
mpdc_protocol_error_decryption_failure The decryption authentication has
failed.
mpdc_protocol_error_establish_failure The transmission failed at the KEX
establish phase.
mpdc_protocol_error_exchange failure The transmission failed at the KEX

exchange phase.

mpdc_protocol_error_file_not_deleted The application could not delete a
local file.
mpdc_protocol_error_file not found The file could not be found.
mpdc_protocol_error_file not_written The file could not be written to
storage.
mpdc_protocol_error_hash_invalid The public-key hash is invalid.
mpdc_protocol_error_hosts_exceeded The server has run out of socket
connections.
mpdc_protocol_error_invalid_request The packet flag was unexpected.
mpdc_protocol_error_certificate_expired The certificate has expired.
mpdc_protocol_error_key expired The MPDC public key has expired.
mpdc_protocol_error_key unrecognized The key identity is unrecognized.
mpdc_protocol_error_listener_fail The listener function failed to
initialize.
mpdc_protocol_error_memory_allocation The server has run out of memory.
mpdc_protocol_error_message time_invalid The network time is invalid or has

substantial delay.
mpdc_protocol_error_message verification_failure The expected data could not be

verified.
mpdc_protocol_error_no_usable_address The server has no usable IP address

assigned in the configuration.

93

MPDC-2024 Rev. 1b

mpdc_protocol error node not available

mpdc_protocol_error_node_not_found

mpdc_protocol error node was registered

mpdc_protocol error_operation_cancelled

mpdc_protocol_error_packet header_invalid

mpdc_protocol_error_packet_unsequenced

mpdc_protocol_error_receive failure

mpdc_protocol_error_root_signature_invalid

mpdc_protocol_error_serialization_failure

mpdc_protocol_error_signature_failure

mpdc_protocol_error_signing_failure

mpdc_protocol_error_socket binding

mpdc_protocol_error_socket_creation

mpdc_protocol_error_transmit_failure

mpdc_protocol_error_topology no_agent

94

The node is not available for a
session.

The node could not be found in the
database.

The node was previously registered in
the database.

The operation was cancelled by the
user.

The packet header received was
invalid.

The packet was received out of
sequence.

The receiver failed at the network
layer.

The root signature failed
authentication.

The certificate could not be
serialized.

The signature scheme could not sign
a message.

The transmission failed to sign the
data.

The socket could not be bound to an
IP address.

The socket could not be created.
The transmitter failed at the network
layer.

The topological database has no agent

entries.

MPDC-2024 Rev. 1b

mpdc_protocol_error_unknown_protocol The protocol string was not
recognized.
mpdc_protocol_error_verification_failure The transmission failed at the KEX
verify phase.
Structs

10.3.8 mpdc_certificate_expiration

Name Description

from The starting time in seconds.

to The expiration time in seconds.

10.3.9 mpdc_child_certificate

csig The certificate’s signed hash.

verkey The serialized public verification key.
issuer The certificate issuer.

serial The certificate serial number.

rootser The root certificate's serial number.

expiration = The from and to certificate expiration times.
designation The certificate type designation.
algorithm The algorithm configuration identifier.

version The certificate version.

10.3.10 mpdc_idg_hint

Name Description

chash The remote certificate's signed hash.

rootser The remote certificate's root serial number.

10.3.11 mpdc_idg_certificate

Name Description

csig The certificate’s signed hash.

MPDC-2024 Rev. 1b

vkey The serialized public verification key.
xcert The serialized X509 certificate.
serial The certificate serial number.

rootser The root certificate's serial number.
hint The certificate's topological hint.
issuer The certificate issuer.

expiration The from and to certificate expiration times.
designation The certificate type designation.
algorithm The algorithm configuration identifier.

version The certificate version.

10.3.12 mpdc_connection_state
Name Description

target The target socket structure.

rxcpr The receive channel cipher state.

txcpr The transmit channel cipher state.

rxseq The receive channel's packet sequence number.
txseq The transmit channel's packet sequence number.

instance The connection’s instance count.

exflag The network stage flag.

10.3.13 mpdc_keep_alive state

target The target socket structure.
etime The keep alive epoch time.
seqctr The keep alive packet sequence counter.

recd The keep alive response received status.

10.3.14 mpdc_mfkey state

serial The MFK serial number.

