
MPDC-2024 Rev. 1b

1

Multi Party Domain Cryptosystem - Interior – MPDC-I
Revision 1b, October 26, 2024

John G. Underhill – john.underhill@protonmail.com

This document is an engineering level description of the MDPC authenticated network domain

crypto-system. This document describes the interior network protocol MPDC-I, a multi-party

cryptographic key exchange and network security system.

Contents Page

Foreword 2

1: Introduction 2

2: Scope 4

3: References 5

4: Terms and Definitions 7

5: Protocol Description 10

6: Mathematical Description 25

7: Security Analysis 50

8: Application Scenarios 56

9: MPDC Cryptanalysis 59

10: Internal Functions 65

MPDC-2024 Rev. 1b

2

Foreword

This document is intended as the preliminary draft of a new standards proposal, and as a basis

from which that standard can be implemented. We intend that this serves as an explanation of

this new technology, and as a complete description of the protocol.

This document is the first revision of the specification of MPDC-I, further revisions may become

necessary during the pursuit of a standard model, and revision numbers shall be incremented

with changes to the specification. The reader is asked to consider only the most recent revision of

this draft, as the authoritative expression of the MPDC-I specification.

The inventor and author of this specification is John G. Underhill, and can be reached at

john.underhill@protonmail.com

MPDC-I, the algorithm constituting the MPDC-I domain crypto-system is patent pending, and is

owned by John G. Underhill and the QRCS Corporation.

1. Introduction

MPDC-I is a multi-party key exchange and network security system. It distributes the security of

a key exchange between a server and a client across multiple devices. Network ‘agents’

contribute a portion of pseudo-random material to client-server session keys.

On an interior network, servers and clients exchange a shared secret with each agent on the

network using an authenticated asymmetric key exchange. The secret is kept for the lifetime of

the devices certificate, and used to generate a unique key-stream to encrypt a small amount of

pseudo-random data. This data is called a ‘key fragment’. Fragments are combined and hashed to

form the primary session keys used between the server and the client to initialize an encrypted

tunnel. In this way, agents on the network that have been authenticated to both the server and

client, can inject entropy into a key exchange through multiple independent cryptographic

processes.

There can be any number of agents on a network, and each one has a certificate signed by the

root domain server. Any attack that utilizes impersonation or ‘man-in-the-middle’ strategies,

would need to simultaneously impersonate multiple network devices. The number of agent

servers that contribute entropy to a client-server key exchange is unlimited, the generation of a

key fragment and fragment encryption use computationally ‘cheap’ symmetric cryptography, and

can scale so that even the most sophisticated impersonation attacks are practically impossible.

Unlike other multi-party key exchange schemes being considered, which use expensive classical

asymmetric cryptographic schemes, MPDC-I explores an asymmetric/symmetric post-quantum

secure cryptographic hybrid, that can provide the security, as well as the scalability and

computational economy necessary if a system of this kind is to be considered for wide-scale

adoption.

Problem Description:

In modern cryptographic systems, the security of key exchanges is increasingly threatened by

advanced classical and emerging quantum attack vectors, many of which exploit weaknesses in

randomness generation. Multi-party key exchange protocols that incorporate multiple

MPDC-2024 Rev. 1b

3

independent sources of entropy provide a robust defense against these threats. By leveraging

contributions from diverse entropy providers, such as hardware RNGs, network entropy beacons,

and distributed nodes, the protocol ensures high-quality, unbiased randomness. This approach

mitigates risks associated with single-point entropy failures, state recovery attacks, and entropy

manipulation, significantly enhancing the unpredictability of the shared key.

Such enhanced key exchanges are crucial for post-quantum security, as quantum adversaries can

exploit weak or deterministic entropy with powerful algorithms like Grover’s and Shor’s. By

distributing the entropy contributions, the attack surface is widened, making it infeasible for a

quantum attacker to compromise the entire pool of randomness. Furthermore, the inclusion of

multiple entropy sources provides resilience against side-channel attacks, precomputation

attacks, impersonation attacks, and replay attempts, making the scheme well-suited for secure

communications in critical infrastructure, federated applications, and next-generation

decentralized systems. As the threat landscape evolves, integrating multiple dedicated sources of

entropy into key exchange protocols will be vital for ensuring long-term, quantum-resistant

security.

Design Requirements:

The distributed security system is computationally economical, with functions in the primary key

exchange and tunnel being performed solely by symmetric cryptography.

That asymmetric functions be constrained to network control messaging, and device registration

and initialization.

Certificates are used as a means to authenticate devices and the messages they produce during

device initialization and network operations. Each device generates its own asymmetric signature

key-pair, and retains the secret signing key. Each device uses the signature verification key to

create a certificate which must be signed by the root security server, the trust anchor for the

domain.

The network must be scalable, expensive asymmetric operations must be constrained to

registration and key exchange with participating devices, after which operations become

administrative, and devices use the minimal network and hardware resources to function.

The system must be designed to be a form of authenticated key distribution with no tolerance for

failure. Any failure in the exchange between nodes in the scheme, whether it be authentication or

the distribution of keys, packet values, or symmetric or asymmetric authentication failure, causes

the failure of the exchange, and the collapse of the circuit.

1.1 Purpose

MPDC-I provides a distributed security provisioning across multiple autonomous devices.

The MPDC-I crypto-system, has been designed in such a way that:

1) The keying material used in the exchange is distributed across multiple autonomous

devices, strongly mitigating the threat of MITM attacks.

2) Uses an advanced authentication system, across multiple core devices, and a hierarchal

certificate scheme for authentication.

MPDC-2024 Rev. 1b

4

3) That the model must be scalable, computationally efficient, and provide strong security

guarantees against a wide range of classical and quantum attacks.

2. Scope

This document describes the MPDC-I (Multi Party Domain Crypto-system - Interior Network)

protocol, which is used to establish an encrypted and authenticated duplexed communications

stream between a server and a host. The protocol is described in this document, and references to

the example C implementation are available, including specific settings and software

components necessary to its design.

The MPDC-I protocol is part of the MPDC protocol set; the interior protocol manages security at

a domain level, whereas the MPDC-E protocol is the exterior protocol, that connects MPDC

networks, authenticates internal and external certificates using a distributed trust model, and

facilitates ‘key injection’ across trusted domains. The MPDC-E protocol is being developed, and

will appear as a future publication with a separate protocol definition.

2.1 Application

The MPDC-I protocol is intended for institutions that implement secure communication streams

used to encrypt and authenticate secret information exchanged between a server and a host.

The network design, key exchange functions, authentication and encryption of messages, and

control message exchanges between devices defined in this document must be considered as

mandatory elements in the construction of an MPDC-I network. Components that are not

necessarily mandatory, but are the recommended settings or usage of the protocol will be

denoted by the key-words SHOULD. In circumstances where strict conformance to

implementation procedures is required but not necessarily obvious, the key-word SHALL will

be used to indicate compulsory compliance is required to conform to the specification, likewise

warnings indicating changes to the specification that are prohibited will be notated with SHALL

NOT.

MPDC-2024 Rev. 1b

5

3. References

3.1 Normative References

3.1.1 FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable Output

Functions: This standard specifies the SHA-3 family of hash functions, including SHAKE

extendable-output functions. https://doi.org/10.6028/NIST.FIPS.202

3.1.2 FIPS 203: Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM): This

standard specifies ML-KEM, a key encapsulation mechanism designed to be secure against

quantum computer attacks. https://doi.org/10.6028/NIST.FIPS.203

3.1.3 FIPS 204: Module-Lattice-Based Digital Signature Standard (ML-DSA): This standard

specifies ML-DSA, a set of algorithms for generating and verifying digital signatures, believed

to be secure even against adversaries with quantum computing capabilities.

https://doi.org/10.6028/NIST.FIPS.204

3.1.4 NIST SP 800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and

ParallelHash: This publication specifies four SHA-3-derived functions: cSHAKE, KMAC,

TupleHash, and ParallelHash. https://doi.org/10.6028/NIST.SP.800-185

3.1.5 NIST SP 800-90A Rev. 1: Recommendation for Random Number Generation Using

Deterministic Random Bit Generators: This publication provides recommendations for the

generation of random numbers using deterministic random bit generators.

https://doi.org/10.6028/NIST.SP.800-90Ar1

3.1.6 NIST SP 800-108: Recommendation for Key Derivation Using Pseudorandom

Functions: This publication offers recommendations for key derivation using pseudorandom

functions. https://doi.org/10.6028/NIST.SP.800-108

3.1.7 FIPS 197: The Advanced Encryption Standard (AES): This standard specifies the

Advanced Encryption Standard (AES), a symmetric block cipher used widely across the globe.

https://doi.org/10.6028/NIST.FIPS.197

3.2 Multi Party Cryptographic References

3.2.1 Threshold Cryptography by Yvo Desmedt (1994)

Introduces threshold cryptography for secure, distributed cryptographic operations.

https://onlinelibrary.wiley.com/doi/10.1002/ett.4460050407

https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-90Ar1
https://doi.org/10.6028/NIST.SP.800-108
https://doi.org/10.6028/NIST.FIPS.197
https://onlinelibrary.wiley.com/doi/10.1002/ett.4460050407

MPDC-2024 Rev. 1b

6

3.2.2 Secure Computation with Minimal Interaction by Gilad Asharov, Yehuda Lindell,

Thomas Schneider, and Michael Zohner (2012)

Proposes protocols for secure two-party computation with minimal interaction.

https://eprint.iacr.org/2013/552.pdf

3.2.3 Efficient Secure Two-Party Computation Using Symmetric Cut-and-Choose by

Wenliang Du and Mikhail Atallah (2001)

Presents an efficient protocol for secure two-party computation using cut-and-choose.

3.2.4 SPDZ: An Efficient MPC Protocol for Dishonest Majority by Ivan Damgård, Valerio

Pastro, Nigel Smart, and Sarah Zakarias (2012)

Describes the SPDZ protocol for efficient multi-party computation with dishonest majority.

https://eprint.iacr.org/2011/535.pdf

3.2.5 Overdrive: Making SPDZ Great Again by Marcel Keller, Emmanuela Orsini, and

Peter Scholl (2018)

Presents optimizations to SPDZ for improved efficiency and practicality.

https://eprint.iacr.org/2017/1230.pdf

3.3 Standards and Initiatives

3.3.1 NISTIR 8214A: Towards NIST Standards for Threshold Schemes for Cryptographic

Primitives: A Preliminary Roadmap

Provides a roadmap towards NIST standards for threshold cryptography schemes.

https://csrc.nist.gov/publications/detail/nistir/8214a/final

3.3.2 ISO/IEC 11770-5:2011: Information technology, Security techniques, and Key

management, Part 5: Group key management

Defines procedures for key management in secure group communications.

https://www.iso.org/standard/54527.html

3.3.3 IETF RFC 9380: The Messaging Layer Security (MLS) Protocol

Specifies the MLS protocol for secure and scalable group communication.

https://datatracker.ietf.org/doc/rfc9380/

3.3.4 IEEE P1363.3: Standard for Identity-Based Cryptographic Techniques using Pairings

Defines identity-based cryptographic techniques leveraging pairings.

https://standards.ieee.org/standard/1363_3-2013.html

3.3.5 ISO/IEC 15946 Series: Cryptographic Techniques Based on Elliptic Curves

Specifies cryptographic techniques based on elliptic curve algorithms.

https://www.iso.org/standard/56026.html

https://eprint.iacr.org/2013/552.pdf
https://eprint.iacr.org/2011/535.pdf
https://eprint.iacr.org/2017/1230.pdf
https://csrc.nist.gov/publications/detail/nistir/8214a/final
https://www.iso.org/standard/54527.html
https://datatracker.ietf.org/doc/rfc9380/
https://standards.ieee.org/standard/1363_3-2013.html
https://www.iso.org/standard/56026.html

MPDC-2024 Rev. 1b

7

4.Terms and Definitions

4.1 Cryptographic Primitives

4.1.1 Kyber

The Kyber asymmetric cipher and NIST Post Quantum Competition winner.

4.1.2 McEliece

The McEliece asymmetric cipher and NIST Round 3 Post Quantum Competition candidate.

4.1.3 Dilithium

The Dilithium asymmetric signature scheme and NIST Post Quantum Competition winner.

4.1.5 SPHINCS+

The SPHINCS+ asymmetric signature scheme and NIST Post Quantum Competition winner.

4.1.6 RCS

The wide-block Rijndael hybrid authenticated symmetric stream cipher.

4.1.7 SHA-3

The SHA3 hash function NIST standard, as defined in the NIST standards document FIPS-202;

SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

4.1.8 SHAKE

The NIST standard Extended Output Function (XOF) defined in the SHA-3 standard publication

FIPS-202; SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

4.1.9 KMAC

The SHA3 derived Message Authentication Code generator (MAC) function defined in NIST

special publication SP800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and

ParallelHash.

4.2 Network References

4.2.1 Bandwidth

The maximum rate of data transfer across a given path, measured in bits per second (bps).

4.2.2 Byte

Eight bits of data, represented as an unsigned integer ranged 0-255.

4.2.3 Certificate

MPDC-2024 Rev. 1b

8

A digital certificate, a structure that contains a signature verification key, expiration time, and

serial number and other identifying information. A certificate is used to verify the authenticity of

a message signed with an asymmetric signature scheme.

4.2.4 Domain

A virtual grouping of devices under the same authoritative control that shares resources between

members. Domains are not constrained to an IP subnet or physical location but are a virtual

group of devices, with server resources typically under the control of a network administrator,

and clients accessing those resources from different networks or locations.

4.2.5 Duplex

The ability of a communication system to transmit and receive data; half-duplex allows one

direction at a time, while full-duplex allows simultaneous two-way communication.

4.2.6 Gateway: A network point that acts as an entrance to another network, often connecting a

local network to the internet.

4.2.7 IP Address

A unique numerical label assigned to each device connected to a network that uses the Internet

Protocol for communication.

4.2.8 IPv4 (Internet Protocol version 4): The fourth version of the Internet Protocol, using 32-

bit addresses to identify devices on a network.

4.2.9 IPv6 (Internet Protocol version 6): The most recent version of the Internet Protocol,

using 128-bit addresses to overcome IPv4 address exhaustion.

4.2.10 LAN (Local Area Network)

A network that connects computers within a limited area such as a residence, school, or office

building.

4.2.11 Latency

The time it takes for a data packet to move from source to destination, affecting the speed and

performance of a network.

4.2.12 Network Topology

The arrangement of different elements (links, nodes) of a computer network, including physical

and logical aspects.

4.2.13 Packet

A unit of data transmitted over a network, containing both control information and user data.

4.2.14 Protocol

A set of rules governing the exchange or transmission of data between devices.

MPDC-2024 Rev. 1b

9

4.2.15 TCP/IP (Transmission Control Protocol/Internet Protocol)

A suite of communication protocols used to interconnect network devices on the internet.

4.2.16 Throughput: The actual rate at which data is successfully transferred over a

communication channel.

4.2.17 UDP (User Datagram Protocol)

A communication protocol that offers a limited amount of service when messages are exchanged

between computers in a network that uses the Internet Protocol.

4.2.18 VLAN (Virtual Local Area Network)

A logical grouping of network devices that appear to be on the same LAN regardless of their

physical location.

4.2.19 VPN (Virtual Private Network)

Creates a secure network connection over a public network such as the internet.

MPDC-2024 Rev. 1b

10

5. Protocol Description

The Multi-Party Domain Cryptosystem – Interior Protocol (MPDC-I) is a cryptographic protocol

designed to facilitate secure communication between entities in a domain. It leverages a

combination of public-key cryptography, symmetric cryptography, and certificate management

to establish an encrypted tunnel between participating devices. MPDC-I is engineered with both

classical and quantum-resistant security in mind, utilizing robust cryptographic primitives to

ensure confidentiality, integrity, and authentication of an encrypted communications stream.

5.1 Objectives

The primary objectives of MPDC-I are:

1. Establish Secure Communication Channels: Use public-key cryptography, certificate

management, and entropy injection to create secure communications channels between

participating devices.

2. Ensure Forward Secrecy and Post-Quantum Resistance: Provide security against both

classical and quantum attacks in key exchange operations.

3. Flexibility and Scalability: Adapt to various network environments, including IoT,

enterprise, and critical infrastructure.

4. Prevent Common Cryptographic Attacks: Defend against man-in-the-middle (MITM),

replay, and key compromise attacks while ensuring integrity and authenticity.

5. Provide a scalable and efficient MPC scheme: Create an Multi Party Cryptographic

scheme that is highly scalable, relatively lightweight, and computationally efficient.

5.2 Key Components and Their Roles

MPDC operates with five key devices:

1. Client: Initiates communication and key exchanges with the MPDC enabled Application

Server.

2. MAS (MPDC Application Server): Acts as the server managing communications with

Clients. The MAS is an application server on the local network, this can be a file server,

database server, or any other type of network resource used by Clients that requires a

secure connection.

3. Agent: A trusted network device that injects entropy into the key exchange process.

4. DLA (Domain List Agent): The network authority managing device registration and

certificate validation.

5. RDS (Root Domain Security): The root authority responsible for signing and managing

device certificates.

5.2.1 Client

Role: An end-user network device that initiates secure communication with the MAS.

Functions:

MPDC-2024 Rev. 1b

11

▪ Generates a certificate and stores the secret signing key.

▪ The certificate is signed by the RDS, directly or by proxy through the DLA.

▪ Exchanges master fragment keys (mfk) with Agents and MAS servers, to facilitate

fragment key encryption.

▪ Combines key fragments provided by the Agents along with the MAS fragment key,

which are used to derive a set of secure session keys.

▪ Encrypts and decrypts messages using the session keys in a duplexed encrypted and

authenticated tunnel.

5.2.2 MAS (Application Server)

Role: Central server managing secure communications with Clients.

Functions:

• Generates a certificate and stores the secret signing key.

• The certificate is signed by the RDS, directly or by proxy through the DLA.

• Validates Client certificates using the RDS root certificate.

• Communicates with the Agents to obtain key fragments.

• Derives the session key to securely interact with the Client.

• Encrypts and decrypts messages using the session keys in a duplexed encrypted and

authenticated tunnel.

5.2.3 Agent

Role: Provides additional entropy to the key exchange process.

Functions:

• Generates a certificate and stores the secret signing key.

• The certificate is signed by the RDS, directly or by proxy through the DLA.

• Generates key fragments (entropy) for session key generation.

• Securely transmits key fragments to both the MAS and Client.

• Enhances the randomness and security of the session key.

5.2.4 DLA (Domain List Agent)

Role: Manages device registration and certificate validation.

Functions:

• Generates a certificate and stores the secret signing key.

• The certificate is signed by the RDS.

• Validates device certificates against the RDS certificate.

• Maintains a master list of trusted devices (network topology).

• Distributes certificates and updates to devices.

MPDC-2024 Rev. 1b

12

• Manages device certificate revocation and resignation.

• Handles topological queries from network devices.

5.2.5 RDS (Root Domain Security Server)

Role: Acts as the certificate authority for the network.

Functions:

• Generates and manages the root certificate (trust anchor).

• Signs device certificates to verify identity and authenticity.

• Can connect to the DLA enabling a certificate signing proxy function.

5.3 Network Initialization

5.3.1 Root Server Initialization

Root Certificate Generation:

• The RDS generates its signature key-pair (public/private keys).

• Creates a public root certificate containing its signature verification key, serial number,

issuer, configuration set, version, and expiration period.

• Securely stores the private key used for signing.

5.3.2 DLA Initialization

Certificate Generation:

• The DLA generates its signature key-pair.

• Creates a public certificate and stores the secret signing key.

• The RDS signs the DLA's certificate, establishing it as a trusted entity.

Network Management:

• The DLA begins managing device registrations and maintaining the network topology.

5.3.3 Device Initialization (Agent, Client, MAS)

Certificate Generation and Signing:

• Each device generates its own signature key-pair and certificate.

• Certificates are signed by the RDS directly or by proxy via the DLA.

• The RDS signs each device's certificate, establishing trust.

Registration with DLA:

MPDC-2024 Rev. 1b

13

• Devices register with the DLA, which validates their certificates.

• Devices are added to the network topology maintained by the DLA.

• Devices build partial copies of the topology, with knowledge of only the devices with

which they interact.

5.3.4 MAS and Agent Integration

MAS Integration:

• The MAS contacts the DLA to join the network.

• Receives a list of available Agents from the DLA.

• Establishes secure channels with each Agent through an asymmetric key exchange that

exchanges master fragment keys.

Agent Integration:

• Agents exchange master fragment keys with Clients and MAS devices using an

asymmetric key exchange.

• Agents establish secure communication with the MAS and Clients, using the mfk keys to

encrypt key fragments.