96

MPDC-2024 Rev. 1b

mfk The master fragment key.

10.3.15 mpdc_network_packet

Name Description
flag The packet flag.
msglen The packet's message length.

sequence The packet sequence number.
utctime The UTC time the packet was created in seconds.

pmessage A pointer to the packet's message buffer.

10.3.16 mpdc_root_certificate

Name Description

verkey The serialized public key.

issuer The certificate issuer text name.

serial The certificate serial number.

expiration The from and to certificate expiration times.
algorithm The signature algorithm identifier.

version The certificate version type.

10.3.17 mpdc_serialized_symmetric_key

Name Description

keyid The key identity.
key The symmetric key.

nonce The symmetric nonce.

10.3.18 mpdc_signature_ keypair

Name Description

prikey The secret signing key.
pubkey The public signature verification key.

10.3.19 mpdc_cipher_keypair

Name Description ‘

97

MPDC-2024 Rev. 1b

prikey The asymmetric cipher private key.

pubkey The asymmetric cipher public key.

Functions
10.3.20 Function: mpdc_connection_close
Purpose: Closes the network connection between hosts.
Parameters:
e rsock (Type: gsc_socket*): A pointer to the remote socket.

e err (Type: mpde_network_errors): The error message.
o notify (Type: bool): Notify the remote host that the connection is closing.

10.3.21 Function: mpdc_decrypt_packet

Purpose: Decrypts a message and copies it to the message output.

Parameters:
e cns (Type: mpde_connection_state*): A pointer to the connection state structure.
o message (Type: uint8_t*): The message output array.
o msglen (Type: size_t*): A pointer receiving the message length.

o packetin (Type: const mpdc_network_packet*): A pointer to the input packet structure.

Returns: mpdc_network errors - The function error state.

10.3.22 Function: mpdc_encrypt packet
Purpose: Encrypts a message and builds an output packet.
Parameters:
e cns (Type: mpdc_connection_state*): A pointer to the connection state structure.
e packetout (Type: mpdc_network packet*): A pointer to the output packet structure.
e message (Type: const uint8_t*): The input message array.
o msglen (Type: size_t): The length of the message array.

Returns: mpdc_network_errors - The function error state.

98

MPDC-2024 Rev. 1b

10.3.23 Function: mpdc_connection_state_dispose
Purpose: Disposes of the tunnel state.
Parameters:

e cns (Type: mpdc_connection_state*): The tunnel connection state.

10.3.24 Function: mpdc_network_error to_string
Purpose: Returns a pointer to a string description of a network error code.
Parameters:

e error (Type: mpdc network errors): The network error type.

Returns: const char* - A pointer to an error string or NULL.

10.3.25 Function: mpdc_protocol error_to_string
Purpose: Returns a pointer to a string description of a protocol error code.
Parameters:

e error (Type: mpdc_protocol_errors): The protocol error type.

Returns: const char* - A pointer to an error string or NULL.

10.3.26 Function: mpdc_packet clear
Purpose: Clears a packet's state.
Parameters:

o packet (Type: mpdc network packet*): A pointer to the packet structure.

99

MPDC-2024 Rev. 1b

10.3.27 Function: mpdc_packet error message
Purpose: Populates a packet structure with an error message.
Parameters:

e packet (Type: mpdc_network packet*): A pointer to the packet structure.
e crror (Type: mpdc protocol errors): The error type.

10.3.28 Function: mpdc_packet header deserialize
Purpose: Deserializes a byte array to a packet header.
Parameters:

e header (Type: const uint8_t*): The header byte array to deserialize.
o packet (Type: mpdc network packet*): A pointer to the packet structure.

10.3.29 Function: mpdc_packet header_serialize
Purpose: Serializes a packet header to a byte array.
Parameters:

o packet (Type: const mpdc_network_packet*): A pointer to the packet structure to serialize.
e header (Type: uint8_t*): The header byte array.

10.3.30 Function: mpdc_packet set utc_time

Purpose: Sets the local UTC seconds time in the packet header.

Parameters:

e packet (Type: mpdc_network packet*): A pointer to a network packet.

10.3.31 Function: mpdc_packet time valid

100

MPDC-2024 Rev. 1b

Purpose: Checks the local UTC seconds time against the packet sent time for validity within the
packet time threshold.

Parameters:
e packet (Type: const mpdc network packet*): A pointer to a network packet.

Returns: bool - Returns true if the packet was received within the valid-time threshold.

10.3.32 Function: mpdc_packet to_stream
Purpose: Serializes a packet to a byte array.
Parameters:

e packet (Type: const mpdc_network packet*): A pointer to the packet.
o pstream (Type: uint8_t*): A pointer to the packet structure.

Returns: size t - The size of the byte stream.

10.3.33 Function: mpdc_stream to packet
Purpose: Deserializes a byte array to a packet.
Parameters:

o pstream (Type: const uint8 t*): The header byte array to deserialize.
o packet (Type: mpde_network_packet*): A pointer to the packet structure.

10.4 Network.h

10.4.1 mpdc_network register update request state

address const char* The server address

Icert const mpdc_child certificate* A pointer to the local certificate

101

MPDC-2024 Rev. 1b

list mpdc_topology list state*
rcert mpdc_child certificate*
root const mpdc_root_certificate™
sigkey const uint8 t*

A pointer to the topology list
A pointer to the remote certificate
A pointer to the root certificate

A pointer to the secret signing key

10.4.2 mpdc_network_register_update_response_state

Name Value

csock const gsc_socket™®

Icert const mpdc child certificate™®
list const mpdc_topology list state*
rcert mpdc child certificate*

root const mpdc root certificate™®

sigkey const uint8 t*

10.4.3 mpdc_network mfk request state

Name Value

Icert const mpdc child certificate™
mfk uint8 t*

rcert const mpdc_child certificate™
rnode
root const mpdc root certificate®

sigkey const uint8 t*

10.4.4 mpdc_network _mfk response_state

Name Value

const mpdc_topology node_state*

Description

A pointer to the connected socket

A pointer to the local certificate

A pointer to the topology list

A pointer to the output remote certificate
A pointer to the root certificate

A pointer to the secret signing key

Description

A pointer to the local certificate

A pointer to the master fragment key
A pointer to the remote certificate

A pointer to the remote node structure
A pointer to the root certificate

A pointer to the secret signing key

Description

102

MPDC-2024 Rev. 1b

csock const gsc_socket* A pointer to the connected socket
ckp mpdc_cipher keypair The asymmetric encryption key-pair
lcert const mpdc_child certificate* A pointer to the local certificate

mfk uint8 t* A pointer to the master fragment key
rcert mpdc child certificate* A pointer to the remote certificate
root const mpdc root certificate* A pointer to the root certificate

sigkey const uint8 t* A pointer to the secret signing key

10.4.5 mpdc_network _remote_signing_request_state

Name Value Description

address const char* The RDS server address

reert mpdc_child certificate* A pointer to the remote certificate
root const mpdc_root_certificate* A pointer to the root certificate
sigkey const uint8 t* A pointer to the secret signing key

10.4.6 mpdc_network remote_signing_response_state

Name Value Description

csock gsc_socket™® A pointer to the connected socket
dcert mpdc child certificate™® A pointer to the DLA certificate
rcert mpdc child certificate* A pointer to the remote certificate

root const mpdc root certificate* A pointer to the root certificate

sigkey const uint8 t* A pointer to the secret signing key

10.4.7 mpdc_network resign_request_state
Name Value Description
address const char* The server address
Inode const mpdc topology node state* A pointer to the local node structure

sigkey const uint8 t* A pointer to the secret signing key

103

MPDC-2024 Rev. 1b

10.4.8 mpdc_network resign_response_state
Name Value Description

list const mpdc_topology list state* A pointer to the topology list

rcert mpdc child certificate™® A pointer to the remote certificate
rnode mpdc topology node state* A pointer to the remote node structure
sigkey const uint8 t* A pointer to the secret signing key

10.4.9 mpdc_network revoke request state

Name Value Description

designation mpdc network designations The node type designation

list const mpdc_topology list state* A pointer to the node database

rnode const mpdc_topology node state* A pointer to the remote node structure
sigkey const uint8 t* A pointer to the secret signing key