5.3.5 Client Integration

Client Integration:

• The Client joins the network by registering with the DLA.

• Receives a list of available Agent and MAS servers.

• Exchanges certificates with Agent and MAS servers.

• Exchanges mfk keys with Agents and MAS servers.

5.4 Network Initialization

MPDC network devices are initialized in a sequence:

1. RDS – Trust anchor

2. DLA – Network management

3. Agents – Entropy provider

4. MAS – Application server

5. Clients – End user device

The root security server (RDS) signs the certificate of each device, either directly or once the

DLA is initialized, through the DLA proxy signing feature.

Each device generates its own asymmetric signature verification/signing keypair. The public

signature verification key is a member of the certificate that each device generates

independently. Certificates and signing keys are the sole responsibility of the device itself, and

only the originating device has knowledge of the secret signing key.

MPDC-2024 Rev. 1b

14

The master fragment encryption keys mfk, shared between the devices, is used to derive fragment

encryption keys (efk), ephemeral keys which encrypt key fragments exchanged between devices.

When the certificate expiration time is exceeded, the mfk becomes invalid and a new certificate

and master fragment key must be exchanged.

The maximum expiration time set in a certificate must not exceed the root certificate expiration

time.

When a certificate is signed by the root, the certificate is hashed, and the hash is signed by the

root signing key. The root signed hash is added to the child certificate, as well as the root

certificate serial number, and if the user defined expiration time exceeds that of the root, the

expiration time is set to the root’s expiration time. No device certificate can have an expiration

time that exceeds the root certificate’s expiration time. Once the root certificate has expired,

devices on the network must renew their certificates, and rejoin the network.

Each exchange in MPDC, whether it is a network message, part of the key exchange, or traffic

on the encrypted tunnel, all of these functions use a packet valid-time feature. This adds the UTC

time in seconds to the packet header at the point of packet creation. If the time in the packet

valid-time parameter received by the remote host exceeds the packet valid-time field by the

packet time threshold (60 seconds by default), the message is deemed invalid and the circuit is

torn down.

The packet creation timestamp and packet sequence number are added to the signature hash on

network messages, where the packet message is hashed along with the valid-time timestamp and

the packet sequence number, then signed by the devices asymmetric signing key.

During the tunnelling phase, the sequence number and packet creation time (st) are added to the

additional data function of the symmetric cipher MAC used to encrypt and authenticate

messages in the encrypted tunnel (the AEAD authenticated stream cipher RCS). In this way,

message replay attacks are strongly mitigated, and all MPDC messaging is protected from attack

schemes that use packet header tampering, message alteration, or re-transmission of packet data.

5.4.1 Root certificate creation

MPDC-2024 Rev. 1b

15

Figure 5.4.1 Root certificate generation.

The RDS generates a signature key-pair, stores the secret signing key, and adds the public

signature verification key to the root certificate. The root certificate is made up of the following

fields:

• The signature verification key, used to verify a root signature.

• The issuer string, identifies the certificate identity and formal name.

• The serial number, a unique 128-bit string used to identify the certificate.

• The expiration time, the valid to and from times, the time period during which the

certificate is valid.

• The configuration set name, identifies the cryptographic primitives used by the key

exchange from a set.

• The version number, the MPDC protocol version number.

The serial number and issuer fields identify the certificate and the originating device.

The expiration time is the starting time and expiration time of the certificate in UTC seconds

from the epoch. All certificates signed by the root, expire when the root expires.

The algorithm set name identifies which cryptographic set is used in the implementation, this can

be the combination of asymmetric cipher and signature scheme families; Kyber-Dilithium,

McEliece-Dilithium, and McEliece-SPHINCS+, further subdivided by the parameter sets used by

each cipher and signature scheme.

The version number ensures that local and remote versions are synchronized.

The RDS root certificate is distributed to every device on the network and installed during device

initialization, cached by those devices and used to authenticate certificates signed by the root

domain security server.

5.4.2 DLA Initialization

MPDC-2024 Rev. 1b

16

Figure 5.4.2a DLA certificate initialization

The DLA and all other child certificates have two additional parameters to the root certificate,

the signature parameter which holds a copy of the RDS signed hash of the child certificate, and

the root certificate serial number parameter.

Child certificate parameters:

• The certificate signature, generated by hashing the certificate, and signing the hash with

the RDS signature key.

• The root serial number of the RDS server that signed this certificate.

• The signature verification key, used to verify a message signed by the corresponding

signing key.

• The issuer string, identifies the certificate’s origin identity and formal readable network

name.

• The serial number, a unique 128-bit string used to identify the certificate.

• The expiration time, the valid to and from times, the time period during which the

certificate is valid.

• The configuration set name, identifies the cryptographic primitives used by the key

exchange from a set.

• The version number, the MPDC protocol version number.

Once the DLA certificate has been signed by the RDS server, the DLA server can be brought

online and is ready to handle registration requests and other administrative duties.

MPDC-2024 Rev. 1b

17

Figure 5.4.2b DLA proxy signing

The DLA certificate can be loaded onto the RDS to enable the proxy signing feature.

The RDS server is deliberately isolated, it has only one message capability, and this is to

remotely sign a certificate as requested only by the DLA server. The DLA can act as a proxy for

the signing of device certificates, allowing the isolation of the root server from other network

devices. The RDS stores the DLA certificate, and can only accept signing requests that have

been issued and signed by the DLA.

5.4.3 Agent Initialization

MPDC-2024 Rev. 1b

18

Figure 5.4.3 Agent network registration.

The Agent sends the DLA a registration request. The DLA verifies the signature field of the

Agent certificate using the RDS public certificate. A hash of the certificate is compared to the

signature hash to validate the certificate.

The registration request message has been signed by the Agent signing key, the message is

authenticated, a message hash is generated and compared to the signature hash.

If the Agent certificate and the message have been validated, the certificate is stored, and the

certificate is used to populate a topological node structure, which is added to the DLA

topological database.

5.4.4 MAS Initialization

MPDC-2024 Rev. 1b

19

Figure 5.4.4a MAS network registration.

The MAS sends the DLA a registration request. The DLA verifies the signature field of the

Agent certificate using the RDS public certificate. A hash of the certificate is compared to the

signature hash to validate the certificate.

The registration request message has been signed by the MAS signing key, the message is

authenticated, a message hash is generated and compared to the signature hash.

If the MAS certificate and the message have been validated, and the timestamp and sequence

number are correct, the certificate is stored, and the certificate is used to populate a topological

node structure, which is added to the DLA topological database.

The DLA assembles an update list for the MAS. The list contains the node information for every

Agent on the network. The topological node contains all of the information that the MAS

requires to contact and verify the Agent; IP address, the certificate serial number, issuer name,

certificate expiration time, and the certificate hash. When the MAS contacts these devices and

receives their certificates, the certificate hash value in the topological node is compared to a hash

of the certificate. The serial number, issuer name, expiration time, and IP address must all match

the values in the topological node received from the DLA.

MPDC-2024 Rev. 1b

20

Figure 5.4.4b MAS agent update.

The MAS contacts each of the Agents in the DLA update list, and exchanges certificates. The

certificates signatures are verified, and the certificate is hashed and compared to the signature

hash. The verified certificates are stored on the MAS, and topological node entries for each

Agent are added to the MAS topological database.

MPDC-2024 Rev. 1b

21

Figure 5.4.4c MAS to agent mfk exchange.

The MAS then sends each Agent a signed mfk key exchange request. The Agent generates an

asymmetric cipher key-pair and timestamp, signs the public key and timestamp, and sends it to

the MAS.

The MAS verifies the signed key and timestamp and encapsulates a shared secret, hashes the

ciphertext and signs the hash. The signed ciphertext is sent back to the Agent, which verifies the

signed hash, and decapsulates the shared secret.

The shared secret mfk key, is associated with the device certificate serial number of the relative

remote device in an internal list, and stored on the Agent and MAS.

5.4.5 Client Initialization

MPDC-2024 Rev. 1b

22

Figure 5.4.5 Client to MAS and Agent certificate and mfk exchange.

The Client registration undergoes an identical exchange of certificates and mfk keys with each

Agent. The update list the DLA prepares for a Client also contains a list of MAS servers. The

Client contacts each MAS server in the update list and exchanges certificates and master

fragment keys.

Once the Clients have been initialized, the network is considered synchronized, and ready for

encrypted tunnel connections between Clients and MPDC application servers.

5.5 Key Exchange and Encrypted Tunnel

The Client initiates a key exchange with an MPDC application server (MAS). The MAS server

and the Client have previously exchanged master fragment keys, which are used to derive

fragment encryption key (efk) used to encrypt pseudo-random fragments keys.

5.5.1 Fragment Collection Request

MPDC-2024 Rev. 1b

23

Figure 5.5.1 Client to MAS connection request.

The Client creates a fragment collection request, the Client-to-MAS mfk key, a random token,

and the Client and MAS certificate hashes are used to key a KDF (cSHAKE), and create a MAC

key. The serial number and token are added to the message, and a MAC code is created by

hashing the message and key.

5.5.2 MAS Fragment Request

Figure 5.5.2 Agent to MAS agent response.

The MAS connects to each Agent in the topology, and requests a fragment key.

The Agents respond with a fragment key pairing, one copy encrypted with a fragment encryption

key (efk) derived using the mfk shared between the MAS-to-Agent, the other copy encrypted

with an efk key derived using the Client-to-Agent mfk.

5.5.3 MAS Key Generation

MPDC-2024 Rev. 1b

24

Figure 5.5.3 MAS to Client fragment transfer.

The MAS server decrypts its copy of the fragment received from each Agent, and generates a

MAS-to-Client fragment key. The MAS encrypts the MAS-to-Client fragment using a fragment

encryption key (efk) derived from the shared Client-to-MAS mfk, and bundles this key with the

Agent fragment keys that were encrypted using Client-to-Agent efk derived from the mfk keys

corresponding to each of the Agent responders.

The MAS sends the Client the encrypted fragment key set.

The MAS combines the fragments as input to a key derivation function (cSHAKE), and

generates the MAS-to-Client session keys. The symmetric cipher (RCS) receive and transmit

cipher instances are initialized, the tunnel is raised and ready to transmit data.

5.5.4 Tunnel Establishment

Figure 5.5.4 MAS to Client tunnel establishment.

The Client receives the encrypted fragment key bundle from the MAS. The Client derives the efk

keys and decrypts the Agent key fragments, and derives the Client-to-MAS efk and decrypts the

Client-to-MAS key fragment. The fragments are added to the KDF (cSHAKE) which generates

the session keys for the transmit and receive channels of the encrypted tunnel. The symmetric

cipher (RCS) instances are initialized, and the tunnel interfaces are raised and ready to transmit

data.

MPDC-2024 Rev. 1b

25

6. Mathematical Description

MPDC uses various messages between devices to accomplish network tasks.

The DLA handles network control messaging, including certificate revocation, network

convergence, certificate announcements, topological queries, registration and resignation

messages.

Messages are also passed between Agents, MAS servers, and Clients, such as certificate updates,

master fragment key exchanges, and fragment collection.

All messages are signed using the senders secret asymmetric signing key, and are verified by the

receiving device using the senders’ certificate. This not only guarantees the authenticity of the

sender, but a packet creation time and sequence number are included in the message hash that is

signed by the originating device, protecting the message from replay attacks.

This section contains a list of message functions used by MPDC-I, and their mathematical

descriptions.

6.1 Announce Broadcast

Overview:

Network announce is an administrative event broadcast from the DLA. The DLA announces a

new Agent to nodes on the network. It broadcasts the new agent’s certificate, which is signed by

the root, and signs the message with the DLA signing key. The receiving device validates the

DLA signature and message hash, validates the root signature and parameters of the certificate,

and checks that the packet timestamp is within the valid-time threshold. If the message is

validated, the receiver adds the new device to its topology list, stores the certificate, and initiates

a master fragment key exchange, trading shared secrets with the remote Agent device.

API:

• mpdc_network_announce_broadcast()

• mpdc_network_announce_response()

Applies to:

• Client

• DLA

• MAS

Mathematical Description:

Let:

• CD
σ be the root signed certificate of device D.

• H be the hash function.

• HCS
σ be the signed certificate and timestamp hash.

• Kpri be the private signing key.

• Kpub be the signature verification key.

• σ be an asymmetric signature.

MPDC-2024 Rev. 1b

26

• Sign be the asymmetric signing function.

• st be the sequence number and valid-time timestamp.

• Verify be the asymmetric signature verification function.

The broadcast includes the certificate and the signature:

HCS
σ

 = SigndlaKpri(H(CD
 σ || st))

Broadcast(CD
σ)= (CD

 σ ∥ HCS
σ)

Devices receiving this broadcast will verify the signature using the DLA’s public verification

key:

VerifydlaKpub(HCS
σ) = H(CD

σ || st)

If the broadcast message is validated, the certificate is added to the devices certificate store, and

the device exchanges a master fragment key with the new Agent.

Proof of Security:

Correctness: The broadcast is correctly signed by the DLA, ensuring that any recipient can

verify the signature using DLA public key. The verification succeeds if and only if σ(H(CD || st))

was produced using the DLA private key, providing assurance of authenticity.

Proof: Given the definition of digital signatures:

σ(H(CD
σ

 || st)) = SignKpri(H(CD
σ || st))

The verification function computes:

VerifyKpub(σ(H(CD
σ || st))) = H(CD

σ || st)

Since VerifyKpub is the inverse of SignKpri, the signature is valid if it was signed by the matching

private key.

Integrity: Since H(CD
σ || st) is hashed and signed, any change to the certificate or signature

would cause the verification to fail. The hash function used (e.g., SHAKE) is collision-resistant,

ensuring that an attacker cannot forge CD
σ or σ(H(CD

σ || st)).

Replay Protection: A timestamp and sequence number are included in the hash (st) and checked

to ensure it is within a specified valid timeframe, so that broadcasts cannot be reused

maliciously.

6.2 Converge Broadcast

Overview:

MPDC-2024 Rev. 1b

27

Network convergence is an administrative event called from the DLA. Each MAS server and

Agent on the network is sent a copy of their topological node database entry. The serialized node

entry for the remote device is hashed along with a timestamp and sequence number, and the hash

is signed by the DLA and sent to the device.

The signature is verified by the device using the DLA's public certificate, the local node entry is

serialized and hashed, and compared with the signed hash. If the hashes match, the entry in the

DLA topological database is synchronized, if the entries do not match, the device serializes the

current topological database entry and the certificate, signs them with the current signature key,

which is signed by the root (RDS), and sends it back to the DLA. The DLA verifies the new

certificate using the RDS certificate. The old entry is purged, a new topological entry is added to

the database, and the new certificate is stored.

* Note that the proper procedure after a certificate update on a MAS or Agent, is to resign from

the network, and then rejoin with a new certificate.

API:

• mpdc_network_converge_request()

• mpdc_network_converge_response()

Applies to:

• Agent

• DLA

• MAS

Mathematical Description:

Let:

• HTS
σ be the signed hash of H(TD || st) signed using D’s private key.

• H be the hash function.

• Kpri be the secret signing key.
• Kpub be the signature verification key.
• Sign be the asymmetric signing function.

• st be the sequence number and valid-time timestamp.

• TD be the topological node of device D.

• Verify be the asymmetric signature verification function.

The converge broadcast request:

The DLA creates the converge request using the remote device’s topological node, hashed with

the timestamp and signed.

HTS
σ = SigndlaKpri(H(TD || st))

Request(TD) = (TD ∥ HTS
σ)

MPDC-2024 Rev. 1b

28

The device verifies the DLA’s signature.

VerifydlaKpub(HTS
σ) = H(TD || st)

The converge response:

The responding device signs the response message, and sends it to the DLA.

σ = SignrespKpri(H(TD || st))

Response(TR) = (TR ∥ σ)

Proof of Security:

Correctness: The response is only generated if the request is valid. Both the request and the

response signatures are verified using the public key of the respective device.

Proof: The request signature is:

σ(H(TD || st)) = SignKpri(H(TD || st))

Upon receiving the request, the recipient checks the validity of the signature using:

VerifyKpub(σ(H(TD || st))) = H(TD || st)

If the signature verification passes, the recipient knows the request is authentic. The node

structure sent by the DLA, containing information about the remote device including certificate

serial number, issuer, and expiration to and from times, is verified by the receiving device. If the

node values match, the receiver signs its serialized node structure along with the timestamp and

sequence number, and sends it back to the DLA as confirmation that the topology is aligned. If

the values do not match, or the authentication or message is invalid, the receiver sends back an

error message. If the DLA receives an error, or the connection times out, the remote node is

removed from the DLA’s topology, and the device’s certificate is revoked, removing it from the

topology list of every device on the network.

Integrity: The hash H(TD || st) ensures that the certificate cannot be altered. Any tampering will

result in a failed signature verification.

Replay Protection: A timestamp and sequence number are included in the hash H(TD || ts) and

checked to ensure that broadcasts cannot be reused maliciously.

6.3 FKey Request

Overview:

MPDC-2024 Rev. 1b

29

The FKey request is reserved for MPDC-E, it is used when the Inter Domain Gateway (IDG) is

requesting a fragment key for a device on a remote network, as part of the cross-domain trusted

entropy ‘borrowing’ that can be configured between trusted domains.

API:

• mpdc_network_fkey_request()

• mpdc_network_fkey_response()

Applies to:

• Agent

• IDG

Mathematical Description:

The key fragment request and response ensure secure transmission of key fragments.

Let:

• CD
σ be the root signed certificate of the requesting device.

• FD be the key fragment requested.

• H be the hash function (cSHAKE).

• HCS
σ be the signed certificate and timestamp hash.

• Sign be the asymmetric signing function.

• st be the sequence number and valid-time timestamp.

• Verify be the asymmetric signature verification function.

The FKey request:

HCS
σ = SignidgKpri(H(CD

σ || st))

Request(CD) = (CD
σ ∥ HCS

σ)

The FKey response:

VerifyidgKpub(HCS
σ) = H(FD || st)

HFS
σ = SignidgKpri(H(FD

 || st))

Response(FD) = (FD ∥ HFS
σ)

This ensures the integrity and authenticity of the key fragment FD.

Proof of Security:

Confidentiality: The key fragment FD is securely transmitted and signed, ensuring that it cannot

be intercepted or modified.

MPDC-2024 Rev. 1b

30

Proof: The key fragment is signed using the sender's private key:

σ(H(FD || st)) = SignKpri(H(FD || st))

Upon receiving the fragment, the requesting device verifies:

VerifyKpub(σ(H(FD || st))) = H(FD || st)

This ensures the key fragment's integrity and authenticity.

Replay Protection: A timestamp and sequence number are included in the hash H(FD || ts) and

checked to ensure that broadcasts cannot be reused maliciously.

6.4 Fragment Collection (Primary Client-to-MAS Tunnel)

Overview

The process begins when a Client sends a fragment key collection request to the MAS (MPDC

enabled Application Server). This involves multiple symmetric-based key exchanges and

cryptographic operations between the Client, MAS, and network Agents. The objective is to

securely gather and validate key fragments from the Agents, derive shared session keys, and

establish an encrypted tunnel between the Client and the MAS.

API:

• mpdc_network_fragment_collection_request()

• mpdc_network_fragment_collection_response()

• mpdc_network_fragment_query_response()

Applies to:

• Agent

• Client

• MAS

Step-by-Step Description

Client Request to MAS:

The Client initiates the fragment collection by sending a request to the MAS. This request

includes:

• The Client's certificate serial number.

• A random token generated by the Client.

MPDC-2024 Rev. 1b

31

The MAS generates its own random token, and sends queries to every Agent in the topology.

Fragment Queries to Agents:

The MAS queries all Agents in the network by sending a fragment key request. Each query

includes:

• The Client's certificate serial number and random token.

• The MAS's certificate serial number and random token.

If any Agent fails to respond or returns an error, the entire session is terminated.

Agent Dual Token Encryption:

The random token is copied and encrypted twice, one copy for the MAS the other for the Client:

• One copy is encrypted using a fragment encryption key (efk) derived from the MAS-to-

Agent mfk fragment encryption session key.

• The other copy is encrypted using an efk derived from the Client-to-Agent mfk fragment

encryption session key.

The MAS decrypts its copy of the fragment, and forwards the Client-to-Agent encrypted copies

to the Client as a set. This fragment key-set includes a fragment generated by the MAS server

and encrypted with the Client-to-MAS mfk derived fragment encryption key.

Deriving Session Keys:

The MAS decrypts the fragment keys it has received from the network Agents. The MAS

generates a fragment key, and adds this key, and the decrypted Agent fragment keys to a KDF,

which generates the session keys used to initialize symmetric cipher instances (RCS) for the

transmit and receive channels of the Client-to-MAS tunnel.