10.4.10 mpdc_network revoke response_state

Name Value Description
list const mpdc_topology list state* A pointer to the node database
rnode mpdc topology node state* A pointer to the remote node structure

dcert const mpdc child certificate™® A pointer to the DLA certificate

10.4.11 mpdc_network topological query request state
Name Value Description
dcert const mpdc child certificate* A pointer to the DLA certificate
dnode mpdc topology node state* A pointer to the DLA node structure
issuer const char* A pointer to the query issuer string

rnode mpdc topology node state* = A pointer to the return remote node structure

104

MPDC-2024 Rev. 1b

serial const uint8 t* A pointer to the local serial number

sigkey const uint8_t* A pointer to the secret signing key

10.4.12 mpdc_network topological query_response_state

csock const gsc_socket* The connected socket
ccert const mpdc child certificate™ A pointer to the remote client’s certificate
rnode const mpdc_topology node state* A pointer to the remote node structure

sigkey const uint8_t* A pointer to the secret signing key

10.4.13 Function: mpdc_network announce broadcast
Purpose: Announces a certificate using the DLA and broadcasts it to the network.
Parameters:

e state (Type: mpdc_network announce request_state*): The announce state structure.

Returns: mpdc_protocol_errors - The error code.

10.4.14 Function: mpdc_network announce response

Purpose: Processes an announce response message.

Parameters:
o state (Type: mpdc_network announce response_state*): The announce response state structure.
e packetin (Type: const mpdc_network packet*): The input packet containing the announce

request.

Returns: mpdc_protocol_errors - The error code.

10.4.15 Function: mpdc_network application to port
Purpose: Retrieves the network designation from a port number.

105

MPDC-2024 Rev. 1b

Parameters:
e tnode (Type: mpdc network designations): The target network designation type.

Returns: uint16_t - The port number, or zero if the node type is invalid.

10.4.16 Function: mpdc_network broadcast message

Purpose: Broadcasts a message to a node type on the network.

Parameters:
e list (Type: const mpdc_topology list state*): A pointer to the topology list.
o message (Type: const uint8_t*): The message to send.
e msglen (Type: size t): The length of the message.

e tnode (Type: mpde network designations): The target node-type designation.

Returns: void

10.4.17 Function: mpdc_network_certificate verify
Purpose: Verifies a certificate’s format and root signature.
Parameters:

o ccert (Type: const mpdc_child_certificate*): The child certificate.
e oot (Type: const mpdc_root_certificate*): The root certificate.

Returns: mpdc protocol_errors - The error code.

10.4.18 Function: mpdc network connect to address
Purpose: Connects a socket to a remote address and port.
Parameters:

e csock (Type: gsc_socket*): A pointer to the socket.

e address (Type: const char*): The remote host’s address.
e port (Type: uint16_t): The application port number.

106

MPDC-2024 Rev. 1b

Returns: gsc_socket exceptions - The socket error.

10.4.19 Function: mpdc_network connect to_device
Purpose: Connects a socket to a remote address based on designation.
Parameters:

e csock (Type: gsc_socket*): A pointer to the socket.

e address (Type: const char*): The remote host’s address.

e designation (Type: mpdc_network designations): The remote host’s designation.

Returns: gsc_socket exceptions - The socket error.

10.4.20 Function: mpdc_network converge request
Purpose: Sends a convergence request from the DLA and broadcasts it to the network.
Parameters:

o state (Type: const mpdc_network converge request_state*): The converge request state structure.

Returns: mpdc_protocol_errors - The error code.

10.4.21 Function: mpdc_network converge response
Purpose: Responds to a DLA network converge request.
Parameters:
e state (Type: const mpdc_network_converge_response_state*)Z The converge response state
structure.
o packetin (Type: const mpdc_network_packet*): The input packet containing the verify

response.

Returns: mpdc protocol_errors - The error code.

10.4.22 Function: mpdc_network converge update verify

107

MPDC-2024 Rev. 1b

Purpose: Processes a converge response update message.
Parameters:
e state (Type: mpdc network converge update verify state*): The converge update verify state
structure.
o packetin (Type: const mpdc_network_packet*): The input packet containing the verify

response.

Returns: mpdc protocol_errors - The error code.

10.4.23 Function: mpdc_network fkey request
Purpose: Requests and executes a key exchange for a fragmentation key.
Parameters:

o state (Type: mpdc network fkey request state*): The fkey request state structure.

Returns: mpdc protocol_errors - The error code.