The Client performs the same operations, decrypting the MAS fragment key, the Agent fragment

keys, and using a KDF to derive the symmetric cipher session keys.

Mathematical Description:

Let:

• cf be the encrypted fragment key.

• E/-E be the encryption and decryption function.

• efk be the fragment encryption key.

• frag be the key fragment.

• KDF be the key derivation function (cSHAKE).

• lhash be the hash of the local certificate.

• M be the MAC function.

• mfk be the master fragment key, a shared master secret between two devices.

MPDC-2024 Rev. 1b

32

• rhash be the hash of the remote certificate.

• ser be the device certificate serial number.

• tok be a random session token.

• st be the timestamp and sequence number.

The Client calculates the Client-to-MAS fragment encryption key (efk). The token is randomly

generated, added with the Client-to-MAS shared master fragment key (mfk), the MAS certificate

hash, and the Client certificate hash. The KDF generates a key used to initialize the MAC

function, which MACs the request message.

𝑒𝑓𝑘𝑚𝑎𝑠
𝑐𝑙𝑖𝑒𝑛𝑡 = KDF(𝑚𝑓𝑘𝑚𝑎𝑠

𝑐𝑙𝑖𝑒𝑛𝑡|| rhashmas || lhashclient || tokclient)

The Client sends the fragment collection request to the MAS containing its serial number and the

random token. The serial number and token are MAC’d using the derived 𝑒𝑓𝑘𝑚𝑎𝑠
𝑐𝑙𝑖𝑒𝑛𝑡fragment

encryption key to initialize the MAC function. The STD message is the client’s certificate serial

number, the Client generated random token, and a MAC tag derived from the message and key.

The packet creation timestamp and sequence number are also added to the MAC.

tag = M𝑒𝑓𝑘𝑚𝑎𝑠
𝑐𝑙𝑖𝑒𝑛𝑡(ser || tok || st)

Request(STD) = (ser || tok || tag)

The MAS calculates the Client-to-MAS fragment encryption key, and checks the message MAC.

If the MAC validates the message, and the timestamp and sequence number are correct, both

Client and MAS have calculated their session fragment keys. If the MAC fails the MAS sends

the Client an error message and the circuit is torn down.

M𝑒𝑓𝑘𝑚𝑎𝑠
𝑐𝑙𝑖𝑒𝑛𝑡 (ser || tok || st) = tag ⟺ True

The MAS connects to each agent in its topological map, and requests a key fragment. The MAS

RM request is composed of the MAS certificate serial number and random token, and the Client

serial number and token is the RC state.

RM = (sermas || tokmas)

RC = (serclient || tokclient)

The request is the pair of serial numbers and unique tokens for both MAS and Client, and the

message MAC tag, derived from the message and 𝑒𝑓𝑘𝑎𝑔𝑒𝑛𝑡
𝑚𝑎𝑠 key. The message is sent out to each

Agent on the network, if the Agent is non-responding or returns an error, the key exchange is

aborted.

tag = M𝑒𝑓𝑘𝑎𝑔𝑒𝑛𝑡
𝑚𝑎𝑠 (RM || RC || st)

Request(RM, RC) = (RM || RC || tag)

MPDC-2024 Rev. 1b

33

Where each Ai is an agent server in the topology:

Request(RM, RC) ⟶{A1, A2, …, An}

Each Agent generates a random fragment key, makes a copy, and encrypts them both, the first

copy is encrypted using the MAS-to-Agent fragment encryption key, the second using the Client-

to-Agent fragment encryption key.

The first efk is derived from the MAS-to-Agent mfk, the MAS random token, and the Agent and

MAS certificate hashes. This fragment key Encrypts the MAS copy of the key fragment. The

𝑒𝑓𝑘𝑎𝑔𝑒𝑛𝑡
𝑚𝑎𝑠 creates two keys, the first is the fragment encryption key, the second is the key used to

MAC the entire message, which will be verified by the MAS.

𝑒𝑓𝑘𝑎𝑔𝑒𝑛𝑡
𝑚𝑎𝑠 = KDF(𝑚𝑓𝑘𝑎𝑔𝑒𝑛𝑡

𝑚𝑎𝑠 || rhashmas || lhashagent || tokmas)

cf1 = E𝑒𝑓𝑘𝑎𝑔𝑒𝑛𝑡
𝑚𝑎𝑠 (frag)

The second fragment is encrypted using the Client-to-Agent derived key.

𝑒𝑓𝑘𝑎𝑔𝑒𝑛𝑡
𝑐𝑙𝑖𝑒𝑛𝑡 = KDF(𝑚𝑓𝑘𝑎𝑔𝑒𝑛𝑡

𝑐𝑙𝑖𝑒𝑛𝑡 || rhashclient || lhashagent || tokclient)

cf2 = E𝑒𝑓𝑘𝑎𝑔𝑒𝑛𝑡
𝑐𝑙𝑖𝑒𝑛𝑡(frag)

The ciphertext from both encrypted key sets are MAC’d and the MAC tag is added to the

message. The MAC key is the second half of the (512-bit size) efk key.

tag = M𝑒𝑓𝑘`𝑎𝑔𝑒𝑛𝑡
𝑚𝑎𝑠 (cf1 || cf2 || st)

Agent(cf1 || cf2 || tag)⟶MAS.

The MAS verifies the mac tag against the ciphertext, the sequence number and timestamp, and if

they are correct, decrypts its portion of the key-set.

M𝑒𝑓𝑘𝑎𝑔𝑒𝑛𝑡
𝑚𝑎𝑠 (cf1 || cf2 || hdr) = tag ⟺ True

The MAS copies the encrypted Client fragment keys and Agent serial numbers to a key-set.

Once the MAS has collected keys from every Agent, it sends the set of encrypted Client-to-

Agent keys back to the client, with each fragment encrypted with the respective Client-to-Agent

efk.

Where:

• fset is the set of agent fragment keys.

• as is the agent serial number.

• fc is the encrypted fragment key.

MPDC-2024 Rev. 1b

34

fset = { F1(as1 || fc1), F2(as2 || fc2), ..., Fn(asn || fcn) }

The encrypted key-set is sent to the Client, where like on the MAS, the serial number is used to

look up the corresponding Agent mfk, derive the fragment encryption key, and verify and decrypt

the fragment key sent by each agent, along with a key fragment shared between the MAS and the

Client.

For each i ∈ { 1, 2, …, n }, fi = -E𝑒𝑓𝑘𝑖𝑎𝑔𝑒𝑛𝑡
𝑐𝑙𝑖𝑒𝑛𝑡(cfi)

All fragments are added to the hash to create a set of session keys used between the MAS and the

Client to establish an encrypted tunnel. The fragment keys are added to the KDF input, including

the fragment generated by the MAS for the Client:

k1, k2, n1, n2 = KDF(f1, f2, ... fn)

This generates the session keys for the transmit and receive channels used to create a bi-

directional encrypted tunnel between the MAS and the Client. The symmetric cipher instances

(RCS) used to encrypt data on the receive and transmit channels of the encrypted tunnel are

initialized on both the Client and MAS, and the tunnel interfaces are raised and ready to transmit

data.

Session = {
Transmit(E𝑘1(𝑛1, 𝑑𝑎𝑡𝑎))

 Receive(−E𝑘2(𝑛2, 𝑑𝑎𝑡𝑎))

Proof of Security:

Correctness: Client and MAS servers share a secret exchanged during the master fragment key

exchange. The Client and MAS also share unique secrets with every Agent on the network. This

256-bit secret key is combined with a random session token, and hashes of the local certificate

and the remote certificate. The hash result is a fragment encryption key:

efk = KDF(mfk || rhash || lhash || tok)

The combination of certificate hashes will be unique between devices, this along with the

random token which acts as a session nonce, ensures that every session derives unique fragment

encryption keys. This efk is XOR’d with the key fragment; a 256-bit pseudo-random string

generated by each agent.

cf = Eefk (frag)

Proof: Given a cryptographically strong key derivation function, specifically cSHAKE, the

mixing of these inputs will produce a key-stream that is highly diffused and unique to each

session. That key-stream mixed with the random fragment (XOR) will produce output that is

indistinguishable from random, and highly resistant to differential analysis techniques.

MPDC-2024 Rev. 1b

35

Key fragments are input into the KDF, along with the Client-to-MAS session key. The KDF

outputs keys and nonces for the two symmetric cipher instances, that will be the transmit and

receive channels of the encrypted tunnel between the Client and the MAS.

k1, k2, n1, n2 = KDF(f1, f2, ... fn)

Utilizing key fragments from Agents on the network, hardens the security of the server-to-client

exchange. The injection of entropy into the key derivation, extends the mathematical hardness of

differential analysis. By distributing the generation of the key across multiple autonomous

devices on the network, impersonation, replay, and man-in-the-middle attacks become more

problematic in proportion to the number of devices contributing to key generation.

6.5 Incremental Update

Overview:

The incremental update functions retrieve a devices certificate. When a device joins the network,

the DLA sends a list of resources available for that device. When a MAS joins the network the

DLA sends it a list of network Agents, when a Client joins the DLA sends a list of Agents and

MAS servers.

The Client and MAS synchronize with devices on the list sent by the DLA, creating a topological

database. The topology is a local list containing information about resources that the device uses

on the network. A topological node is an element in the list that contains important information

like the nodes IP address, issuer, expiration time, certificate hash and serial number. This

information is used to connect to the device, request its certificate, verify the certificate, and

interact with the device on the network.

The mpdc_topology_node_state structure defines the state information for a device within the

MPDC topology. This includes details like network address, certificate information, and the

device's designation.

Once the device has obtained the certificate and added the node to its topology, the device can

exchange a shared secret between devices using the master fragment key (mfk) asymmetric key

exchange.

During network registration, the Client and MAS device receive a list of resources they will use

on the network.

The Client or MAS queries each node on this list, requesting the devices public certificate. The

requestor uses the remote devices serial number SD as the request message.

API:

• mpdc_network_mfk_exchange_request()

• mpdc_network_mfk_exchange_response()

Applies to:

MPDC-2024 Rev. 1b

36

• Agent

• Client

• MAS

Let:

• CD
σ be the root signed certificate of device D.

• st be the sequence number and valid-time timestamp.

• σ be the asymmetric signature.

• H be the hash function.

• HCS
σ be the signed certificate and timestamp hash.

• Kpri be the private signing key.

• Kpub be the signature verification key.

• serD be the requested certificate serial number.

• Sign be the asymmetric signing function.

• st be the sequence number and packet creation timestamp.

• Verify be the asymmetric signature verification function.

The incremental update request:

The device sends an incremental update request with the remote device certificate serial number.

Request(SD) = (serD)

The responding device sends the serialized certificate, and a hash of the certificate and the packet

headers valid-time timestamp and sequence number, signed with its secret signing key.

The incremental update response:

HCS
σ = SignrespKpri(H(CD

σ || st))

Response(CD
σ) = (CD

σ ∥ HCS
σ)

The certificate signature is verified and a hash of the certificate is compared to the signed hash,

and the hash contained in the topological node entry. The certificate hash must match the hash

stored in the node information sent by the DLA. If the certificate is validated, it is added to the

devices certificate store.

VerifyrespKpub(HCS
σ) = H(CD

σ || st)

Proof of Security:

Correctness: The response is only generated if the request is valid and the serial number in the

request matches the responder’s certificate serial number. The responder’s certificate is verified

by the requestor using the root public certificate. The response message signature is verified

using the received public key of the respective device.

MPDC-2024 Rev. 1b

37

Proof: The response signature is:

σ(H(CD
σ || st)) = SignKpri(H(CD

σ || st))

Upon receiving the request, the recipient checks the validity of the certificates’ signature using:

VerifyrootKpub(σ(H(CD))) = H(CD)

The response message including the responder’s certificate and valid-time timestamp are then

verified using the validated responder’s certificate.

VerifydevKpub(σ(H(CD
σ || st))) = H(CD

σ || st)

If the root signature verification passes, the certificate is authentic. The certificate is then used to

authenticate that the message is valid and sent by the responding device. If any of these checks

fail; root signature, responder message signature, hashes, sequence, packet creation valid-time, or

the certificate hash comparison with the node hash value sent by the DLA, the certificate is

rejected.

Integrity: The hash H(CD
σ || st) ensures that the certificate cannot be altered. Any tampering will

result in a failed signature verification.

Replay Protection: A timestamp and sequence number are included in the hash H(CD || ts) and

checked to ensure that the requests cannot be reused maliciously.

6.5 Master Fragment Key Exchange

Overview:

The master fragment key exchange, is an authenticated asymmetric key exchange, where a

shared secret is exchanged between devices. A Client and a MAS exchange master fragment

keys (mfk), and both Client and MAS exchange master fragment keys with Agent servers.

API:

• mpdc_network_mfk_exchange_request()

• mpdc_network_mfk_exchange_response()

Applies to:

• Agent

• Client

• MAS

Mathematical Description:

MPDC-2024 Rev. 1b

38

Let:

• CD
σ be the root signed certificate of device D.

• ct be the asymmetric cipher-text.

• Enc be the asymmetric encapsulation function.

• Dec be the asymmetric decapsulation function.

• H be the hash function.

• HCS
σ be the signed certificate and timestamp hash.

• HES
σ be the signed asymmetric ciphertext and timestamp hash.

• HPS
σ be the signed public cipher key and timestamp hash.

• KGen be the asymmetric cipher key generation function.

• Kpub be the asymmetric signature public key.

• Kpri be the asymmetric signature private key.

• mfk be the master fragment key.

• pk be the asymmetric cipher public key.

• sk be the asymmetric cipher secret key.

• Sign is the asymmetric signing function.

• ss be the shared secret.

• Verify is the asymmetric verification function.

The requestor sends an exchange request to the device. The message contains the requestors

serialized certificate, and a valid-time timestamp.

Note: Agents do not retain Client or MAS certificates.

HCS
σ = SignreqtKpri(H(CD

σ || st))

Request(CD
σ) = (CD

σ || HCS
σ)

The responder verifies the certificates root signature.

VerifyrootKpub(CD
σ) = H(CD)

The responder validates the requestors certificate and the valid-time timestamp are then verified

using the validated responder’s certificate.

VerifydevKpub(HCS
σ) = H(CD

σ || st)

The responder generates a keypair using the asymmetric cipher. It stores the private key, hashes

and signs the public cipher key and valid-time timestamp, and sends it to the requestor.

pk, sk = KGen(λ, r)

HPS
σ = SignrespKpri(H(pk || st))

MPDC-2024 Rev. 1b

39

Response(pk) = (pk ∥ HPS
σ)

The signed public key is sent to the requestor. The signature, hash, and timestamp are verified,

and the requestor uses the public key to encapsulate a shared secret.

VerifyrespKpub(HPS
σ) = H(pk || st)

ct = Encpk(ss)

The shared secret is retained by the requestor and is the master fragment key. The ciphertext is

hashed along with the valid-time timestamp, and the hash is signed by the requestors signing

key.

HES
σ = SignreqtKpri (H(ct || st))

Request(ct) = (ct ∥ HES
σ)

The responder verifies the message hash using the requestors public verification key, then

compares the hash against the hashed ciphertext and timestamp.

VerifydevKpub(HES
σ) = H(ct || st)

If the ciphertext is validated, the ciphertext is decrypted using the responders private cipher key.

ss = Decsk(ct)

Proof of Security:

Correctness: The key exchange consists of three steps:

• The requestor sends a signed hash of its certificate and timestamp to the responder.

• The responder signs a hash of the public cipher key and timestamp and sends it to the

requestor.

• The requestor signs a copy of the ciphertext and timestamp and sends it to the responder.

Proof: Given the definition of digital signatures and the message m:

σ(H(m || st)) = SignKpri(H(m || st))

The verification function computes:

VerifyKpub(σ(H(m || st))) = H(m || st)

Since VerifyKpub is the inverse of SignKpri, the signature is valid if it was signed by the matching

private key. The hash is generated from the message and compared to the signed hash for

equality.

MPDC-2024 Rev. 1b

40

Integrity: Since H(m || st) is hashed and signed, any change to the certificate or signature would

cause the verification to fail. The hash function used (e.g., SHAKE) is collision-resistant,

ensuring that an attacker cannot forge CD or σ(H(m || st)).

Replay Protection: A timestamp and sequence number are included in the hash H(m || ts) and

checked to ensure that broadcasts cannot be reused maliciously.

6.6 Registration Request

Overview:

An Agent registers with the DLA to join an MPDC network. The DLA verifies the agents

certificate, then sends a copy of its own root-signed certificate, and adds the device to the

topology.

API:

• mpdc_network_register_request()

• mpdc_network_register_response()

Applies to:

• Agent

• DLA

Mathematical Description:

Let:

• CD
σ

 be the root signed device certificate.

• H be the hash function.

• HCS
σ be the signed certificate and timestamp hash.

• Kpri be the private asymmetric signing key.

• Kpub be the public asymmetric verification key.

• Sign be the asymmetric signing function.

• σ be the signature.

• Verify be the asymmetric signature verification function.

The Agent requestor sends a register request to the device. The message contains the requestors

serialized certificate, and a signed hash of the certificate and the valid-time timestamp.

The registration request:

HCS
σ = SignagentKpri(H(CD

σ || st))

Request(CD
σ) = (CD

σ
 ∥ HCS

σ)

MPDC-2024 Rev. 1b

41

The DLA responder validates the requestors certificate and the valid-time timestamp are then

verified using the validated responder’s certificate.

VerifyrootKpub(σ(H(CD)) = H(CD)

VerifyagentKpub(HCS
σ) = H(CD

σ || st)

The registration response:

The DLA hashes and signs its certificate and valid-time timestamp and sends it to the Agent.

HCS
σ = SigndlaKpri(H(CD

σ || st))

Response(CD
σ) = (CD

σ ∥ HCS
σ)

The Agent verifies and stores the DLA certificate, generates a topological node for the DLA, and

is registered on the network.

VerifyrootKpub(σ(H(CD)) = H(CD)

VerifydlaKpub(HCS
σ) = H(CD

σ || st)

6.7 Register Update Request

Overview:

When a Client or MAS registers with the DLA to join an MPDC network. The DLA verifies the

devices certificate, then sends a list of topological nodes that are available for that device, a copy

of its own root-signed certificate, and adds the device to the topology.

API:

• mpdc_network_register_update_request()

• mpdc_network_register_update_response()

Applies to:

• Client

• DLA

• MAS

Mathematical Description:

Let:

• CD
σ

 be the root signed device certificate.

MPDC-2024 Rev. 1b

42

• H be the hash function.

• HCS
σ be the signed certificate and timestamp hash.

• HCLS
σ be the signed certificate, list, and timestamp hash.

• Kpri be the private asymmetric signing key.

• Kpub be the public asymmetric verification key.

• list be the list of nodes.

• Sign be the asymmetric signing function.

• σ be the signature.

• Verify be the asymmetric signature verification function.

The requestor sends a register update request to the DLA. The message contains the requestors

serialized certificate, and a signed hash of the certificate and the valid-time timestamp.

The registration update request:

HCS
σ = SignreqtKpri(H(CD

σ || st))

Request(CD
σ) = (CD

σ ∥ HCS
σ)

The DLA responder validates the requestors certificate root signature and the valid-time

timestamp are then verified using the validated responder’s certificate.

VerifyrootKpub(σ(H(CD)) = H(CD)

VerifydevKpub(HCS
σ) = H(CD

σ || st)

The DLA generates a list of topological nodes for the device; MAS servers receive a list of

Agent servers, and Clients receive the list of Agent and MAS servers.

The DLA hashes and signs the list, its certificate, and valid-time timestamp and sends it to the

Agent.

The registration update response:

list = { D1, D2, … Dn } where Di is a topological node.

HCLS
σ = SigndlaKpri(H(CD

σ || list || st))

Response(CD
σ || list) = (CD

σ || list ∥ HCLS
σ)

The requestor verifies and stores the DLA certificate, generates a topological node for the DLA,

and is registered on the network. The requestor adds the list of nodes to the topological list, and

will synchronize certificates with each device using the incremental update function, and then

exchange master fragment keys using the master fragment key exchange. Once the device has the

certificate and master fragment key of each device, its topology is considered synchronized.

VerifyrootKpub(σ(H(CD)) = H(CD)

MPDC-2024 Rev. 1b

43

VerifydlaKpub(HCLS
σ) = H(CD

σ || list || st)

6.8 Remote Signing Request

Overview:

The root domain security (RDS) server only has a single networked function. Remote signing

allows only the DLA to connect to the RDS, to act as a proxy for certificate signing. The DLA

can sign certificates for devices on the network by connecting to the RDS, and forwarding the

certificate to be signed. The RDS has a copy of the DLA certificate, allowing it to verify the

signing request message.

API:

• mpdc_network_remote_signing_request()

• mpdc_network_remote_signing_response()

Applies to:

• DLA

• RDS

Mathematical Description:

Let:

• CD be a device certificate.

• H be the hash function.

• HCS
σ be the signed certificate and timestamp hash.

• Kpri be the private asymmetric signing key.

• Kpub be the public asymmetric verification key.

• Sign be the asymmetric signing function.

• σ be the signature.

• Verify be the asymmetric signature verification function.

The DLA sends a remote signing request to the RDS. The message contains the serialized

certificate to be signed, and a signed hash of the certificate and the valid-time timestamp.

The remote signing request:

HCS
σ = SigndlaKpri(H(CD || st))

Request(CD) = (CD ∥ HCS
σ)

The RDS validates the DLA’s remote signing request signature, the certificate hash, and the

valid-time timestamp.

MPDC-2024 Rev. 1b

44

VerifydlaKpub(HCS
σ) = H(CD || st)

The RDS signs the certificate, and sends it back to the DLA.

The remote signing response:

CD
σ = SignrootKpri(H(CD))

Response(CD
σ)

The DLA verifies the root signature, and can now forward the certificate to the network device.

VerifyrootKpub(σ(H(CD)) = H(CD)

6.9 Resign Request

Overview:

A Client, MAS, or an Agent can resign from the network by sending a resign request to the

DLA. The DLA sends out a revoke request broadcast removing the device’s certificate and nodal

information from every node on the network.

API:

• mpdc_network_resign_request()

• mpdc_network_resign_response()

Applies to:

• Agent

• Client

• DLA

• MAS

Mathematical Description:

Let:

• H be the hash function.

• HSS
σ be the signed serial number and timestamp hash.

• Kpri be the private asymmetric signing key.

• Kpub be the public asymmetric verification key.

• list be the list of nodes.

• Sign be the asymmetric signing function.

• σ be the signature.

MPDC-2024 Rev. 1b

45

• Verify be the asymmetric signature verification function.

The requestor sends a resign request to the DLA. The message contains the requestors certificate

serial number, and a signed hash of the serial number and the valid-time timestamp.

The resignation request:

HSS
σ = SigndevKpri(H(SD || st))

Request(SD) = (SD ∥ HSS
σ)

The DLA looks up the serial number in its topology, loads the device certificate and validates the

signed message.

VerifydevKpub(HSS
σ) = H(SD || st)

The requesting device erases its topology, and must make a register request to the DLA to rejoin

the network. The DLA sends a revocation broadcast to a subsect of relevant nodes on the

network.

6.10 Revoke Broadcast

Overview:

The revocation request is a broadcast message that instructs nodes on the network that a

certificate has been revoked, and that device is to be removed from the network. Network

members that receive this message, delete the devices certificate and remove it from the local

topological database.

API:

• mpdc_network_revoke_broadcast()

• mpdc_network_revoke_response()

Applies to:

• Agent

• Client

• DLA

• MAS

Mathematical Description:

Let:

• H be the hash function.

MPDC-2024 Rev. 1b

46

• HSS
σ be the signed serial number and timestamp hash.

• Kpri be the private asymmetric signing key.

• Kpub be the public asymmetric verification key.

• list be the list of nodes.

• SD be the device certificate serial number.

• Sign be the asymmetric signing function.

• st be the sequence number and valid-time timestamp.

• σ be the signature.

• Verify be the asymmetric signature verification function.

The DLA sends a revoke request to a subset of nodes on the network depending on the device

type being revoked:

• Agent revocations are sent to Client and MAS devices.

• MAS revocations are sent to Agent and Client devices.

• Client revocations are sent to Agent and MAS devices.

The revocation message contains a signed copy of the device certificate serial number to be

revoked.

HSS
σ = SigndlaKpri(H(SD || st))

Request(SD) = (SD ∥ HSS
σ)

The DLA sends the revocation out to a list of devices.

L = { D1, D2, …, Dn }

For each i ∈ L = Broadcast(Li, (SD ∥ σ))

6.11 Topological Query Request

Overview:

The Client-requestor sends the hashed and signed issuer string of a remote Client node and the

local certificate serial number to the DLA.

Clients are not updated with each other’s certificates during network registration. This is meant

to scope topology information to the smallest number of nodes required for a given device.

Clients can connect to other Clients, by querying the DLA for a remote Clients node information.

The Client sends the DLA the remote Client’s network (issuer) name, and the DLA returns that

Client’s topological node information to the requestor.

The Client sends its serial number, and the remote nodes issuer string, which is composed of the

network name, device name, and certificate extension. The query interface takes only the device

name, which is resolved to the issuer string for the request. The DLA uses the certificate serial

MPDC-2024 Rev. 1b

47

number to load the requestors certificate, and verify the signature. The requesting Client receives

the remote Clients node information, and uses it to synchronize certificates, and exchange master

fragment keys.

API:

• mpdc_network_topological_status_request()

• mpdc_network_topological_status_response()

Applies to:

• Client

• DLA

Mathematical Description:

Let:

• H be the hash function.

• HSRS
σ be the signed serial number, issuer name, and timestamp hash.

• HNS
σ be the node and timestamp hash.

• ID be the issuer string query.

• Kpri be the private asymmetric signing key.

• Kpub be the public asymmetric verification key.

• ND be the serialized node.

• RI be the remote device issuer name.

• SD be the device serial number.

• Sign be the asymmetric signing function.

• st be the sequence number and valid-time timestamp.

• σ be the signature.

• Verify be the asymmetric signature verification function.

The Client sends a topological query request to the DLA. The message contains the requestors

certificate number, the remote Client’s issuer name, and a signed hash of the serial number,

issuer name, and the valid-time timestamp.

HSRS
σ = SignclientKpri(H(SD || RI || st))

Request(ID) = (SD || RI ∥ HSRS
σ)

The DLA responder validates the requestors signature, and the valid-time timestamp.

VerifyclientKpub(HSRS
σ) = H(ID || SD || st)

The DLA looks up the node in the topological database using the issuer string, hashes and signs

the node, and sends it back to the requestor.

MPDC-2024 Rev. 1b

48

HNS
σ = SigndlaKpri(H(ND || st))

Response(ND) = (ND ∥ HNS
σ)

6.12 Topological Status Request

Overview:

The DLA sends a status request to the target Client, verifying it is online and available. It sends a

signed copy of its certificate serial number in the message.

The remote Client receives the signed serial number for the remote node, verifies the hash,

signature, and the serial number.

If the responder is available, it sends its signed serial number back to the DLA requestor.

The DLA verifies the message, and the function signals if the node is available for connect.

API:

• mpdc_network_topological_query_request()

• mpdc_network_topological_query_response()

Applies to:

• Client

• DLA

Mathematical Description:

Let:

• H be the hash function.

• HSS
σ be the signed serial number and timestamp hash.

• ID be the issuer string query.

• Kpri be the private asymmetric signing key.

• Kpub be the public asymmetric verification key.

• ND be the serialized node.

• Sign be the asymmetric signing function.

• st be the sequence number and valid-time timestamp.

• σ be the signature.

• Verify be the asymmetric signature verification function.

The DLA sends a topological status request to the device. The message contains the DLA’s

certificate serial number, and a signed hash of the serial number and the valid-time timestamp.

HSS
σ = SigndlaKpri(H(SD || st))

MPDC-2024 Rev. 1b

49

Request(ID) = (SD ∥ HSS
σ)

The responder validates the DLA’s signature, serial number, and the valid-time timestamp.

VerifydlaKpub(HSS
σ) = H(SD || st)

The responder then echoes back it’s signed certificate serial number to the DLA if it is available.

HSS
σ = SigndlaKpri(H(SD || st))

Response(SD) = (SD ∥ HSS
σ)

MPDC-2024 Rev. 1b

50

7. Security Analysis

MPDC is designed to provide robust security against a wide range of attacks, including classical

and quantum threats. The protocol incorporates multiple layers of security measures to ensure

confidentiality, integrity, authentication, and forward secrecy.

Defense Against Classical Attacks

7.1 Man-in-the-Middle (MITM) Attacks

Threat: An attacker intercepts and possibly alters communication between the Client and MAS,

attempting to impersonate one or both parties.

Defense Strategies:

Certificate Validation:

• Both the Client and MAS use certificates signed by the RDS.

• Each party validates the other's certificate against the trusted root certificate.

• Any unauthorized certificate will fail validation.

• Impersonating a MAS would require impersonation of the entire Agent network,

requiring each device’s signing key be compromised.

Digital Signatures:

• Public keys are accompanied by digital signatures.

• Signatures are verified using the sender's public key.

• Altered public keys result in failed signature verification.

Mutual Authentication:

• Both parties authenticate each other using their respective key pairs and certificates.

• Prevents unauthorized entities from joining the communication.

7.2 Replay Attacks

Threat: An attacker reuses valid data transmissions to deceive a system into unauthorized

actions.

Defense Strategies:

Nonces and Timestamps:

• Incorporate unique nonces and timestamps in messages.

• Ensures each message is fresh and cannot be replayed.

MPDC-2024 Rev. 1b

51

• Messages with old timestamps or used nonces are rejected.

Session Identifiers:

• Unique session IDs associated with each communication session.

• Prevents mixing of messages from different sessions.

7.3 Key Compromise Attacks

Threat: Compromise of a private key could allow an attacker to decrypt communications or

impersonate a device.

Defense Strategies:

Multi-Party Key Contribution:

• Session key derivation involves key fragments from the Agent network.

• Compromising a single private key is insufficient without the Agent's fragment.

Regular Key Refresh:

• Session keys are refreshed periodically based on certificate expiration time.

• Limits the window of opportunity for attackers.

Forward Secrecy:

• Past session keys remain secure even if current private keys are compromised.

• Session keys are not derived solely from long-term private/public keys.

7.4 Entropy Injection and Randomness

Threat: Attacks exploiting weak or predictable keys due to insufficient randomness.

Defense Strategies:

Agent's Key Fragment:

• Provides high-quality entropy from an independent source.

• Enhances randomness in session key generation.

Multiple Entropy Sources:

• Combines entropy from Client, MAS, and Agent.

• Reduces the risk associated with any single point of failure.

Defense Against Quantum Attacks

MPDC-2024 Rev. 1b

52

Quantum computing poses a significant threat to classical cryptographic algorithms. MPDC

addresses this by integrating quantum-resistant cryptographic primitives.

7.5 Post-Quantum Cryptography

Quantum Threat: Quantum algorithms like Shor's algorithm can break RSA, ECC, and other

classical public-key systems.

Defense Strategies:

Quantum-Resistant Algorithms:

• Use lattice-based cryptography (e.g., Kyber, Dilithium) for public-key operations.

• Alternatively use code-based asymmetric cipher McEliece, and hash based signatures

(SPHINCS+).

• Resistant to attacks from quantum computers, with a wide range of security options and

parameter sets to accommodate different expectations of long-term security requirements.

Hash Functions:

• Employ SHAKE (SHA-3 variant) for hashing operations.

• Provides security against quantum attacks due to its collision and pre-image resistance

even in a quantum context.

7.6 Entropy Injection and Randomness

Quantum Threat: Quantum computers could potentially simulate or predict key generation

processes with insufficient entropy.

Defense Strategies:

Agent's Key Fragment:

• Injects additional entropy not predictable by quantum algorithms.

• Enhances the unpredictability of the session key.

Multi-Party Contribution:

• Session key depends on inputs from multiple parties.

• Increases computational difficulty for quantum adversaries.

Mathematical Proofs of Security

7.7 Correctness of Key Exchange

Shared Session Key:

MPDC-2024 Rev. 1b

53

Both MAS and Client compute:

Where:

• fset is the set of fragment keys

• as is the agent serial number

• fc is the encrypted fragment key

Fragment set shared by MAS and Client:

fset = { F1(as1 || fc1), F2(as2 || fc2), ..., Fn(asn || fcn) }

Each fragment is decrypted.

For each i ∈ { 1, 2, …, n }, fi = -E𝑒𝑓𝑘𝑖𝑎𝑔𝑒𝑛𝑡
𝑚𝑎𝑠 (cfi)

Fragments are hashed to create a set of session keys used between the MAS and the Client to

establish an encrypted tunnel. The fragment keys are added to the KDF input, including the

fragment generated by the MAS for the Client:

k1, k2, n1, n2 = KDF(f1, f2, ... fn)

Generates the session keys transmit and receive channels used to create an encrypted tunnel

between the MAS and the Client.

Session = {
Transmit(E𝑘1(𝑛1, 𝑑𝑎𝑡𝑎))

 Receive(−E𝑘2(𝑛2, 𝑑𝑎𝑡𝑎))

Verification:

• Since all inputs are the same and verified, both parties derive the same session key.

• The distribution of keying material across multiple autonomous devices, ensures tamper-

proof key derivation.

• That Client and MAS use different keys to decrypt each fragment, ensures the key

fragments are not tampered with during transport.

• Entropy injected from multiple devices with different source random generators, vastly

increases the mathematical hardness of differential analysis of the keying material.

7.8 Resistance to Attacks

Collision Resistance:

• Hash function is collision-resistant.

• Computationally infeasible to find different inputs that produce the same hash output.

Computational Difficulty:

MPDC-2024 Rev. 1b

54

• Without access to the private keys and the Agent's key fragment, attackers cannot

compute the session key.

• Quantum algorithms do not efficiently solve lattice-based (Kyber, Dilithium), code-based

(McEliece), or hash-based (SPHINCS+) cryptographic problems used in MPDC.

7.9 Forward Secrecy

Session-Specific Keys:

• Each session generates a new, unique session key.

• Session keys are not stored long-term.

Ephemeral Key Fragments:

• Agent's key fragments are unique per session and discarded after use.

• Compromise of long-term keys does not affect past session keys.

Attack Mitigation Strategies

7.10 Certificate Revocation

Certificate Revocation:

• DLA can broadcast a revocation message to all affected devices.

• Devices remove the certificate and topological node from the database.

Comparison with Other Protocols

Strengths of MPDC

Multi-Party Key Exchange:

• Involves multiple entities, enhancing security through distribution of security and

authentication.

• Agent's entropy injection strengthens randomness.

Post-Quantum Readiness:

• Incorporates quantum-resistant algorithms.

• Future-proof against advancements in quantum computing.

Flexibility and Scalability:

• Adaptable to various network sizes and configurations.

• Suitable for IoT, enterprise, and critical infrastructure.

MPDC-2024 Rev. 1b

55

Conclusion

MPDC offers a robust cryptographic protocol that addresses both current and emerging security

threats. Its design emphasizes secure communication through multi-party key exchange,

leveraging contributions from the Client, MAS, and Agent to establish a secure session key. By

integrating quantum-resistant cryptographic primitives and comprehensive attack mitigation

strategies, MPDC ensures long-term security and resilience against sophisticated attacks.

The protocol's flexibility and scalability make it suitable for a wide range of applications, from

IoT devices to enterprise networks. While it introduces additional complexity and reliance on

multiple entities, the enhanced security benefits outweigh these challenges in environments

where security is paramount.

MPDC-2024 Rev. 1b

56

8. Application Scenarios

A multi-party key exchange scheme that incorporates multiple dedicated sources of entropy

enhances security by utilizing distributed randomness to establish a shared key. This model can

be particularly advantageous in environments where strong and unpredictable entropy is crucial

to prevent attacks that exploit weak randomness or deterministic behavior. Here are potential use

cases and applications of such a system:

8.1 Enhanced Client-Server Key Exchange for Critical Infrastructure

Description: In scenarios involving critical infrastructure (e.g., power grids, water treatment

facilities, military, and state applications), secure client-server communication is paramount. A

multi-party key exchange augmented with multiple dedicated sources of entropy can involve

various components of the infrastructure contributing entropy to the key generation process.

Use Case: During the key exchange, the client and server gather entropy from geographically

separated sensors or entropy sources. This approach reduces the risk of entropy failures,

increases randomness, and mitigates single-point vulnerabilities that could be exploited by

attackers.

Benefits:

• Greater resilience against entropy-based attacks, including side-channel attacks.

• Mitigates the risk of predictable keys, which is crucial in long-term infrastructure

deployments.

• Adds strong resistance against impersonation and man-in-the-middle attacks.

• Increased security against both classical and quantum adversaries by ensuring high-quality

randomness.

8.2 Secure Multi-user Messaging Applications

Description: Multi-party key exchange with multiple entropy sources can be utilized in secure

messaging applications where a shared group key needs to be established. Instead of relying

solely on client-provided randomness, each participant (or dedicated entropy provider)

contributes entropy to the key agreement.

Use Case: In a secure group chat application, users connect through a central server. The server

coordinates a key exchange where each client contributes entropy, as well as an independent

entropy provider (e.g., a trusted hardware random number generator or an entropy service).

Benefits:

• Guarantees high-quality randomness for the group key, reducing the risk of key compromise.

• Provides robustness against compromised clients or entropy providers, as no single entity can

control the entire randomness pool.

• Improves forward secrecy and deniability, essential for secure messaging applications like

Signal or WhatsApp.

MPDC-2024 Rev. 1b

57

8.3 Post-Quantum Secure Remote Shell Protocol

Description: In a remote shell protocol (similar to SSH but quantum-secure), using a multi-party

key exchange with multiple entropy sources enhances the security of the session key generation

process. Entropy can be injected from both the client device, server device, and additional

entropy nodes or agents on the network.

Use Case: During the key exchange, the client, server, and a distributed entropy agent (e.g., a

hardware security module or remote entropy service) each provide contributions. The combined

entropy is used to derive session keys, ensuring they are resistant to prediction or manipulation.

Benefits:

• Stronger resistance against entropy manipulation or degradation attacks.

• Enhanced post-quantum security, as the key generation process integrates randomness from

multiple independent sources.

• Suitable for highly sensitive environments, such as financial trading platforms or military

communication systems.

8.4 Secure Federated Learning and Distributed Data Analysis

Description: In federated learning, multiple data providers (e.g., hospitals, financial institutions)

collaborate to train a machine learning model without sharing raw data. A secure multi-party key

exchange with diverse entropy sources can protect the communication channels used to

aggregate local model updates.

Use Case: Each data provider injects its own entropy into the key exchange, ensuring that the

shared model aggregation keys are random and unpredictable. A central coordinator aggregates

these updates securely using the derived keys.

Benefits:

• Prevents data inference attacks that could arise from weak key generation.

• Enhances data confidentiality by ensuring that the shared keys have strong, unbiased

randomness.

• Provides robustness against compromised participants or entropy failures in a decentralized

network.

8.5 Quantum-secure Blockchain Consensus Protocols

Description: In blockchain and distributed ledger systems, consensus mechanisms (e.g., Proof of

Stake, Byzantine Fault Tolerance) require secure communication channels for node-to-node

messaging. A multi-party key exchange using multiple entropy sources can ensure secure key

generation even in the presence of malicious nodes.

Use Case: Nodes participating in the consensus inject entropy into the key exchange, along with

a separate entropy provider (e.g., a random beacon or oracle service). The resulting shared key

secures node-to-node communication and ensures the integrity of the consensus process.

MPDC-2024 Rev. 1b

58

Benefits:

• Increases the unpredictability of the shared key, making it resistant to manipulation by

malicious nodes.

• Supports post-quantum security, protecting the blockchain against future quantum attacks.

• Improves the robustness of consensus mechanisms, reducing the risk of double-spending or

consensus failure.

Advantages of Using Multiple Dedicated Sources of Entropy

1. Reduced Risk of Entropy Attacks:

By distributing the entropy contribution among multiple independent sources, the risk of a

single point of entropy failure (e.g., faulty hardware RNG, compromised software RNG) is

minimized.

2. Mitigation of Bias and Predictability:

Each entropy source may have different characteristics and potential biases. Combining

contributions from diverse sources helps mitigate any inherent biases and increases the

overall quality of randomness.

3. Resilience Against Compromise:

If one of the entropy sources is compromised or controlled by an attacker, the randomness

provided by the other sources can still ensure the unpredictability of the key, making attacks

significantly harder.

4. Quantum Resistance:

A robust and diverse entropy pool enhances the security of the key exchange against

quantum adversaries, who might otherwise exploit deterministic patterns in key generation.

5. Flexibility and Scalability:

The approach can be adapted to various network configurations, including client-server,

peer-to-peer, and decentralized systems, making it a versatile solution for modern

cryptographic applications.

In conclusion, multi-party key exchanges that leverage multiple sources of entropy provide

enhanced security, reliability, and quantum resistance, making them an essential component of

next-generation cryptographic systems. These schemes address the increasing demand for secure

and scalable communication protocols in distributed and decentralized environments.