10.4.24 Function: mpdc_network fkey response
Purpose: Responds to a key exchange request for a fragmentation key.
Parameters:

o state (Type: mpdc_network fkey response_state*): The fkey response state structure.
o packetin (Type: const mpdc_network packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - The error code.

10.4.25 Function: mpdc_network fragment collection_request
Purpose: Requests a fragment collection from a MAS.
Parameters:

o state (Type: mpdc network fragment collection request state*): The fragment collection request
state.

108

MPDC-2024 Rev. 1b

Returns: mpdc protocol_errors - The error code.

10.4.26 Function: mpdc_network fragment collection response
Purpose: Sends a collection response from the MAS to a client.
Parameters:
o state (Type: mpdc network fragment collection response state*): The fkey response state
structure.

e packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc protocol_errors - The error code.

10.4.27 Function: mpdc_network fragment query response
Purpose: Sends a fragment query response from an agent to a MAS.
Parameters:
e state (Type: mpdc_network fragment query response state*): The fragment query response state
structure.

e packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - The error code.

10.4.28 Function: mpdc_network get local address
Purpose: Retrieves the local IP address.
Parameters:

e address (Type: charfMPDC_CERTIFICATE_ADDRESS SIZE]): Output array to store the local
address.

Returns: bool - Returns true if the address is successfully retrieved.

10.4.29 Function: mpdc_network incremental update request

109

MPDC-2024 Rev. 1b

Purpose: Sends an incremental update request.
Parameters:

o state (Type: const mpdc network incremental update request state*): The incremental update
request function state.

Returns: mpdc protocol_errors - The error code.

10.4.30 Function: mpdc_network incremental update response
Purpose: Sends a copy of a certificate to a remote host in response to an incremental update.
Parameters:
o state (Type: const mpdc_network_incremental update response_state*): The update response
function state.

e packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc protocol_errors - The error code.

10.4.31 Function: mpdc_network mfk exchange request
Purpose: Requests and executes a key exchange request for a master fragmentation key.
Parameters:

e state (Type: mpdc_network mfk request state*): The MFK request state structure.

Returns: mpdc_protocol_errors - The error code.

10.4.32 Function: mpdc network mfk exchange response
Purpose: Responds to a key exchange request for a master fragmentation key.
Parameters:

o state (Type: mpdc_network mfk response_state*): The MFK response state structure.
e packetin (Type: const mpdc_network packet*): The input packet containing the request.

110

MPDC-2024 Rev. 1b

Returns: mpdc protocol_errors - The error code.

10.4.33 Function: mpdc_network port_to_application
Purpose: Gets the network designation based on a port number.
Parameters:

e port (Type: uint16_t): The network application port.

Returns: mpdc_network_designations - The network designation type.

10.4.34 Function: mpdc_network register request
Purpose: Sends an Agent join request to the DLA.
Parameters:
o state (Type: mpdc network register_request_state*): The join request function state.

Returns: mpdc_protocol_errors - The error code.

10.4.35 Function: mpdc_network_register response
Purpose: Sends a join response to the agent.
Parameters:

o state (Type: mpdc_network register response_state*): The join response function state.
e packetin (Type: const mpdc_network packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - A protocol error flag.

10.4.36 Function: mpdc network register update request
Purpose: Sends a MAS or Client join update request to the DLA.

Parameters:

111

MPDC-2024 Rev. 1b

o state (Type: mpdc network register update request state*): The join update request function
state.

Returns: mpdc_protocol_errors - The error code.

10.4.37 Function: mpdc_network_register update response
Purpose: Sends a join update response to the server or client.
Parameters:

o state (Type: mpdc network register update response state*): The join response function state.
e packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - A protocol error flag.

10.4.38 Function: mpdc network remote signing request
Purpose: Sends a certificate signing request from the DLA to the RDS.
Parameters:
e state (Type: mpdc_network remote_signing_request_state*): The remote signing request state.

Returns: mpdc_protocol_errors - A protocol error flag.

10.4.39 Function: mpdc_network remote signing_response
Purpose: Sends a signed certificate response from the RDS to the DLA.
Parameters:

e state (Type: mpdc_network remote_signing_response_state*): The remote signing response state.
e packetin (Type: const mpdc_network packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - A protocol error flag.