MPDC-2024 Rev. 1b

59

10. Cryptanalysis of MPDC-I

10.1 Threat Model and Target Properties

We analyze MPDC-I under an active, adaptive adversary 𝔄 that

• controls all network links (eavesdrop, drop, modify, replay, reorder);

• compromises at will any subset of long-term keys or certificates held by Client C, MAS

S, Agent Aᵢ, DLA D, or RDS R;

• performs chosen-ciphertext queries to the IND-CCA KEM (Kyber / McEliece) and

chosen-message queries to the EUF-CMA signature (Dilithium / SPHINCS+);

• enjoys unlimited classical computing power and, after protocol termination, a large-scale

quantum computer.

Security goals:

Goal Symbolic requirement

Entity Authentication C and S accept iff every certificate chain verifies to RDS and all

message signatures/MACs validate.

Session-key Secrecy The two tunnel keys (kᴿˣ, kᵀˣ) are indistinguishable from random

to 𝔄.

Forward Secrecy (FS) Compromise of any long-term key after tunnel teardown reveals

no past session keys.

Predictive-Resistance

(PR)

Compromise of client or MAS state before the next fragment

refresh reveals no future keys.

Replay & Downgrade

Resistance

All MPDC packets embed a sequence number and UTC

timestamp inside the signed/MAC’d data.

Robustness Any authentication failure aborts the entire handshake, as

mandated in § 5 “Design Requirements”.

10.2 Security Analysis of the Interior Key-Exchange

10.2.1 Fragment-Collection Sub-protocol

1. MAS authenticity — C accepts a fragment bundle only if every included Agent

fragment is MAC’d under an efk that C can reconstruct from its unique mfk with that

Agent and the MAS-supplied token (§ 5.5). Forgery ⇒ break KMAC (UF-CMA) or

derive mfk without running the 3-pass authenticated KEM.

2. Entropy injection — Session-key input = (MAS frag ∥ A₁ frag ∥ ⋯ ∥ Aₙ frag). Each

fragment is 256-bit uniformly random (SHAKE output) and XOR-masked under an

independent efk. Unless all contributing Agents are compromised, the min-entropy of the

concatenation remains ≥ 256 bits.

MPDC-2024 Rev. 1b

60

3. IND-CPA / INT-CTXT — The data tunnel uses RCS+KMAC AEAD (optionally AES-

GSM) with per-packet {seq, utc} as AAD. Confidentiality reduces to PRF-security of

RCS and MAC-unforgeability of KMAC.

10.2.2 Forward & Post-compromise Security

• FS: All TKC entries and mfk-derived efk keys are wiped immediately after use; the

surviving state on C and S contains only {kᴿˣ, kᵀˣ}. Compromise of signing keys or mfk

after that point yields no information on past tunnels.

• PR: An attacker that snapshots C before the next fragment cycle cannot compute the

upcoming efk because:

efknext = KDF(mfk_Cai ∥ HMAS ∥ Hai ∥ toknext),

and tokₙₑₓₜ is generated by S after the snapshot. Breaking PR requires predicting a 256-bit nonce

and defeating KDF-SHAKE.

10.2.3 Replay, Reflection, Downgrade

• Every network message binds seq‖utc inside the signature/MAC. Re- use fails because

seq is strictly monotone per channel; utc must verify |Δ| ≤ τ (default 60 s).

• Protocol version and cryptographic configuration-set ID are hashed into every certificate

and into the fragment-encryption KDF input, eliminating silent algorithm downgrade.

MDPC Specification

10.3 System-level Attack Surface

Vector Mitigation Residual risk

Single-point CA

failure (RDS)

Root certificate hard-expiry; proxy-signing

via DLA; revocation broadcast (§ 6.10).

Short-lived (≤ 90 d) root

epochs recommended.

Compromised

Agent

Needs to corrupt all Agents contributing to a

given handshake to bias the KDF; partial

leakage only reduces entropy.

Diversify geography &

HSM vendors of

Agents.

Side-channel on

mfk

mfk lives only in volatile RAM;

implementations follow QSC constant-time

style.

Harden HSM with DPA

counter-measures.

Traffic analysis Fixed-size packets; optional PAD frames

under consideration (§ 5 “Design

Requirements”).

Correlation on packet

rate still possible.

10.4 Expanded Comparison with Representative Multi-Party Cryptography

(MPC) Schemes

MPDC-2024 Rev. 1b

61

The table below refines § 10.4 by contrasting MPDC-I with three well-known families of multi-

party protocols, weighing them along five axes that matter in real deployments:

Dimension MPDC-I MLS /

TreeKEM
(RFC

9380, 2024)

Threshold-

ECDH /

TSS
(GG-

18 / GG-20)

SPDZ-

2k
(actively

secure MPC)

Primary goal Post-quantum

client–server

tunnel with

entropy

splitting across

n Agents

Large-scale group

messaging w. FS &

PCS

Distributed

signing /

decryption

without

revealing key

General secure

computation

over arithmetic

circuits

Cryptographic

core

Kyber +

McEliece

KEM;

Dilithium /

SPHINCS+

sig.;

RCS+KMAC

AEAD

TreeKEM (X25519);

Ed25519 sig.; HPKE-

ChaCha20-Poly1305

Elliptic-curve

DKG;

interactive

zero-

knowledge;

Paillier

Packed secret-

sharing;

homomorphic

MACs; OT +

GMW

Post-quantum ✓ (native) ✗ (classical) △ (research

PQ-TSS

variants)

△ (if using

lattice OT)

Forward

secrecy (FS)
✓ fresh KEM

keys each

session

✓ asym ratchet per

epoch

✓ (fresh

nonce in DKG)

N/A (offline pre-

processing)

Post-

compromise

security (PCS)

✓ mandatory

symmetric +

optional asym

ratchets

✓ (Leaf & Group

TreeKEM update)

✗ (no built-in

ratchet)

N/A

MitM surface All handshake

msgs signed

by MAS &

validated to

RDS; Agents

MAC their

fragments →

MitM must

break EUF-

CMA or IND-

CCA

TreeKEM signatures

on Update/Commit;

HPKE authenticated

channel; PKI root CA

Interactive

proofs

authenticated

over mutually

trusted channel

→ MitM

blocked if one

honest party

Requires

authenticated

OT channel;

MitM breaks

correctness if

OT not

authenticated

Handshake

round-trips

3 RTT (C↔D,

C↔S,

S↔Agents)

2 RTT (init) + 1 RTT

per epoch

2–5 RTT

depending on

TSS variant

Dozens of OT &

MAC rounds

MPDC-2024 Rev. 1b

62

Scalability Linear in

#Agents (n ≤ 8

typical)

Log₂ M members

(balanced tree)

All-to-all or

dealer → O(n²)

Quadratic

comm. in party

count

Online perf. at

256-bit sec.

≈ 1.8 ms KEM

+ 2 KB traffic

(n = 4)

≈ 0.9 ms DH + 1 KB

(M = 32)

25–40 ms per

party, 30 KB

> 100 ms, > 1

MB per gate

Replay /

downgrade

defense

seq‖utc in

every

signed/MAC’d

field; cfg hash

bound into

KDF

Epoch + transcript

hash

Depends on

application

layer

Depends on OT-

auth

Indispensable

trust

Root-signed

RDS +

majority of

Agents honest

One honest member

per epoch

One honest

key-share

holder

Honest majority

(t < n/3)

Typical

deployment

Fintech VPN,

fleet mgmt.,

SCADA

Encrypted chat

(Signal, Matrix)

Crypto-wallet,

HSM quorum

Privacy-

preserving

analytics

Key Take-aways

Security strength

• Post-quantum assurance – MPDC-I adopts lattice + code-based KEMs and hash-

based / lattice signatures, whereas MLS and today’s production TSS still rely on

classical elliptic curves.

• MitM robustness – MPDC-I signs every control packet (including Agent fragments) and

embeds a configuration-ID hash in its KDF, removing downgrade vectors. MLS signs

only epoch commits; intermediate handshake traffic is HPKE-authenticated but not

globally transcript-bound, leaving room for exotic prefix attacks if the application layer

forgets to enforce the transcript hash.

• Resilience to single-party compromise – Thanks to entropy splitting, MPDC-I

preserves ≥ 256-bit min-entropy so long as one Agent remains honest; TreeKEM

collapses to 128-bit if any member’s leaf secret leaks; most 2-of-3 TSS deployments lose

the entire signing key if two shares collude.

Performance

• MPDC-I’s online cost grows linearly with the number of contributing Agents; in realistic

setups (Agent quorum ≤ 8) it stays below 3 ms on commodity x86, only double MLS

while delivering PQ security.

• Threshold-ECDH and SPDZ incur interactive, all-to-all rounds; latency dominates in

WAN deployments and renders them unsuitable for “open tunnel in <10 ms targets.

MPDC-2024 Rev. 1b

63

• Offline, MPDC-I lets Agents pre-compute fragment caches, cutting MAS handshake

CPU by ≈ 80 %.

Man-in-the-Middle (MitM) exposure

Scheme Earliest point MitM can inject without

being detected

Reason

MPDC-I After MAS sends FINISH packet – but

MAC/Sig check fails immediately

Every packet signed/MACed,

seq# monotone

MLS

TreeKEM

During Welcome if DS identity not pinned DS leaf not signed by

external CA

GG-20 TSS After key-generation until signature

aggregation – MitM can force abort but not

forge

Messages authenticated per

share

SPDZ-2k Any OT channel if lacking TLS – will corrupt

output silently

OT not integrity-protected by

design

Summary

MPDC-I strikes a middle ground:

• It offers quantum-resistant, tunnel-oriented security stronger than today’s MLS or TSS

yet avoids the heavy-weight arithmetic of generic MPC.

• Its MitM surface is narrower than MLS because of full-transcript signatures and

sequence-number binding.

• Performance stays practical (< 3 ms, < 3 KB) for the intended small-to-medium operator

pools, whereas full MPC protocols remain orders of magnitude slower.

For infrastructures that already trust a root CA and can deploy 3–8 hardened Agents, MPDC-I

delivers a uniquely strong, efficiently deployable alternative to classical group key-exchange or

threshold-ECDH solutions.

10.5 Recommendations

1. Root-key rotation & CRLite-style revocation to cap RDS compromise impact.

2. Length-hiding padding option (PAD flag) to mitigate traffic-shape leakage.

3. Public audit of RCS wide-block cipher; provide AES-GCM fallback for FIPS zones.

4. Automated Agent health checking—MAS aborts handshake if fewer than t fragments

arrive, where t is policy-configurable quorum.

10.6 Conclusion

Under standard assumptions (IND-CCA KEM, EUF-CMA signatures, PRF-secure

SHAKE/KMAC, and honest-majority Agents), MPDC-I achieves entity authentication, strong

MPDC-2024 Rev. 1b

64

session-key secrecy, forward & predictive security, and robustness against replay and downgrade

attacks, even against quantum-equipped adversaries. Its entropy-splitting design offers a

measurably higher security margin than single-source tunnels and positions MPDC-I as a

practical, post-quantum-ready alternative to MLS or classic SSH/TLS in environments where

centralized trust and scalable, lightweight operations are paramount.

MPDC-2024 Rev. 1b

65

10. Internal Functions

10.1 MPDC Certificate API Documentation

10.1.1 Function: mpdc_certificate_algorithm_decode

Purpose: Decodes a protocol-set string into its enumerated form for internal use.

Parameters:

• name (Type: const char*): A string representing the protocol-set.

Returns: mpdc_configuration_sets - The protocol-set enumerator corresponding to the provided

string.

10.1.2 Function: mpdc_certificate_algorithm_enabled

Purpose: Tests if a specific protocol-set is enabled on this system.

Parameters:

• conf (Type: mpdc_configuration_sets): The protocol-set enumerator.

Returns: bool - Returns true if the protocol-set is enabled.

10.1.3 Function: mpdc_certificate_algorithm_encode

Purpose: Encodes the protocol-set enumerator to a string format.

Parameters:

• name (Type: char*): The output protocol-set string.

• conf (Type: mpdc_configuration_sets): The protocol-set enumerator.

Returns: void

10.1.4 Function: mpdc_certificate_child_are_equal

Purpose: Compares two child certificates for equivalence.

MPDC-2024 Rev. 1b

66

Parameters:

• a (Type: const mpdc_child_certificate*): The first certificate.

• b (Type: const mpdc_child_certificate*): The second certificate.

Returns: bool - Returns true if the two certificates are equal.

10.1.5 Function: mpdc_certificate_child_copy

Purpose: Copies data from one child certificate to another.

Parameters:

• output (Type: mpdc_child_certificate*): The destination certificate for copied data.

• input (Type: const mpdc_child_certificate*): The source certificate to copy.

Returns: void

10.1.6 Function: mpdc_certificate_child_create

Purpose: Initializes a new child certificate with provided parameters.

Parameters:

• child (Type: mpdc_child_certificate*): A pointer to the empty child certificate.

• pubkey (Type: const uint8_t*): A pointer to the public signature key (size:

QSMP_VERIFYKEY_SIZE).

• expiration (Type: const mpdc_certificate_expiration*): The certificate expiration time structure.

• address (Type: const char*): The certificate IP address string.

• issuer (Type: const char*): The certificate issuer string.

• designation (Type: mpdc_network_designations): The certificate designation type.

Returns: void

10.1.7 Function: mpdc_certificate_child_decode

Purpose: Decodes a child certificate string into a certificate structure.

Parameters:

MPDC-2024 Rev. 1b

67

• child (Type: mpdc_child_certificate*): A pointer to the child certificate to populate.

• enck (Type: const char[MPDC_CHILD_CERTIFICATE_STRING_SIZE]): The encoded key array.

Returns: bool - Returns true if the key decoded successfully.

10.1.8 Function: mpdc_certificate_child_deserialize

Purpose: Deserializes a child certificate from a serialized input array into a structure.

Parameters:

• child (Type: mpdc_child_certificate*): A pointer to the child certificate.

• input (Type: const uint8_t*): A pointer to the serialized certificate data.

Returns: void

10.1.9 Function: mpdc_certificate_child_encode

Purpose: Encodes a child certificate into a readable string format.

Parameters:

• enck (Type: char[MPDC_CHILD_CERTIFICATE_STRING_SIZE]): The buffer to store the

encoded certificate.

• child (Type: const mpdc_child_certificate*): The certificate to encode.

Returns: size_t - The size of the encoded certificate string.

10.1.10 Function: mpdc_certificate_child_erase

Purpose: Deletes the data of a child certificate.

Parameters:

• child (Type: mpdc_child_certificate*): A pointer to the child certificate to erase.

Returns: void

MPDC-2024 Rev. 1b

68

10.1.11 Function: mpdc_certificate_child_file_to_struct

Purpose: Loads a child certificate from a file into a structure.

Parameters:

• fpath (Type: const char*): The file path to the serialized certificate.

• child (Type: mpdc_child_certificate*): A pointer to the child certificate structure to populate.

Returns: bool - Returns true on successful loading.

10.1.12 Function: mpdc_certificate_child_hash

Purpose: Generates a hash of a child certificate.

Parameters:

• output (Type: uint8_t*): The output buffer for the hash (size:

MPDC_CERTIFICATE_HASH_SIZE).

• child (Type: const mpdc_child_certificate*): A pointer to the child certificate to hash.

Returns: void

10.1.13 Function: mpdc_certificate_child_is_valid

Purpose: Checks if a child certificate has a valid format.

Parameters:

• child (Type: const mpdc_child_certificate*): A pointer to the child certificate to validate.

Returns: bool - Returns true if the certificate format is valid.

10.1.14 Function: mpdc_certificate_child_message_verify

Purpose: Verifies a message signature using the child certificate.

Parameters:

• message (Type: uint8_t*): The buffer to store the verified message output.

MPDC-2024 Rev. 1b

69

• msglen (Type: size_t*): The length of the verified message.

• signature (Type: const uint8_t*): The signed message.

• siglen (Type: size_t): The length of the signed message.

• child (Type: const mpdc_child_certificate*): A pointer to the child certificate used for

verification.

Returns: bool - Returns true if the message signature is verified.

10.1.15 Function: mpdc_certificate_child_serialize

Purpose: Serializes a child certificate into a byte array.

Parameters:

• output (Type: uint8_t*): The array to receive the serialized certificate (size:

MPDC_CERTIFICATE_CHILD_SIZE).

• child (Type: const mpdc_child_certificate*): The child certificate to serialize.

Returns: void

10.1.16 Function: mpdc_certificate_child_struct_to_file

Purpose: Saves a child certificate structure to a file.

Parameters:

• fpath (Type: const char*): The file path where the certificate will be saved.

• child (Type: const mpdc_child_certificate*): A pointer to the child certificate structure to save.

Returns: bool - Returns true on successful saving.

10.1.17 Function: mpdc_certificate_designation_decode

Purpose: Decodes a network designation string into its enumerated form.

Parameters:

• sdsg (Type: const char*): The string representing the network designation.

Returns: mpdc_network_designations - The enumerated network designation.

MPDC-2024 Rev. 1b

70

10.1.18 Function: mpdc_certificate_designation_encode

Purpose: Encodes a network designation enumerator to string format.

Parameters:

• sdsg (Type: char*): The buffer to store the encoded network designation string.

• designation (Type: mpdc_network_designations): The network designation enumerator to

encode.

Returns: size_t - The size of the encoded string.

10.1.19 Function: mpdc_certificate_expiration_set_days

Purpose: Sets expiration days for a certificate.

Parameters:

• expiration (Type: mpdc_certificate_expiration*): Pointer to the expiration structure to

configure.

• start (Type: uint16_t): Number of days before the certificate becomes valid.

• duration (Type: uint16_t): Duration in days for the certificate validity.

Returns: void

10.1.20 Function: mpdc_certificate_expiration_set_seconds

Purpose: Sets expiration time in seconds for a certificate.

Parameters:

• expiration (Type: mpdc_certificate_expiration*): Pointer to the expiration structure to

configure.

• start (Type: uint64_t): The starting second when the certificate is valid.

• period (Type: uint64_t): Duration in seconds for the certificate validity.

Returns: void

MPDC-2024 Rev. 1b

71

10.1.21 Function: mpdc_certificate_expiration_time_verify

Purpose: Verifies if a certificate’s expiration time is valid against the current time.

Parameters:

• expiration (Type: const mpdc_certificate_expiration*): A pointer to the expiration structure of

the certificate.

Returns: bool - Returns true if the certificate has not expired.

10.1.22 Function: mpdc_certificate_message_hash_sign

Purpose: Hashes a message and generates a signature for the hash.

Parameters:

• signature (Type: uint8_t*): Buffer for storing the generated signature.

• sigkey (Type: const uint8_t*): The private signing key used for signing.

• message (Type: const uint8_t*): The message to sign.

• msglen (Type: size_t): Length of the message.

Returns: size_t - The size of the generated signature.

10.1.23 Function: mpdc_certificate_root_compare

Purpose: Compares two root certificates for equivalence.

Parameters:

• a (Type: const mpdc_root_certificate*): The first root certificate.

• b (Type: const mpdc_root_certificate*): The second root certificate.

Returns: bool - Returns true if the two root certificates are equal.

10.1.24 Function: mpdc_certificate_root_create

Purpose: Creates a new root certificate with specified parameters.

Parameters:

MPDC-2024 Rev. 1b

72

• root (Type: mpdc_root_certificate*): Pointer to the root certificate structure.

• pubkey (Type: const uint8_t*): Public key for the certificate.

• expiration (Type: const mpdc_certificate_expiration*): Certificate expiration time structure.

• issuer (Type: const char*): Issuer name string.

Returns: void

10.1.25 Function: mpdc_certificate_root_decode

Purpose: Decodes a root certificate from an encoded string.

Parameters:

• root (Type: mpdc_root_certificate*): Pointer to the root certificate structure to populate.

• enck (Type: const char*): Encoded string representing the certificate.

Returns: bool - Returns true if decoding is successful.

10.1.26 Function: mpdc_certificate_root_deserialize

Purpose: Deserializes a root certificate from a byte array.

Parameters:

• root (Type: mpdc_root_certificate*): Pointer to the root certificate to populate.

• input (Type: const uint8_t*): Input array containing the serialized certificate data.

Returns: void

10.1.27 Function: mpdc_certificate_root_encode

Purpose: Encodes a root certificate into a readable string format.

Parameters:

• enck (Type: char*): Buffer to store the encoded certificate.

• root (Type: const mpdc_root_certificate*): Root certificate to encode.

Returns: size_t - The size of the encoded certificate string.

MPDC-2024 Rev. 1b

73

10.1.28 Function: mpdc_certificate_root_erase

Purpose: Deletes data from a root certificate.