10.4.40 Function: mpdc_network resign request

112

MPDC-2024 Rev. 1b

Purpose: Sends a resign request to the DLA.
Parameters:
o state (Type: mpdc network resign request state*): The resign request state structure.

Returns: mpdc_protocol_errors - The error code.

10.4.41 Function: mpdc_network resign response
Purpose: Sends a resign response to the agent or server.
Parameters:

o state (Type: mpdc network resign response_state*): The resign response state structure.
e packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc protocol _errors - The error code.

10.4.42 Function: mpdc_network revoke broadcast
Purpose: Sends a revocation request from the DLA.
Parameters:
o state (Type: mpdc_network revoke request state*): The revocation broadcast function state.

Returns: mpdc_protocol_errors - A protocol error flag.

10.4.43 Function: mpdc network revoke response
Purpose: Verifies a revocation request sent from the DLA.
Parameters:

o state (Type: mpdc_network revoke response state*): The revocation verify function state.
e packetin (Type: const mpdc_network packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - A protocol error flag.

113

MPDC-2024 Rev. 1b

10.4.44 Function: mpdc_network send_error
Purpose: Sends an error message.
Parameters:

e csock (Type: const gsc_socket*): A pointer to the socket.
e crror (Type: mpdc protocol errors): The error code.

Returns: mpdc_protocol_errors - The error code.

10.4.45 Function: mpdc network socket dispose
Purpose: Shuts down and disposes of a socket instance.
Parameters:

e csock (Type: gsc_socket*): A pointer to the socket.

Returns: void

10.4.46 Function: mpdc network topological query request
Purpose: Queries a device for its topological information.
Parameters:

o state (Type: const mpdc_network_topological query request state*): The topological query
request state.

Returns: mpdc_protocol_errors - The error code.

10.4.47 Function: mpdc_network_topological query response
Purpose: Responds to a topological query request.

Parameters:

114

MPDC-2024 Rev. 1b

o state (Type: const mpdc network_topological query response state*): The topological query
response state.

e packetin (Type: const mpdc network packet*): The packet containing the topological query
request.

Returns: mpdc_protocol_errors - The error code.

10.4.48 Function: mpdc_network topological status_request
Purpose: Sends a status request from the DLA to a client device.
Parameters:
o state (Type: const mpdc network topological status request state*): The topological status
request state.

e query (Type: const char*): The device query string.

Returns: mpdc_protocol_errors - The error code.

10.4.49 Function: mpdc_network_topological status response
Purpose: Processes the status response from the client device and sends a response.
Parameters:
o state (Type: const mpdc_network_topological status_response_state*): The topological status
response state.
o packetin (Type: const mpdc_network_packet*): The packet containing the topological status

request.

Returns: mpdc_protocol_errors - The error code.

10.4.50 Function: mpdc_network_topological_status_verify
Purpose: Verifies the status response from the DLA.
Parameters:

e state (Type: const mpdc_network_topological_status_request_state*): The topological status verify
state.

115

MPDC-2024 Rev. 1b

e packetin (Type: const mpdc network packet*): The packet containing the topological status
response.

Returns: mpdc_protocol_errors - The error code.

10.5 Topology.h

10.5.1 Function: mpdc_topology address_from_issuer
Purpose: Retrieves an IP address based on an issuer string.
Parameters:
e address (Type: char*): The output array for the node’s network address.

e issuer (Type: const char*): The issuer string to look up.
e list (Type: const mpdc_topology list*): Pointer to the topology list.

10.5.2 Function: mpdc_topology node add alias
Purpose: Adds an alias string to an issuer path.
Parameters:

e node (Type: mpdc_topology node*): The network node to update.
e alias (Type: const char*): The alias to add.

10.5.6 Function: mpdc_topology nodes are equal
Purpose: Compares two topological nodes for equality.
Parameters:

e a(Type: const mpdc_topology node*): First node for comparison.
e b (Type: const mpdc_topology node*): Second node for comparison.

Returns: bool - Returns true if the nodes are identical.

116

MPDC-2024 Rev. 1b

10.5.7 Function: mpdc_topology child add empty node
Purpose: Retrieves an empty node pointer from the topology list (not thread-safe).
Parameters:

e list (Type: mpdc_topology list*): Pointer to the topology list.

Returns: mpdc_topology node* - Pointer to the node or NULL.

10.5.8 Function: mpdc_topology child add item
Purpose: Adds a node to the topology list.
Parameters:

e list (Type: mpdc_topology list*): Pointer to the topology list.
e node (Type: const mpdc_topology node*): Node to add.

10.5.9 Function: mpdc_topology canonical to_issuer name
Purpose: Converts a canonical name to an issuer name.
Parameters:

o issuer (Type: char*): Output issuer name.

o isslen (Type: size_t): Length of the issuer name.

e domain (Type: const char*): The domain name.

e cname (Type: const char*): Input device canonical name.

Returns: bool - Returns false if the conversion failed.

10.5.10 Function: mpdc_topology issuer to canonical name
Purpose: Converts an issuer name to a canonical name.
Parameters:

e cname (Type: char*): Output canonical name.
e namelen (Type: size_t): Length of the canonical name string.

117

MPDC-2024 Rev. 1b

o issuer (Type: const char*): Input issuer name.

Returns: bool - Returns false if the conversion failed.

10.5.11 Function: mpdc_topology child_register
Purpose: Registers a child node to a topology list.
Parameters:
e list (Type: mpdc_topology list*): Pointer to the topology list.

e ccert (Type: const mpde_child_certificate*): Node's child certificate.
e address (Type: const char*): Node's network address.

10.5.12 Function: mpdc_topology list clone
Purpose: Clones a topology list.
Parameters:

o tlist (Type: const mpdc_topology_list*): Pointer to the topology list to clone.
e tcopy (Type: mpdc_topology list*): Pointer to the new list.

10.5.13 Function: mpdc_topology list deserialize
Purpose: Deserializes a topology list.
Parameters:
e list (Type: mpdc_topology list*): Pointer to the topology list.

e input (Type: const uint8_t*): The serialized list.
o inplen (Type: size_t): Size of the input array.

10.5.14 Function: mpdc_topology list dispose
Purpose: Disposes of the topology list and releases memory.

Parameters:

118

MPDC-2024 Rev. 1b

e list (Type: mpdc topology list*): Pointer to the topology list.

10.5.15 Function: mpdc_topology list initialize
Purpose: Initializes the topology list.
Parameters:

e list (Type: mpdc topology list*): Topology list state.

10.5.16 Function: mpdc_topology list item
Purpose: Retrieves a node from an index in the topology list.
Parameters:

e list (Type: mpdc_topology list*): Topology list state.

e node (Type: mpdc_topology node*): Pointer to the node structure.

e index (Type: size_t): Node index.

Returns: bool - Returns false if the item was not found.

10.5.17 Function: mpdc_topology list remove duplicates
Purpose: Removes duplicate nodes from the topology list.
Parameters:

e list (Type: mpdc_topology list*): Topology list state.

Returns: size t - Number of items in the list.

10.5.18 Function: mpdc_topology list server count
Purpose: Counts nodes of a specified type in the database.

Parameters:

119

MPDC-2024 Rev. 1b

e list (Type: const mpdc_topology list*): Topology list state structure.
e ntype (Type: mpde_network designations): Type of node to count.

Returns: size t - Number of nodes found.

10.5.19 Function: mpdc_topology list_serialize
Purpose: Serializes a topology list.
Parameters:

e output (Type: uint8_t*): Output array for serialized topology.
e list (Type: const mpdc_topology list*): Topology list state structure.

Returns: size t - Size of the serialized topology.

10.5.20 Function: mpdc_topology list size
Purpose: Returns the byte size of a serialized topology list.
Parameters:

e list (Type: const mpdc_topology list*): Topology list state structure.

10.5.21 Function: mpdc_topology list to_string

Purpose: Converts the topology list to a printable string.

Parameters:
e list (Type: const mpdc_topology list*): Topology list state structure.
o output (Type: char*): Output array for the string.

o outlen (Type: size_t): Length of the output array.

Returns: size t - Byte size of the serialized topology.

10.5.22 Function: mpdc_topology list update pack

120

MPDC-2024 Rev. 1b

Purpose: Packs a node update set into an array.
Parameters:
e output (Type: uint8_t*): Output array for serialized topology.
e list (Type: const mpdc_topology list*): Topology list state structure.

e ntype (Type: mpde network designations): Type of node entry to pack.