Parameters:

• root (Type: mpdc_root_certificate*): Pointer to the root certificate to erase.

Returns: void

10.1.30 Function: mpdc_certificate_root_file_to_struct

Purpose: Loads a root certificate from a file into a structure.

Parameters:

• fpath (Type: const char*): Path to the file containing the serialized certificate.

• root (Type: mpdc_root_certificate*): Pointer to the root certificate structure to populate.

Returns: bool - Returns true on successful loading.

10.1.31 Function: mpdc_certificate_root_hash

Purpose: Generates a hash of a root certificate.

Parameters:

• output (Type: uint8_t*): Buffer to store the hash (size: MPDC_CERTIFICATE_HASH_SIZE).

• root (Type: const mpdc_root_certificate*): Pointer to the root certificate to hash.

Returns: void

10.1.32 Function: mpdc_certificate_root_is_valid

Purpose: Validates the format and structure of a root certificate.

Parameters:

MPDC-2024 Rev. 1b

74

• root (Type: const mpdc_root_certificate*): Pointer to the root certificate to validate.

Returns: bool - Returns true if the root certificate is valid.

10.1.33 Function: mpdc_certificate_root_serialize

Purpose: Serializes a root certificate into a byte array.

Parameters:

• output (Type: uint8_t*): Array to receive the serialized certificate (size:

MPDC_CERTIFICATE_ROOT_SIZE).

• root (Type: const mpdc_root_certificate*): Pointer to the root certificate to serialize.

Returns: void

10.1.34 Function: mpdc_certificate_root_sign

Purpose: Signs a child certificate with the root certificate’s signing key.

Parameters:

• child (Type: mpdc_child_certificate*): Pointer to the child certificate to sign.

• root (Type: const mpdc_root_certificate*): Pointer to the root certificate used for signing.

• rsigkey (Type: const uint8_t*): Pointer to the root signing key

(QSMP_SIGKEY_ENCODED_SIZE).

Returns: size_t - The size of the signed certificate.

10.1.35 Function: mpdc_certificate_root_signature_verify

Purpose: Verifies a child certificate’s signature using the root certificate.

Parameters:

• child (Type: const mpdc_child_certificate*): Pointer to the child certificate being verified.

• root (Type: const mpdc_root_certificate*): Pointer to the root certificate for verification.

Returns: bool - Returns true if the signature is verified successfully.

MPDC-2024 Rev. 1b

75

10.1.37 Function: mpdc_certificate_root_struct_to_file

Purpose: Saves a root certificate structure to a file.

Parameters:

• fpath (Type: const char*): Path to the file where the certificate will be saved.

• root (Type: const mpdc_root_certificate*): Pointer to the root certificate structure to save.

Returns: bool - Returns true on successful saving.

10.1.38 Function: mpdc_certificate_signature_generate_keypair

Purpose: Generates an asymmetric key-pair for signing and verification.

Parameters:

• keypair (Type: mpdc_signature_keypair*): Pointer to a container that will hold the generated

key-pair.

Returns: void

10.1.39 Function: mpdc_certificate_signature_hash_verify

Purpose: Verifies a signature over a hashed message using the child certificate.

Parameters:

• signature (Type: const uint8_t*): Pointer to the signed hash.

• siglen (Type: size_t): Length of the signed hash.

• message (Type: const uint8_t*): Pointer to the message hash.

• msglen (Type: size_t): Length of the message hash.

• lcert (Type: const mpdc_child_certificate*): Pointer to the certificate used for verification.

Returns: bool - Returns true if the signature is verified successfully.

10.1.40 Function: mpdc_certificate_signature_sign_message

MPDC-2024 Rev. 1b

76

Purpose: Signs a message using an asymmetric private key.

Parameters:

• signature (Type: uint8_t*): Array to store the generated signature

(MPDC_ASYMMETRIC_SIGNATURE_SIZE).

• message (Type: const uint8_t*): The message to be signed.

• msglen (Type: size_t): Length of the message.

• prikey (Type: const uint8_t*): Private key used for signing.

Returns: size_t - The length of the generated signature.

10.1.41 Function: mpdc_certificate_signature_verify_message

Purpose: Verifies a signed message using an asymmetric public key.

Parameters:

• message (Type: const uint8_t*): The message to verify.

• msglen (Type: size_t): Length of the message.

• signature (Type: const uint8_t*): The signature to verify.

• siglen (Type: size_t): Length of the signature.

• pubkey (Type: const uint8_t*): Public key used for verification.

Returns: bool - Returns true if the message is verified successfully.

10.2 Crypto.h

10.2.1 Function: mpdc_crypto_decrypt_stream

Purpose: Decrypts a stream of bytes.

Parameters:

• output (Type: uint8_t*): Array receiving the decrypted plain text.

• seed (Type: const uint8_t*): Secret seed array (MPDC_CRYPTO_SEED_SIZE).

• input (Type: const uint8_t*): The encrypted input array.

• length (Type: size_t): Number of bytes to decrypt.

Returns: bool - Returns true on success.

MPDC-2024 Rev. 1b

77

10.2.2 Function: mpdc_crypto_encrypt_stream

Purpose: Encrypts a stream of bytes.

Parameters:

• output (Type: uint8_t*): Array receiving the encrypted cipher text.

• seed (Type: const uint8_t*): Secret seed array (MPDC_CRYPTO_SEED_SIZE).

• input (Type: const uint8_t*): Plain text input array.

• length (Type: size_t): Number of bytes to encrypt.

Returns: void

10.2.3 Function: mpdc_crypto_generate_application_keychain

Purpose: Generates a secure key chain for application use.

Parameters:

• seed (Type: uint8_t*): Output array for the secret seed.

• seedlen (Type: size_t): Length of the seed array.

• password (Type: const char*): Password array.

• passlen (Type: size_t): Byte length of the password array.

• username (Type: const char*): Computer's user name.

• userlen (Type: size_t): Byte length of the user name array.

Returns: void

10.2.4 Function: mpdc_crypto_generate_application_salt

Purpose: Generates a unique application salt using OS sources.

Parameters:

• output (Type: uint8_t*): Array for the secret salt.

• outlen (Type: size_t): Length of the salt array.

Returns: void

10.2.5 Function: mpdc_crypto_generate_hash_code

MPDC-2024 Rev. 1b

78

Purpose: Hashes a message and writes it to an output array.

Parameters:

• output (Type: char*): Output array to receive the hash.

• message (Type: const char*): Pointer to the message array.

• msglen (Type: size_t): Length of the message array.

Returns: void

10.2.6 Function: mpdc_crypto_generate_mac_code

Purpose: Generates a message authentication code (MAC) for a message and writes it to an

output array.

Parameters:

• output (Type: char*): Output array to receive the MAC.

• outlen (Type: size_t): Byte length of the output array.

• message (Type: const char*): Pointer to the message array.

• msglen (Type: size_t): Length of the message array.

• key (Type: const char*): Pointer to the key array.

• keylen (Type: size_t): Length of the key array.

Returns: void

10.2.7 Function: mpdc_crypto_hash_password

Purpose: Hashes a password and user name and writes it to an output array.

Parameters:

• output (Type: char*): Output array to receive the hash.

• outlen (Type: size_t): Byte length of the output array.

• username (Type: const char*): Computer's user name.

• userlen (Type: size_t): Byte length of the user name array.

• password (Type: const char*): Password array.

• passlen (Type: size_t): Byte length of the password array.

Returns: void

MPDC-2024 Rev. 1b

79

10.2.8 Function: mpdc_crypto_password_minimum_check

Purpose: Checks if a password meets a minimum security threshold.

Parameters:

• password (Type: const char*): Password array.

• passlen (Type: size_t): Byte length of the password array.

Returns: bool - Returns true if the password meets minimum requirements.

10.2.9 Function: mpdc_crypto_password_verify

Purpose: Hashes a password and user name and compares it to a stored hash value.

Parameters:

• username (Type: const char*): Computer's user name.

• userlen (Type: size_t): Byte length of the user name array.

• password (Type: const char*): Password array.

• passlen (Type: size_t): Byte length of the password array.

• hash (Type: const char*): Hash array for comparison.

• hashlen (Type: size_t): Byte length of the hash array.

Returns: bool - Returns true if the password and user name hash matches the stored value.

10.2.10 Function: mpdc_crypto_secure_memory_allocate

Purpose: Allocates a block of secure memory.

Parameters:

• length (Type: size_t): Byte length of the memory block to allocate.

Returns: uint8_t* - Pointer to the allocated memory or NULL if allocation fails.

10.2.11 Function: mpdc_crypto_secure_memory_deallocate

Purpose: Releases an allocated block of secure memory.

MPDC-2024 Rev. 1b

80

Parameters:

• block (Type: uint8_t*): Pointer to the memory block to deallocate.

• length (Type: size_t): Byte length of the allocated memory block.

Returns: void

10.3 API Documentation MPDC.h

10.3.1 Constants

MPDC_NETWORK_CLIENT_CONNECT

Enables client-to-client encrypted tunnels.

MPDC_NETWORK_MFK_HASH_CYCLED

Enables MFK key cycling (default).

MPDC_NETWORK_PROTOCOL_IPV6

Indicates that MPDC is using the IPv6 networking stack.

MPDC_EXTENDED_SESSION_SECURITY

Enables 512-bit security on session tunnels.

MPDC_ASYMMETRIC_CIPHERTEXT_SIZE

Defines the byte size of the asymmetric cipher-text array.

Value: QSC_KYBER_CIPHERTEXT_SIZE (variable, depending on the selected cipher).

MPDC_ASYMMETRIC_PRIVATE_KEY_SIZE

Defines the byte size of the asymmetric cipher private key array.

Value: QSC_KYBER_PRIVATEKEY_SIZE (variable, depending on the selected cipher).

MPDC_ASYMMETRIC_PUBLIC_KEY_SIZE

Defines the byte size of the asymmetric cipher public key array.

Value: QSC_KYBER_PUBLICKEY_SIZE (variable, depending on the selected cipher).

MPDC_ASYMMETRIC_SIGNATURE_SIZE

Defines the byte size of the asymmetric signature array.

Value: QSC_DILITHIUM_SIGNATURE_SIZE (variable, depending on the selected signature

algorithm).

MPDC_ASYMMETRIC_SIGNING_KEY_SIZE

Defines the byte size of the asymmetric signing key array.

Value: QSC_DILITHIUM_PRIVATEKEY_SIZE (variable, depending on the selected signature

algorithm).

MPDC_ASYMMETRIC_VERIFICATION_KEY_SIZE

Defines the byte size of the asymmetric verification key array.

Value: QSC_DILITHIUM_PUBLICKEY_SIZE (variable, depending on the selected signature

algorithm).

MPDC-2024 Rev. 1b

81

MPDC_ACTIVE_VERSION

Defines the active version of MPDC.

Value: 1

MPDC_ACTIVE_VERSION_SIZE

Defines the size of the MPDC active version.

Value: 2

MPDC_APPLICATION_AGENT_PORT

Defines the default port number for the Agent.

Value: 37766

MPDC_AGENT_FULL_TRUST

Defines the full trust designation number.

Value: 1000001

MPDC_AGENT_MINIMUM_TRUST

Defines the minimum trust designation number.

Value: 1

MPDC_AGENT_NAME_MAX_SIZE

Defines the maximum agent name string length in characters. The last character must be a string

terminator.

Value: 256

MPDC_AGENT_TWOWAY_TRUST

Defines the two-way trust designation number.

Value: 1000002

MPDC_APPLICATION_CLIENT_PORT

Defines the default port number for the MPDC Client.

Value: 37761

MPDC_APPLICATION_DLA_PORT

Defines the default port number for the DLA.

Value: 37762

MPDC_APPLICATION_IDG_PORT

Defines the default port number for the MPDC IDG.

Value: 37763

MPDC_APPLICATION_RDS_PORT

Defines the default port number for the RDS.

Value: 37764

MPDC_APPLICATION_MAS_PORT

Defines the default port number for the MAS.

Value: 37765

MPDC_CANONICAL_NAME_MINIMUM_SIZE

Defines the minimum size for a canonical name.

Value: 3

MPDC_CERTIFICATE_ADDRESS_SIZE

Defines the maximum IP address length.

Value: 22

MPDC-2024 Rev. 1b

82

MPDC_CERTIFICATE_ALGORITHM_SIZE

Defines the algorithm type size.

Value: 1

MPDC_CERTIFICATE_DEFAULT_PERIOD

Defines the default certificate validity period in seconds.

Value: 365 * 24 * 60 * 60 * 1000 (1 year)

MPDC_CERTIFICATE_DESIGNATION_SIZE

Defines the size of the child certificate designation field.

Value: 1

MPDC_CERTIFICATE_EXPIRATION_SIZE

Defines the certificate expiration date length.

Value: 16

MPDC_CERTIFICATE_HASH_SIZE

Defines the size of the certificate hash in bytes.

Value: 32

MPDC_CERTIFICATE_ISSUER_SIZE

Defines the maximum certificate issuer string length. The last character must be a string

terminator.

Value: 256

MPDC_CERTIFICATE_LINE_LENGTH

Defines the line length of the printed MPDC certificate.

Value: 64

MPDC_CERTIFICATE_MAXIMUM_PERIOD

Defines the maximum certificate validity period in seconds.

Value: MPDC_CERTIFICATE_DEFAULT_PERIOD * 2

MPDC_CERTIFICATE_MINIMUM_PERIOD

Defines the minimum certificate validity period in seconds.

Value: 24 * 60 * 60 * 1000 (1 day)

MPDC_CERTIFICATE_SERIAL_SIZE

Defines the certificate serial number field length.

Value: 16

MPDC_CERTIFICATE_HINT_SIZE

Defines the size of the topological hint.

Value: MPDC_CERTIFICATE_HASH_SIZE + MPDC_CERTIFICATE_SERIAL_SIZE

MPDC_CERTIFICATE_SIGNED_HASH_SIZE

Defines the size of the signature and hash field in a certificate.

Value: MPDC_ASYMMETRIC_SIGNATURE_SIZE + MPDC_CERTIFICATE_HASH_SIZE

MPDC_CERTIFICATE_VERSION_SIZE

Defines the version ID size.

Value: 1

MPDC_CERTIFICATE_CHILD_SIZE

Defines the length of a child certificate.

Value: Calculated based on various field sizes.

MPDC_CERTIFICATE_IDG_SIZE

Defines the length of an IDG certificate.

Value: Calculated based on various field sizes.

MPDC-2024 Rev. 1b

83

MPDC_CERTIFICATE_ROOT_SIZE

Defines the length of a root certificate.

Value: Calculated based on various field sizes.

MPDC_CRYPTO_SYMMETRIC_KEY_SIZE

Defines the byte length of the symmetric cipher key.

Value: 32

MPDC_CRYPTO_SYMMETRIC_NONCE_SIZE

Defines the byte length of the symmetric cipher nonce.

Value: 32

MPDC_CRYPTO_SEED_SIZE

Defines the seed array byte size.

Value: 64

MPDC_CRYPTO_SYMMETRIC_TOKEN_SIZE

Defines the byte length of the token.

Value: 32

MPDC_CRYPTO_SYMMETRIC_HASH_SIZE

Defines the hash function output byte size.

Value: 32

MPDC_CRYPTO_SYMMETRIC_MAC_SIZE

Defines the MAC function output byte size.

Value: 32 or 64 if MPDC_EXTENDED_SESSION_SECURITY is enabled.

MPDC_CRYPTO_SYMMETRIC_SECRET_SIZE

Defines the shared secret byte size.

Value: 32

MPDC_CRYPTO_SYMMETRIC_SESSION_KEY_SIZE

Defines the session key security size.

Value: 32 or 64 if MPDC_EXTENDED_SESSION_SECURITY is enabled.

MPDC_DLA_CONVERGENCE_INTERVAL

Defines the interval between agent convergence checks in seconds.

Value: 86400 (24 hours)

MPDC_DLA_IP_MAX

Defines the maximum IP address length.

Value: 65

MPDC_DLA_PENALTY_MAX

Defines the maximum unreachable penalty before the DLA is deemed unreliable.

Value: 256

MPDC_DLA_REDUCTION_INTERVAL

Defines the time in milliseconds before a penalty is reduced for a flapping DLA.

Value: 1000000

MPDC_DLA_UPDATE_WAIT_TIME

Defines the interval in seconds between full topology updates.

Value: 604800 (7 days)

MPDC_ERROR_STRING_DEPTH

Defines the number of error strings.

Value: 26

MPDC-2024 Rev. 1b

84

MPDC_ERROR_STRING_WIDTH

Defines the maximum size in characters of an error string.

Value: 128

MPDC_MESSAGE_MAX_SIZE

Defines the maximum message size, including maximum signature and certificate sizes.

Value: 1400000

MPDC_MFK_EXPIRATION_PERIOD

Defines the MFK validity period in seconds.

Value: 5184000 (60 days)

MPDC_MINIMUM_PATH_LENGTH

Defines the minimum file path length.

Value: 9

MPDC_NETWORK_CONNECTION_MTU

Defines the MPDC packet buffer size.

Value: 1500

MPDC_NETWORK_DOMAIN_NAME_MAX_SIZE

Defines the maximum domain name length in characters. The last character must be a string

terminator.

Value: 256

MPDC_NETWORK_MAX_AGENTS

Defines the maximum number of agent connections in a network.

Value: 1000000

MPDC_NETWORK_NODE_ID_SIZE

Defines the node identification string length.

Value: 16

MPDC_PERIOD_DAY_TO_SECONDS

Defines the number of seconds in a day.

Value: 86400

MPDC_SOCKET_TERMINATOR_SIZE

Defines the packet delimiter byte size.

Value: 1

MPDC_PACKET_ERROR_SIZE

Defines the packet error message byte size.

Value: 1

MPDC_PACKET_HEADER_SIZE

Defines the MPDC packet header size.

Value: 22

MPDC_PACKET_SUBHEADER_SIZE

Defines the MPDC packet sub-header size.

Value: 16

MPDC_PACKET_SEQUENCE_TERMINATOR

Defines the sequence number of a packet that closes a connection.

Value: 0xFFFFFFFFUL

MPDC_PACKET_TIME_SIZE

Defines the byte size of the serialized packet time parameter.

Value: 8

MPDC-2024 Rev. 1b

85

MPDC_PACKET_TIME_THRESHOLD

Defines the maximum number of seconds a packet is valid.

Value: 600 (default; can be modified)

MPDC_NETWORK_TERMINATION_MESSAGE_SIZE

Defines the network termination message size.

Value: 1

MPDC_NETWORK_TERMINATION_PACKET_SIZE

Defines the network termination packet size, including the header and termination message.

Value: MPDC_PACKET_HEADER_SIZE +

MPDC_NETWORK_TERMINATION_MESSAGE_SIZE

Enums

10.3.2 mpdc_configuration_sets

Name Description

mpdc_configuration_set_none No algorithm

identifier is set.

mpdc_configuration_set_dilithium1_kyber1_rcs256_shake256 The Dilithium-

S1/Kyber-S1/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_dilithium3_kyber3_rcs256_shake256 The Dilithium-

S3/Kyber-S3/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_dilithium5_kyber5_rcs256_shake256 The Dilithium-

S5/Kyber-S5/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_dilithium5_kyber6_rcs512_shake512 The Dilithium-

S5/Kyber-S6/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_sphincsplus1f_mceliece1_rcs256_shake256 The SPHINCS+-

S1F/McEliece-

MPDC-2024 Rev. 1b

86

S1/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_sphincsplus1s_mceliece1_rcs256_shake256 The SPHINCS+-

S1S/McEliece-

S1/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_sphincsplus3f_mceliece3_rcs256_shake256 The SPHINCS+-

S3F/McEliece-

S3/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_sphincsplus3s_mceliece3_rcs256_shake256 The SPHINCS+-

S3S/McEliece-

S3/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_sphincsplus5f_mceliece5_rcs256_shake256 The SPHINCS+-

S5F/McEliece-

S5a/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_sphincsplus5s_mceliece5_rcs256_shake256 The SPHINCS+-

S5S/McEliece-

S5a/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_sphincsplus5f_mceliece6_rcs256_shake256 The SPHINCS+-

S5F/McEliece-

S5b/RCS-

MPDC-2024 Rev. 1b

87

256/SHAKE-256

algorithm set.

mpdc_configuration_set_sphincsplus5s_mceliece6_rcs256_shake256 The SPHINCS+-

S5S/McEliece-

S5b/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_sphincsplus5f_mceliece7_rcs256_shake256 The SPHINCS+-

S5F/McEliece-

S5c/RCS-

256/SHAKE-256

algorithm set.

mpdc_configuration_set_sphincsplus5s_mceliece7_rcs256_shake256 The SPHINCS+-

S5S/McEliece-

S5c/RCS-

256/SHAKE-256

algorithm set.