Returns: size t - Size of the serialized topology.

10.5.23 Function: mpdc_topology list update unpack
Purpose: Unpacks a node update set into the topology list.
Parameters:

e list (Type: mpdc_topology list*): Topology list state structure.

o input (Type: const uint8_t*): Serialized topology array.
e inplen (Type: size t): Length of the input array.

10.5.24 Function: mpdc_topology ordered server list
Purpose: Returns a sorted list of nodes by serial number.
Parameters:
o olist (Type: mpdc_topology list*): Sorted output topology list.
o tlist (Type: const mpdc_topology_list*): Unsorted input topology list.

e ntype (Type: mpde_network designations): Type of node entry to sort.

Returns: size t - Number of nodes in the list.

10.5.25 Function: mpdc_topology node_clear
Purpose: Erases a node structure.
Parameters:

e node (Type: mpdc_topology node*): Pointer to the topology node to erase.

121

MPDC-2024 Rev. 1b

10.5.26 Function: mpdc_topology node copy
Purpose: Copies a source node to a destination node structure.
Parameters:

e source (Type: const mpdc_topology node*): Pointer to the source node.
e destination (Type: mpdc topology node*): Pointer to the destination node.

10.5.27 Function: mpdc_topology node deserialize
Purpose: Deserializes a serialized topological node.
Parameters:

e node (Type: mpdc_topology node*): Pointer to the topology node.
e input (Type: const uint8_t*): Serialized topology node array.

10.5.28 Function: mpdc_topology node encode
Purpose: Encodes a topological node into a printable string.
Parameters:

e node (Type: mpdc_topology node*): Pointer to the topology node.
e output (Type: char*): Serialized node string.

Returns: size t - Size of the serialized node.

10.5.29 Function: mpdc_topology node exists
Purpose: Checks if a node exists in the topology list by serial number.
Parameters:

e list (Type: const mpdc_topology list*): Topology list state.

o serial (Type: const uint8_t*): Node's serial number.

122

MPDC-2024 Rev. 1b

Returns: bool - Returns true if the node exists.

10.5.30 Function: mpdc_topology node find
Purpose: Finds a node in the list by serial number.
Parameters:
e list (Type: const mpdc_topology list*): Topology list state.
e node (Type: mpdc_topology node*): Pointer to the destination node.

e serial (Type: const uint8_t*): Certificate serial number.

Returns: bool - Returns false if the node was not found.

10.6 Agent

9.6.1 Function: mpdc agent pause server
Purpose: Pause the Agent server

Returns: void

10.6.2 Function: mpdc_agent start server
Purpose: Start the Agent server

Returns: int - Returns zero on success

10.6.3 Function: mpdc_agent stop_server

Purpose: Stop the Agent server

Returns: void

123

MPDC-2024 Rev. 1b

10.7 Client

10.7.1 Function: mpdc_client pause server
Purpose: Pause the Client server

Returns: void

10.7.2 Function: mpdc_client_start server
Purpose: Start the Client server

Returns: int - Returns zero on success

10.7.3 Function: mpdc_client stop server
Purpose: Stop the Client server

Returns: void

10.8 DLA
10.8.1 Function: mpdc dla_pause server
Purpose: Pause the DLA server

Returns: void

10.8.2 Function: mpdc dla start server
Purpose: Start the DLA server

Returns: int - Returns zero on success

10.8.3 Function: mpdc_dla_stop_server

124

MPDC-2024 Rev. 1b

Purpose: Stop the DLA server

Returns: void

10.9 MAS

10.9.1 Function: mpdc mas_pause_server
Purpose: Pause the MAS server

Returns: void

10.9.2 Function: mpdc mas_start server
Purpose: Start the MAS server

Returns: int - Returns zero on success

10.9.3 Function: mpdc_mas_stop_server
Purpose: Stop the MAS server

Returns: void

10.10 RDS

10.10.1 Function: mpdc_rds pause_server
Purpose: Pause the RDS server

Returns: void

10.10.2 Function: mpdc_rds start server

125

MPDC-2024 Rev. 1b

Purpose: Start the RDS server

Returns: int - Returns zero on success

10.10.3 Function: mpdc_dla_stop_server
Purpose: Stop the DLA server

Returns: void

126