10.3.3 mpdc_network_designations

Name Description

mpdc_network_designation_none No designation was selected.

mpdc_network_designation_agent The device is an agent.

mpdc_network_designation_client The device is a client.

mpdc_network_designation_dla The device is the DLA.

mpdc_network_designation_idg The device is an inter-domain gateway.

mpdc_network_designation_mas The device is a server.

mpdc_network_designation_remote The device is a remote agent.

mpdc_network_designation_rds The device is an RDS security server.

mpdc_network_designation_revoked The device has been revoked.

mpdc_network_designation_all Every server and client device on the network.

MPDC-2024 Rev. 1b

88

10.3.4 mpdc_network_errors

Name Description

mpdc_network_error_none No error was detected.

mpdc_network_error_accept_fail The socket accept function returned an error.

mpdc_network_error_auth_failure The cipher authentication has failed.

mpdc_network_error_bad_keep_alive The keep alive check failed.

mpdc_network_error_channel_down The communications channel has failed.

mpdc_network_error_connection_failure The device could not make a connection to

the remote host.

mpdc_network_error_decryption_failure The decryption authentication has failed.

mpdc_network_error_establish_failure The transmission failed at the kex establish

phase.

mpdc_network_error_general_failure The connection experienced an unexpected

error.

mpdc_network_error_hosts_exceeded The server has run out of socket connections.

mpdc_network_error_identity_unknown The identity could not be verified.

mpdc_network_error_invalid_input The input is invalid.

mpdc_network_error_invalid_request The request is invalid.

mpdc_network_error_keep_alive_expired The keep alive has expired with no response.

mpdc_network_error_keep_alive_timeout The keepalive failure counter has exceeded

the maximum limit.

mpdc_network_error_kex_auth_failure The kex authentication has failed.

mpdc_network_error_key_not_recognized The key-id is not recognized.

mpdc_network_error_key_has_expired The certificate has expired.

mpdc_network_error_listener_fail The listener function failed to initialize.

mpdc_network_error_memory_allocation The server has run out of memory.

mpdc_network_error_packet_unsequenced The packet was received out of sequence.

mpdc_network_error_random_failure The random generator experienced a failure.

mpdc_network_error_ratchet_fail The ratchet operation has failed.

mpdc_network_error_receive_failure The receiver failed at the network layer.

MPDC-2024 Rev. 1b

89

mpdc_network_error_transmit_failure The transmitter failed at the network layer.

mpdc_network_error_unknown_protocol The protocol version is unknown.

mpdc_network_error_unsequenced The packet was received out of sequence.

mpdc_network_error_verify_failure The expected data could not be verified.

10.3.5 mpdc_network_flags

Name Description

mpdc_network_flag_none No flag was selected.

mpdc_network_flag_connection_terminate_request The packet contains a connection

termination message.

mpdc_network_flag_error_condition The connection experienced an error

message.

mpdc_network_flag_fragment_collection_request The packet contains a server

fragment collection request message.

mpdc_network_flag_fragment_collection_response The packet contains an agent

fragment collection response

message.

mpdc_network_flag_fragment_request The packet contains a server

fragment key request message.

mpdc_network_flag_fragment_response The packet contains an agent

fragment key response message.

mpdc_network_flag_fragment_query_request The packet contains a server

fragment key query request message.

mpdc_network_flag_fragment_query_response The packet contains an agent

fragment key query response

message.

mpdc_network_flag_incremental_update_request The packet contains an incremental

update request message.

mpdc_network_flag_incremental_update_response The packet contains an incremental

update response message.

MPDC-2024 Rev. 1b

90

mpdc_network_flag_register_request The packet contains a join request

message.

mpdc_network_flag_register_response The packet contains a join response

message.

mpdc_network_flag_register_update_request The packet contains a join update

request message.

mpdc_network_flag_register_update_response The packet contains a join update

response

10.3.6 mpdc_network_flags enumeration documentation

Name Description

mpdc_network_flag_register_update_response The packet contains a join

update response message.

mpdc_network_flag_keep_alive_request The packet contains a keep alive

request.

mpdc_network_flag_keep_alive_response The packet contains a keep alive

response.

mpdc_network_flag_mfk_establish The packet contains a server

master fragment key establish

message.

mpdc_network_flag_mfk_request The packet contains a server

master fragment key request

message.

mpdc_network_flag_mfk_response The packet contains a client

MFK exchange response

message.

mpdc_network_flag_mfk_verify The packet contains a server

master fragment key verify

message.

mpdc_network_flag_network_announce_broadcast The packet contains a topology

announce broadcast.

MPDC-2024 Rev. 1b

91

mpdc_network_flag_network_converge_request The packet contains a network

convergence request message.

mpdc_network_flag_network_converge_response The packet contains a network

convergence response message.

mpdc_network_flag_network_converge_update The packet contains a network

convergence update message.

mpdc_network_flag_network_resign_request The packet contains a network

resignation request message.

mpdc_network_flag_network_resign_response The packet contains a network

resignation response message.

mpdc_network_flag_network_revocation_broadcast The packet contains a certificate

revocation broadcast.

mpdc_network_flag_network_signature_request The packet contains a certificate

signing request message.

mpdc_network_flag_system_error_condition The packet contains an error

condition message.

mpdc_network_flag_tunnel_connection_terminate The packet contains a socket

close message.

mpdc_network_flag_tunnel_encrypted_message The packet contains an

encrypted message.

mpdc_network_flag_tunnel_session_established The exchange is in the

established state.

mpdc_network_flag_tunnel_transfer_request Reserved - The host has received

a transfer request.

mpdc_network_flag_topology_query_request The packet contains a topology

query request message.

mpdc_network_flag_topology_query_response The packet contains a topology

query response message.

mpdc_network_flag_topology_status_request The packet contains a topology

status request message.

MPDC-2024 Rev. 1b

92

mpdc_network_flag_topology_status_response The packet contains a topology

status response message.

mpdc_network_flag_topology_status_available The packet contains a topology

status available message.

mpdc_network_flag_topology_status_synchronized The packet contains a topology

status synchronized message.

mpdc_network_flag_topology_status_unavailable The packet contains a topology

status unavailable message.

mpdc_network_flag_network_remote_signing_request The packet contains a remote

signing request message.

mpdc_network_flag_network_remote_signing_response The packet contains a remote

signing response message.

10.3.7 mpdc_protocol_errors

Name Description

mpdc_protocol_error_none No error was detected.

mpdc_protocol_error_authentication_failure The symmetric cipher had an

authentication failure.

mpdc_protocol_error_certificate_not_found The node certificate could not be

found.

mpdc_protocol_error_channel_down The communications channel has

failed.

mpdc_protocol_error_connection_failure The device could not make a

connection to the remote host.

mpdc_protocol_error_connect_failure The transmission failed at the KEX

connection phase.

mpdc_protocol_error_convergence_failure The convergence call has returned an

error.

mpdc_protocol_error_convergence_synchronized The database is already synchronized.

mpdc_protocol_error_decapsulation_failure The asymmetric cipher failed to

decapsulate the shared secret.

MPDC-2024 Rev. 1b

93

mpdc_protocol_error_decoding_failure The node or certificate decoding

failed.

mpdc_protocol_error_decryption_failure The decryption authentication has

failed.

mpdc_protocol_error_establish_failure The transmission failed at the KEX

establish phase.

mpdc_protocol_error_exchange_failure The transmission failed at the KEX

exchange phase.

mpdc_protocol_error_file_not_deleted The application could not delete a

local file.

mpdc_protocol_error_file_not_found The file could not be found.

mpdc_protocol_error_file_not_written The file could not be written to

storage.

mpdc_protocol_error_hash_invalid The public-key hash is invalid.

mpdc_protocol_error_hosts_exceeded The server has run out of socket

connections.

mpdc_protocol_error_invalid_request The packet flag was unexpected.

mpdc_protocol_error_certificate_expired The certificate has expired.

mpdc_protocol_error_key_expired The MPDC public key has expired.

mpdc_protocol_error_key_unrecognized The key identity is unrecognized.

mpdc_protocol_error_listener_fail The listener function failed to

initialize.

mpdc_protocol_error_memory_allocation The server has run out of memory.

mpdc_protocol_error_message_time_invalid The network time is invalid or has

substantial delay.

mpdc_protocol_error_message_verification_failure The expected data could not be

verified.

mpdc_protocol_error_no_usable_address The server has no usable IP address

assigned in the configuration.

MPDC-2024 Rev. 1b

94

mpdc_protocol_error_node_not_available The node is not available for a

session.

mpdc_protocol_error_node_not_found The node could not be found in the

database.

mpdc_protocol_error_node_was_registered The node was previously registered in

the database.

mpdc_protocol_error_operation_cancelled The operation was cancelled by the

user.

mpdc_protocol_error_packet_header_invalid The packet header received was

invalid.

mpdc_protocol_error_packet_unsequenced The packet was received out of

sequence.

mpdc_protocol_error_receive_failure The receiver failed at the network

layer.

mpdc_protocol_error_root_signature_invalid The root signature failed

authentication.

mpdc_protocol_error_serialization_failure The certificate could not be

serialized.

mpdc_protocol_error_signature_failure The signature scheme could not sign

a message.

mpdc_protocol_error_signing_failure The transmission failed to sign the

data.

mpdc_protocol_error_socket_binding The socket could not be bound to an

IP address.

mpdc_protocol_error_socket_creation The socket could not be created.

mpdc_protocol_error_transmit_failure The transmitter failed at the network

layer.

mpdc_protocol_error_topology_no_agent The topological database has no agent

entries.

MPDC-2024 Rev. 1b

95

mpdc_protocol_error_unknown_protocol The protocol string was not

recognized.

mpdc_protocol_error_verification_failure The transmission failed at the KEX

verify phase.

Structs

10.3.8 mpdc_certificate_expiration

Name Description

from The starting time in seconds.

to The expiration time in seconds.

10.3.9 mpdc_child_certificate

Name Description

csig The certificate’s signed hash.

verkey The serialized public verification key.

issuer The certificate issuer.

serial The certificate serial number.

rootser The root certificate's serial number.

expiration The from and to certificate expiration times.

designation The certificate type designation.

algorithm The algorithm configuration identifier.

version The certificate version.

10.3.10 mpdc_idg_hint

Name Description

chash The remote certificate's signed hash.

rootser The remote certificate's root serial number.

10.3.11 mpdc_idg_certificate

Name Description

csig The certificate’s signed hash.

MPDC-2024 Rev. 1b

96

vkey The serialized public verification key.

xcert The serialized X509 certificate.

serial The certificate serial number.

rootser The root certificate's serial number.

hint The certificate's topological hint.

issuer The certificate issuer.

expiration The from and to certificate expiration times.

designation The certificate type designation.

algorithm The algorithm configuration identifier.

version The certificate version.

10.3.12 mpdc_connection_state

Name Description

target The target socket structure.

rxcpr The receive channel cipher state.

txcpr The transmit channel cipher state.

rxseq The receive channel's packet sequence number.

txseq The transmit channel's packet sequence number.

instance The connection’s instance count.

exflag The network stage flag.

10.3.13 mpdc_keep_alive_state

Name Description

target The target socket structure.

etime The keep alive epoch time.

seqctr The keep alive packet sequence counter.

recd The keep alive response received status.

10.3.14 mpdc_mfkey_state

Name Description

serial The MFK serial number.

MPDC-2024 Rev. 1b

97

mfk The master fragment key.

10.3.15 mpdc_network_packet

Name Description

flag The packet flag.

msglen The packet's message length.

sequence The packet sequence number.

utctime The UTC time the packet was created in seconds.

pmessage A pointer to the packet's message buffer.

10.3.16 mpdc_root_certificate

Name Description

verkey The serialized public key.

issuer The certificate issuer text name.

serial The certificate serial number.

expiration The from and to certificate expiration times.

algorithm The signature algorithm identifier.

version The certificate version type.

10.3.17 mpdc_serialized_symmetric_key

Name Description

keyid The key identity.

key The symmetric key.

nonce The symmetric nonce.

10.3.18 mpdc_signature_keypair

Name Description

prikey The secret signing key.

pubkey The public signature verification key.

10.3.19 mpdc_cipher_keypair

Name Description

MPDC-2024 Rev. 1b

98

prikey The asymmetric cipher private key.

pubkey The asymmetric cipher public key.

Functions

10.3.20 Function: mpdc_connection_close

Purpose: Closes the network connection between hosts.

Parameters:

• rsock (Type: qsc_socket*): A pointer to the remote socket.

• err (Type: mpdc_network_errors): The error message.

• notify (Type: bool): Notify the remote host that the connection is closing.

10.3.21 Function: mpdc_decrypt_packet

Purpose: Decrypts a message and copies it to the message output.

Parameters:

• cns (Type: mpdc_connection_state*): A pointer to the connection state structure.

• message (Type: uint8_t*): The message output array.

• msglen (Type: size_t*): A pointer receiving the message length.

• packetin (Type: const mpdc_network_packet*): A pointer to the input packet structure.

Returns: mpdc_network_errors - The function error state.

10.3.22 Function: mpdc_encrypt_packet

Purpose: Encrypts a message and builds an output packet.

Parameters:

• cns (Type: mpdc_connection_state*): A pointer to the connection state structure.

• packetout (Type: mpdc_network_packet*): A pointer to the output packet structure.

• message (Type: const uint8_t*): The input message array.

• msglen (Type: size_t): The length of the message array.

Returns: mpdc_network_errors - The function error state.

MPDC-2024 Rev. 1b

99

10.3.23 Function: mpdc_connection_state_dispose

Purpose: Disposes of the tunnel state.

Parameters:

• cns (Type: mpdc_connection_state*): The tunnel connection state.

10.3.24 Function: mpdc_network_error_to_string

Purpose: Returns a pointer to a string description of a network error code.

Parameters:

• error (Type: mpdc_network_errors): The network error type.

Returns: const char* - A pointer to an error string or NULL.

10.3.25 Function: mpdc_protocol_error_to_string

Purpose: Returns a pointer to a string description of a protocol error code.

Parameters:

• error (Type: mpdc_protocol_errors): The protocol error type.

Returns: const char* - A pointer to an error string or NULL.

10.3.26 Function: mpdc_packet_clear

Purpose: Clears a packet's state.

Parameters:

• packet (Type: mpdc_network_packet*): A pointer to the packet structure.

MPDC-2024 Rev. 1b

100

10.3.27 Function: mpdc_packet_error_message

Purpose: Populates a packet structure with an error message.

Parameters:

• packet (Type: mpdc_network_packet*): A pointer to the packet structure.

• error (Type: mpdc_protocol_errors): The error type.

10.3.28 Function: mpdc_packet_header_deserialize

Purpose: Deserializes a byte array to a packet header.

Parameters:

• header (Type: const uint8_t*): The header byte array to deserialize.

• packet (Type: mpdc_network_packet*): A pointer to the packet structure.

10.3.29 Function: mpdc_packet_header_serialize

Purpose: Serializes a packet header to a byte array.

Parameters:

• packet (Type: const mpdc_network_packet*): A pointer to the packet structure to serialize.

• header (Type: uint8_t*): The header byte array.

10.3.30 Function: mpdc_packet_set_utc_time

Purpose: Sets the local UTC seconds time in the packet header.

Parameters:

• packet (Type: mpdc_network_packet*): A pointer to a network packet.

10.3.31 Function: mpdc_packet_time_valid

MPDC-2024 Rev. 1b

101

Purpose: Checks the local UTC seconds time against the packet sent time for validity within the

packet time threshold.

Parameters:

• packet (Type: const mpdc_network_packet*): A pointer to a network packet.

Returns: bool - Returns true if the packet was received within the valid-time threshold.

10.3.32 Function: mpdc_packet_to_stream

Purpose: Serializes a packet to a byte array.

Parameters:

• packet (Type: const mpdc_network_packet*): A pointer to the packet.

• pstream (Type: uint8_t*): A pointer to the packet structure.

Returns: size_t - The size of the byte stream.

10.3.33 Function: mpdc_stream_to_packet

Purpose: Deserializes a byte array to a packet.

Parameters:

• pstream (Type: const uint8_t*): The header byte array to deserialize.

• packet (Type: mpdc_network_packet*): A pointer to the packet structure.

10.4 Network.h

10.4.1 mpdc_network_register_update_request_state

Name Value Description

address const char* The server address

lcert const mpdc_child_certificate* A pointer to the local certificate

MPDC-2024 Rev. 1b

102

list mpdc_topology_list_state* A pointer to the topology list

rcert mpdc_child_certificate* A pointer to the remote certificate

root const mpdc_root_certificate* A pointer to the root certificate

sigkey const uint8_t* A pointer to the secret signing key

10.4.2 mpdc_network_register_update_response_state

Name Value Description

csock const qsc_socket* A pointer to the connected socket

lcert const mpdc_child_certificate* A pointer to the local certificate

list const mpdc_topology_list_state* A pointer to the topology list

rcert mpdc_child_certificate* A pointer to the output remote certificate

root const mpdc_root_certificate* A pointer to the root certificate

sigkey const uint8_t* A pointer to the secret signing key

10.4.3 mpdc_network_mfk_request_state

Name Value Description

lcert const mpdc_child_certificate* A pointer to the local certificate

mfk uint8_t* A pointer to the master fragment key

rcert const mpdc_child_certificate* A pointer to the remote certificate

rnode const mpdc_topology_node_state* A pointer to the remote node structure

root const mpdc_root_certificate* A pointer to the root certificate

sigkey const uint8_t* A pointer to the secret signing key

10.4.4 mpdc_network_mfk_response_state

Name Value Description

MPDC-2024 Rev. 1b

103

csock const qsc_socket* A pointer to the connected socket

ckp mpdc_cipher_keypair The asymmetric encryption key-pair

lcert const mpdc_child_certificate* A pointer to the local certificate

mfk uint8_t* A pointer to the master fragment key

rcert mpdc_child_certificate* A pointer to the remote certificate

root const mpdc_root_certificate* A pointer to the root certificate

sigkey const uint8_t* A pointer to the secret signing key

10.4.5 mpdc_network_remote_signing_request_state

Name Value Description

address const char* The RDS server address

rcert mpdc_child_certificate* A pointer to the remote certificate

root const mpdc_root_certificate* A pointer to the root certificate

sigkey const uint8_t* A pointer to the secret signing key

10.4.6 mpdc_network_remote_signing_response_state

Name Value Description

csock qsc_socket* A pointer to the connected socket

dcert mpdc_child_certificate* A pointer to the DLA certificate

rcert mpdc_child_certificate* A pointer to the remote certificate

root const mpdc_root_certificate* A pointer to the root certificate

sigkey const uint8_t* A pointer to the secret signing key

10.4.7 mpdc_network_resign_request_state

Name Value Description

address const char* The server address

lnode const mpdc_topology_node_state* A pointer to the local node structure

sigkey const uint8_t* A pointer to the secret signing key

MPDC-2024 Rev. 1b

104

10.4.8 mpdc_network_resign_response_state

Name Value Description

list const mpdc_topology_list_state* A pointer to the topology list

rcert mpdc_child_certificate* A pointer to the remote certificate

rnode mpdc_topology_node_state* A pointer to the remote node structure

sigkey const uint8_t* A pointer to the secret signing key

10.4.9 mpdc_network_revoke_request_state

Name Value Description

designation mpdc_network_designations The node type designation

list const mpdc_topology_list_state* A pointer to the node database

rnode const mpdc_topology_node_state* A pointer to the remote node structure

sigkey const uint8_t* A pointer to the secret signing key

10.4.10 mpdc_network_revoke_response_state

Name Value Description

list const mpdc_topology_list_state* A pointer to the node database

rnode mpdc_topology_node_state* A pointer to the remote node structure

dcert const mpdc_child_certificate* A pointer to the DLA certificate

10.4.11 mpdc_network_topological_query_request_state

Name Value Description

dcert const mpdc_child_certificate* A pointer to the DLA certificate

dnode mpdc_topology_node_state* A pointer to the DLA node structure

issuer const char* A pointer to the query issuer string

rnode mpdc_topology_node_state* A pointer to the return remote node structure

MPDC-2024 Rev. 1b

105

serial const uint8_t* A pointer to the local serial number

sigkey const uint8_t* A pointer to the secret signing key

10.4.12 mpdc_network_topological_query_response_state

Name Value Description

csock const qsc_socket* The connected socket

ccert const mpdc_child_certificate* A pointer to the remote client’s certificate

rnode const mpdc_topology_node_state* A pointer to the remote node structure

sigkey const uint8_t* A pointer to the secret signing key

10.4.13 Function: mpdc_network_announce_broadcast

Purpose: Announces a certificate using the DLA and broadcasts it to the network.

Parameters:

• state (Type: mpdc_network_announce_request_state*): The announce state structure.

Returns: mpdc_protocol_errors - The error code.

10.4.14 Function: mpdc_network_announce_response

Purpose: Processes an announce response message.

Parameters:

• state (Type: mpdc_network_announce_response_state*): The announce response state structure.

• packetin (Type: const mpdc_network_packet*): The input packet containing the announce

request.

Returns: mpdc_protocol_errors - The error code.

10.4.15 Function: mpdc_network_application_to_port

Purpose: Retrieves the network designation from a port number.

MPDC-2024 Rev. 1b

106

Parameters:

• tnode (Type: mpdc_network_designations): The target network designation type.

Returns: uint16_t - The port number, or zero if the node type is invalid.

10.4.16 Function: mpdc_network_broadcast_message

Purpose: Broadcasts a message to a node type on the network.

Parameters:

• list (Type: const mpdc_topology_list_state*): A pointer to the topology list.

• message (Type: const uint8_t*): The message to send.

• msglen (Type: size_t): The length of the message.

• tnode (Type: mpdc_network_designations): The target node-type designation.

Returns: void

10.4.17 Function: mpdc_network_certificate_verify

Purpose: Verifies a certificate’s format and root signature.

Parameters:

• ccert (Type: const mpdc_child_certificate*): The child certificate.

• root (Type: const mpdc_root_certificate*): The root certificate.

Returns: mpdc_protocol_errors - The error code.

10.4.18 Function: mpdc_network_connect_to_address

Purpose: Connects a socket to a remote address and port.

Parameters:

• csock (Type: qsc_socket*): A pointer to the socket.

• address (Type: const char*): The remote host’s address.

• port (Type: uint16_t): The application port number.

MPDC-2024 Rev. 1b

107

Returns: qsc_socket_exceptions - The socket error.

10.4.19 Function: mpdc_network_connect_to_device

Purpose: Connects a socket to a remote address based on designation.

Parameters:

• csock (Type: qsc_socket*): A pointer to the socket.

• address (Type: const char*): The remote host’s address.

• designation (Type: mpdc_network_designations): The remote host’s designation.

Returns: qsc_socket_exceptions - The socket error.

10.4.20 Function: mpdc_network_converge_request

Purpose: Sends a convergence request from the DLA and broadcasts it to the network.

Parameters:

• state (Type: const mpdc_network_converge_request_state*): The converge request state structure.

Returns: mpdc_protocol_errors - The error code.

10.4.21 Function: mpdc_network_converge_response

Purpose: Responds to a DLA network converge request.

Parameters:

• state (Type: const mpdc_network_converge_response_state*): The converge response state

structure.

• packetin (Type: const mpdc_network_packet*): The input packet containing the verify

response.

Returns: mpdc_protocol_errors - The error code.

10.4.22 Function: mpdc_network_converge_update_verify

MPDC-2024 Rev. 1b

108

Purpose: Processes a converge response update message.

Parameters:

• state (Type: mpdc_network_converge_update_verify_state*): The converge update verify state

structure.

• packetin (Type: const mpdc_network_packet*): The input packet containing the verify

response.

Returns: mpdc_protocol_errors - The error code.

10.4.23 Function: mpdc_network_fkey_request

Purpose: Requests and executes a key exchange for a fragmentation key.

Parameters:

• state (Type: mpdc_network_fkey_request_state*): The fkey request state structure.

Returns: mpdc_protocol_errors - The error code.

10.4.24 Function: mpdc_network_fkey_response

Purpose: Responds to a key exchange request for a fragmentation key.

Parameters:

• state (Type: mpdc_network_fkey_response_state*): The fkey response state structure.

• packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - The error code.

10.4.25 Function: mpdc_network_fragment_collection_request

Purpose: Requests a fragment collection from a MAS.

Parameters:

• state (Type: mpdc_network_fragment_collection_request_state*): The fragment collection request

state.

MPDC-2024 Rev. 1b

109

Returns: mpdc_protocol_errors - The error code.

10.4.26 Function: mpdc_network_fragment_collection_response

Purpose: Sends a collection response from the MAS to a client.

Parameters:

• state (Type: mpdc_network_fragment_collection_response_state*): The fkey response state

structure.

• packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - The error code.

10.4.27 Function: mpdc_network_fragment_query_response

Purpose: Sends a fragment query response from an agent to a MAS.

Parameters:

• state (Type: mpdc_network_fragment_query_response_state*): The fragment query response state

structure.

• packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - The error code.

10.4.28 Function: mpdc_network_get_local_address

Purpose: Retrieves the local IP address.

Parameters:

• address (Type: char[MPDC_CERTIFICATE_ADDRESS_SIZE]): Output array to store the local

address.

Returns: bool - Returns true if the address is successfully retrieved.

10.4.29 Function: mpdc_network_incremental_update_request

MPDC-2024 Rev. 1b

110

Purpose: Sends an incremental update request.

Parameters:

• state (Type: const mpdc_network_incremental_update_request_state*): The incremental update

request function state.

Returns: mpdc_protocol_errors - The error code.

10.4.30 Function: mpdc_network_incremental_update_response

Purpose: Sends a copy of a certificate to a remote host in response to an incremental update.

Parameters:

• state (Type: const mpdc_network_incremental_update_response_state*): The update response

function state.

• packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - The error code.

10.4.31 Function: mpdc_network_mfk_exchange_request

Purpose: Requests and executes a key exchange request for a master fragmentation key.

Parameters:

• state (Type: mpdc_network_mfk_request_state*): The MFK request state structure.

Returns: mpdc_protocol_errors - The error code.

10.4.32 Function: mpdc_network_mfk_exchange_response

Purpose: Responds to a key exchange request for a master fragmentation key.

Parameters:

• state (Type: mpdc_network_mfk_response_state*): The MFK response state structure.

• packetin (Type: const mpdc_network_packet*): The input packet containing the request.

MPDC-2024 Rev. 1b

111

Returns: mpdc_protocol_errors - The error code.

10.4.33 Function: mpdc_network_port_to_application

Purpose: Gets the network designation based on a port number.

Parameters:

• port (Type: uint16_t): The network application port.

Returns: mpdc_network_designations - The network designation type.

10.4.34 Function: mpdc_network_register_request

Purpose: Sends an Agent join request to the DLA.

Parameters:

• state (Type: mpdc_network_register_request_state*): The join request function state.

Returns: mpdc_protocol_errors - The error code.

10.4.35 Function: mpdc_network_register_response

Purpose: Sends a join response to the agent.

Parameters:

• state (Type: mpdc_network_register_response_state*): The join response function state.

• packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - A protocol error flag.

10.4.36 Function: mpdc_network_register_update_request

Purpose: Sends a MAS or Client join update request to the DLA.

Parameters:

MPDC-2024 Rev. 1b

112

• state (Type: mpdc_network_register_update_request_state*): The join update request function

state.

Returns: mpdc_protocol_errors - The error code.

10.4.37 Function: mpdc_network_register_update_response

Purpose: Sends a join update response to the server or client.

Parameters:

• state (Type: mpdc_network_register_update_response_state*): The join response function state.

• packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - A protocol error flag.

10.4.38 Function: mpdc_network_remote_signing_request

Purpose: Sends a certificate signing request from the DLA to the RDS.

Parameters:

• state (Type: mpdc_network_remote_signing_request_state*): The remote signing request state.

Returns: mpdc_protocol_errors - A protocol error flag.

10.4.39 Function: mpdc_network_remote_signing_response

Purpose: Sends a signed certificate response from the RDS to the DLA.

Parameters:

• state (Type: mpdc_network_remote_signing_response_state*): The remote signing response state.

• packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - A protocol error flag.

10.4.40 Function: mpdc_network_resign_request

MPDC-2024 Rev. 1b

113

Purpose: Sends a resign request to the DLA.

Parameters:

• state (Type: mpdc_network_resign_request_state*): The resign request state structure.

Returns: mpdc_protocol_errors - The error code.

10.4.41 Function: mpdc_network_resign_response

Purpose: Sends a resign response to the agent or server.

Parameters:

• state (Type: mpdc_network_resign_response_state*): The resign response state structure.

• packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - The error code.

10.4.42 Function: mpdc_network_revoke_broadcast

Purpose: Sends a revocation request from the DLA.

Parameters:

• state (Type: mpdc_network_revoke_request_state*): The revocation broadcast function state.

Returns: mpdc_protocol_errors - A protocol error flag.

10.4.43 Function: mpdc_network_revoke_response

Purpose: Verifies a revocation request sent from the DLA.

Parameters:

• state (Type: mpdc_network_revoke_response_state*): The revocation verify function state.

• packetin (Type: const mpdc_network_packet*): The input packet containing the request.

Returns: mpdc_protocol_errors - A protocol error flag.

MPDC-2024 Rev. 1b

114

10.4.44 Function: mpdc_network_send_error

Purpose: Sends an error message.

Parameters:

• csock (Type: const qsc_socket*): A pointer to the socket.

• error (Type: mpdc_protocol_errors): The error code.

Returns: mpdc_protocol_errors - The error code.

10.4.45 Function: mpdc_network_socket_dispose

Purpose: Shuts down and disposes of a socket instance.

Parameters:

• csock (Type: qsc_socket*): A pointer to the socket.

Returns: void

10.4.46 Function: mpdc_network_topological_query_request

Purpose: Queries a device for its topological information.

Parameters:

• state (Type: const mpdc_network_topological_query_request_state*): The topological query

request state.

Returns: mpdc_protocol_errors - The error code.

10.4.47 Function: mpdc_network_topological_query_response

Purpose: Responds to a topological query request.

Parameters:

MPDC-2024 Rev. 1b

115

• state (Type: const mpdc_network_topological_query_response_state*): The topological query

response state.

• packetin (Type: const mpdc_network_packet*): The packet containing the topological query

request.

Returns: mpdc_protocol_errors - The error code.

10.4.48 Function: mpdc_network_topological_status_request

Purpose: Sends a status request from the DLA to a client device.

Parameters:

• state (Type: const mpdc_network_topological_status_request_state*): The topological status

request state.

• query (Type: const char*): The device query string.

Returns: mpdc_protocol_errors - The error code.

10.4.49 Function: mpdc_network_topological_status_response

Purpose: Processes the status response from the client device and sends a response.

Parameters:

• state (Type: const mpdc_network_topological_status_response_state*): The topological status

response state.

• packetin (Type: const mpdc_network_packet*): The packet containing the topological status

request.

Returns: mpdc_protocol_errors - The error code.

10.4.50 Function: mpdc_network_topological_status_verify

Purpose: Verifies the status response from the DLA.

Parameters:

• state (Type: const mpdc_network_topological_status_request_state*): The topological status verify

state.

MPDC-2024 Rev. 1b

116

• packetin (Type: const mpdc_network_packet*): The packet containing the topological status

response.

Returns: mpdc_protocol_errors - The error code.

10.5 Topology.h

10.5.1 Function: mpdc_topology_address_from_issuer

Purpose: Retrieves an IP address based on an issuer string.

Parameters:

• address (Type: char*): The output array for the node’s network address.

• issuer (Type: const char*): The issuer string to look up.

• list (Type: const mpdc_topology_list*): Pointer to the topology list.

10.5.2 Function: mpdc_topology_node_add_alias

Purpose: Adds an alias string to an issuer path.

Parameters:

• node (Type: mpdc_topology_node*): The network node to update.

• alias (Type: const char*): The alias to add.

10.5.6 Function: mpdc_topology_nodes_are_equal

Purpose: Compares two topological nodes for equality.

Parameters:

• a (Type: const mpdc_topology_node*): First node for comparison.

• b (Type: const mpdc_topology_node*): Second node for comparison.

Returns: bool - Returns true if the nodes are identical.

MPDC-2024 Rev. 1b

117

10.5.7 Function: mpdc_topology_child_add_empty_node

Purpose: Retrieves an empty node pointer from the topology list (not thread-safe).

Parameters:

• list (Type: mpdc_topology_list*): Pointer to the topology list.

Returns: mpdc_topology_node* - Pointer to the node or NULL.

10.5.8 Function: mpdc_topology_child_add_item

Purpose: Adds a node to the topology list.

Parameters:

• list (Type: mpdc_topology_list*): Pointer to the topology list.

• node (Type: const mpdc_topology_node*): Node to add.

10.5.9 Function: mpdc_topology_canonical_to_issuer_name

Purpose: Converts a canonical name to an issuer name.

Parameters:

• issuer (Type: char*): Output issuer name.

• isslen (Type: size_t): Length of the issuer name.

• domain (Type: const char*): The domain name.

• cname (Type: const char*): Input device canonical name.

Returns: bool - Returns false if the conversion failed.

10.5.10 Function: mpdc_topology_issuer_to_canonical_name

Purpose: Converts an issuer name to a canonical name.

Parameters:

• cname (Type: char*): Output canonical name.

• namelen (Type: size_t): Length of the canonical name string.

MPDC-2024 Rev. 1b

118

• issuer (Type: const char*): Input issuer name.

Returns: bool - Returns false if the conversion failed.

10.5.11 Function: mpdc_topology_child_register

Purpose: Registers a child node to a topology list.

Parameters:

• list (Type: mpdc_topology_list*): Pointer to the topology list.

• ccert (Type: const mpdc_child_certificate*): Node's child certificate.

• address (Type: const char*): Node's network address.

10.5.12 Function: mpdc_topology_list_clone

Purpose: Clones a topology list.

Parameters:

• tlist (Type: const mpdc_topology_list*): Pointer to the topology list to clone.

• tcopy (Type: mpdc_topology_list*): Pointer to the new list.

10.5.13 Function: mpdc_topology_list_deserialize

Purpose: Deserializes a topology list.

Parameters:

• list (Type: mpdc_topology_list*): Pointer to the topology list.

• input (Type: const uint8_t*): The serialized list.

• inplen (Type: size_t): Size of the input array.

10.5.14 Function: mpdc_topology_list_dispose

Purpose: Disposes of the topology list and releases memory.

Parameters:

MPDC-2024 Rev. 1b

119

• list (Type: mpdc_topology_list*): Pointer to the topology list.

10.5.15 Function: mpdc_topology_list_initialize

Purpose: Initializes the topology list.

Parameters:

• list (Type: mpdc_topology_list*): Topology list state.

10.5.16 Function: mpdc_topology_list_item

Purpose: Retrieves a node from an index in the topology list.

Parameters:

• list (Type: mpdc_topology_list*): Topology list state.

• node (Type: mpdc_topology_node*): Pointer to the node structure.

• index (Type: size_t): Node index.

Returns: bool - Returns false if the item was not found.

10.5.17 Function: mpdc_topology_list_remove_duplicates

Purpose: Removes duplicate nodes from the topology list.

Parameters:

• list (Type: mpdc_topology_list*): Topology list state.

Returns: size_t - Number of items in the list.

10.5.18 Function: mpdc_topology_list_server_count

Purpose: Counts nodes of a specified type in the database.

Parameters:

MPDC-2024 Rev. 1b

120

• list (Type: const mpdc_topology_list*): Topology list state structure.

• ntype (Type: mpdc_network_designations): Type of node to count.

Returns: size_t - Number of nodes found.

10.5.19 Function: mpdc_topology_list_serialize

Purpose: Serializes a topology list.

Parameters:

• output (Type: uint8_t*): Output array for serialized topology.

• list (Type: const mpdc_topology_list*): Topology list state structure.

Returns: size_t - Size of the serialized topology.

10.5.20 Function: mpdc_topology_list_size

Purpose: Returns the byte size of a serialized topology list.

Parameters:

• list (Type: const mpdc_topology_list*): Topology list state structure.

10.5.21 Function: mpdc_topology_list_to_string

Purpose: Converts the topology list to a printable string.

Parameters:

• list (Type: const mpdc_topology_list*): Topology list state structure.

• output (Type: char*): Output array for the string.

• outlen (Type: size_t): Length of the output array.

Returns: size_t - Byte size of the serialized topology.

10.5.22 Function: mpdc_topology_list_update_pack

MPDC-2024 Rev. 1b

121

Purpose: Packs a node update set into an array.

Parameters:

• output (Type: uint8_t*): Output array for serialized topology.

• list (Type: const mpdc_topology_list*): Topology list state structure.

• ntype (Type: mpdc_network_designations): Type of node entry to pack.

Returns: size_t - Size of the serialized topology.

10.5.23 Function: mpdc_topology_list_update_unpack

Purpose: Unpacks a node update set into the topology list.

Parameters:

• list (Type: mpdc_topology_list*): Topology list state structure.

• input (Type: const uint8_t*): Serialized topology array.

• inplen (Type: size_t): Length of the input array.

10.5.24 Function: mpdc_topology_ordered_server_list

Purpose: Returns a sorted list of nodes by serial number.

Parameters:

• olist (Type: mpdc_topology_list*): Sorted output topology list.

• tlist (Type: const mpdc_topology_list*): Unsorted input topology list.

• ntype (Type: mpdc_network_designations): Type of node entry to sort.

Returns: size_t - Number of nodes in the list.

10.5.25 Function: mpdc_topology_node_clear

Purpose: Erases a node structure.

Parameters:

• node (Type: mpdc_topology_node*): Pointer to the topology node to erase.

MPDC-2024 Rev. 1b

122

10.5.26 Function: mpdc_topology_node_copy

Purpose: Copies a source node to a destination node structure.

Parameters:

• source (Type: const mpdc_topology_node*): Pointer to the source node.

• destination (Type: mpdc_topology_node*): Pointer to the destination node.

10.5.27 Function: mpdc_topology_node_deserialize

Purpose: Deserializes a serialized topological node.

Parameters:

• node (Type: mpdc_topology_node*): Pointer to the topology node.

• input (Type: const uint8_t*): Serialized topology node array.

10.5.28 Function: mpdc_topology_node_encode

Purpose: Encodes a topological node into a printable string.

Parameters:

• node (Type: mpdc_topology_node*): Pointer to the topology node.

• output (Type: char*): Serialized node string.

Returns: size_t - Size of the serialized node.

10.5.29 Function: mpdc_topology_node_exists

Purpose: Checks if a node exists in the topology list by serial number.

Parameters:

• list (Type: const mpdc_topology_list*): Topology list state.

• serial (Type: const uint8_t*): Node's serial number.

MPDC-2024 Rev. 1b

123

Returns: bool - Returns true if the node exists.

10.5.30 Function: mpdc_topology_node_find

Purpose: Finds a node in the list by serial number.

Parameters:

• list (Type: const mpdc_topology_list*): Topology list state.

• node (Type: mpdc_topology_node*): Pointer to the destination node.

• serial (Type: const uint8_t*): Certificate serial number.

Returns: bool - Returns false if the node was not found.

10.6 Agent

9.6.1 Function: mpdc_agent_pause_server

Purpose: Pause the Agent server

Returns: void

10.6.2 Function: mpdc_agent_start_server

Purpose: Start the Agent server

Returns: int - Returns zero on success

10.6.3 Function: mpdc_agent_stop_server

Purpose: Stop the Agent server

Returns: void

MPDC-2024 Rev. 1b

124

10.7 Client

10.7.1 Function: mpdc_client_pause_server

Purpose: Pause the Client server

Returns: void

10.7.2 Function: mpdc_client_start_server

Purpose: Start the Client server

Returns: int - Returns zero on success

10.7.3 Function: mpdc_client_stop_server

Purpose: Stop the Client server

Returns: void

10.8 DLA

10.8.1 Function: mpdc_dla_pause_server

Purpose: Pause the DLA server

Returns: void

10.8.2 Function: mpdc_dla_start_server

Purpose: Start the DLA server

Returns: int - Returns zero on success

10.8.3 Function: mpdc_dla_stop_server

MPDC-2024 Rev. 1b

125

Purpose: Stop the DLA server

Returns: void

10.9 MAS

10.9.1 Function: mpdc_mas_pause_server

Purpose: Pause the MAS server

Returns: void

10.9.2 Function: mpdc_mas_start_server

Purpose: Start the MAS server

Returns: int - Returns zero on success

10.9.3 Function: mpdc_mas_stop_server

Purpose: Stop the MAS server

Returns: void

10.10 RDS

10.10.1 Function: mpdc_rds_pause_server

Purpose: Pause the RDS server

Returns: void

10.10.2 Function: mpdc_rds_start_server

MPDC-2024 Rev. 1b

126

Purpose: Start the RDS server

Returns: int - Returns zero on success

10.10.3 Function: mpdc_dla_stop_server

Purpose: Stop the DLA server

Returns: void

