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This document is an engineering level description of the Post Quantum Shell protocol. 

This document describes the network protocol PQS, a post-quantum secure shell. 
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Foreword 

This document is the first revision of the specification of PQS, further revisions may become 

necessary during the pursuit of a standard model, and revision numbers shall be incremented 

with changes to the specification. The reader is asked to consider only the most recent revision of 

this draft, as the authoritative implementation of the PQS specification. 

The author of this specification is John G. Underhill, and can be reached at 

john.underhill@protonmail.com 

PQS, the algorithm constituting the PQS messaging protocol is patent pending, and is owned by 

John G. Underhill and Quantum Resistant Cryptographic Solutions Corporation. The code 

described herein is copyrighted, and owned by John G. Underhill and Quantum Resistant 

Cryptographic Solutions Corporation. 

 

1. Introduction 

The Post Quantum Shell (PQS) is a high security, post-quantum communication protocol 

designed to replace traditional Secure Shell (SSH) for remote server access and communication. 

With the advent of quantum computing, classical encryption algorithms like RSA, ECDH, and 

DSA are at risk of being broken, making quantum-resistant cryptographic techniques essential. 

PQS leverages post-quantum cryptographic primitives, including Kyber (lattice-based key 

encapsulation), and digital signatures from Dilithium, which are designed to resist both classical 

and quantum computing threats. 

PQS is particularly well suited for industries and applications where long-term confidentiality is 

critical, such as financial technology (fintech), government communication, healthcare, and 

critical infrastructure. By offering enhanced security against quantum attacks, PQS ensures that 

sensitive communications remain secure for years to come. 

 

2. Protocol Description 

The PQS exchange is a one-way trust, client-server key-exchange model in which the client 

trusts the server, and a single shared secret is securely shared between them. Designed for 

efficiency, the Simplex exchange is fast and lightweight, while providing 256-bit post-quantum 

security, ensuring protection against future quantum-based threats. 

This protocol is versatile and can be used in a wide range of applications, such as client 

registration on networks, secure cloud storage, hub-and-spoke model communications, 

commodity trading, and electronic currency exchange—essentially, any scenario where an 

encrypted tunnel using strong, quantum-safe cryptography is required. 

The server in this model is built as a multi-threaded communications platform capable of 

generating a uniquely keyed encrypted tunnel for each connected client. With a lightweight state 
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footprint of less than 4 kilobytes per client, a single server instance has the capability to handle 

potentially hundreds of thousands of simultaneous connections. The cipher encapsulation keys 

utilized during each key exchange are ephemeral and unique, ensuring that every key exchange 

remains secure and independent from previous key exchanges. 

The server distributes a public signature verification key to its clients. This key is used to 

authenticate the server's public cipher encapsulation key during the key exchange process. The 

server's public verification key can be shared with clients through various secure methods, 

including during a registration event, pre-embedding in client software, or via other secure 

distribution channels. 

 

 

 

3.Terms and Definitions 

3.1 Cryptographic Primitives 

3.1.1 Kyber 

The Kyber asymmetric cipher and NIST Post Quantum Competition winner. 

 

3.1.2 McEliece 

The McEliece asymmetric cipher and NIST Round 3 Post Quantum Competition candidate. 

 

3.1.3 Dilithium 

The Dilithium asymmetric signature scheme and NIST Post Quantum Competition winner. 

 

3.1.5 SPHINCS+ 

The SPHINCS+ asymmetric signature scheme and NIST Post Quantum Competition winner. 

 

3.1.6 RCS 

The wide-block Rijndael hybrid authenticated symmetric stream cipher. 

 

3.1.7 SHA-3 

The SHA3 hash function NIST standard, as defined in the NIST standards document FIPS-202; 

SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. 

 

3.1.8 SHAKE 

The NIST standard Extended Output Function (XOF) defined in the SHA-3 standard publication 

FIPS-202; SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. 
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3.1.9 KMAC 

The SHA3 derived Message Authentication Code generator (MAC) function defined in NIST 

special publication SP800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and 

ParallelHash. 

 

3.2 Network References 

3.2.1 Bandwidth 

The maximum rate of data transfer across a given path, measured in bits per second (bps). 

 

3.2.2 Byte 

Eight bits of data, represented as an unsigned integer ranged 0-255. 

 
3.2.3 Certificate 

A digital certificate, a structure that contains a signature verification key, expiration time, and 

serial number and other identifying information. A certificate is used to verify the authenticity of 

a message signed with an asymmetric signature scheme. 

 
3.2.4 Domain 

A virtual grouping of devices under the same authoritative control that shares resources between 

members. Domains are not constrained to an IP subnet or physical location but are a virtual 

group of devices, with server resources typically under the control of a network administrator, 

and clients accessing those resources from different networks or locations. 

 
3.2.5 Duplex 

The ability of a communication system to transmit and receive data; half-duplex allows one 

direction at a time, while full-duplex allows simultaneous two-way communication. 

 

3.2.6 Gateway: A network point that acts as an entrance to another network, often connecting a 

local network to the internet. 

 

3.2.7 IP Address  

A unique numerical label assigned to each device connected to a network that uses the Internet 

Protocol for communication. 

 

3.2.8 IPv4 (Internet Protocol version 4): The fourth version of the Internet Protocol, using 32-

bit addresses to identify devices on a network. 

 

3.2.9 IPv6 (Internet Protocol version 6): The most recent version of the Internet Protocol, using 

128-bit addresses to overcome IPv4 address exhaustion. 

 

3.2.10 LAN (Local Area Network) 
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A network that connects computers within a limited area such as a residence, school, or office 

building. 

 

3.2.11 Latency 

The time it takes for a data packet to move from source to destination, affecting the speed and 

performance of a network. 

 

3.2.12 Network Topology 

The arrangement of different elements (links, nodes) of a computer network, including physical 

and logical aspects. 

 

3.2.13 Packet 

A unit of data transmitted over a network, containing both control information and user data. 

 

3.2.14 Protocol 

A set of rules governing the exchange or transmission of data between devices. 

 

3.2.15 TCP/IP (Transmission Control Protocol/Internet Protocol) 

A suite of communication protocols used to interconnect network devices on the internet. 

 

3.2.16 Throughput: The actual rate at which data is successfully transferred over a 

communication channel. 

 

3.2.17 UDP (User Datagram Protocol) 

A communication protocol that offers a limited amount of service when messages are exchanged 

between computers in a network that uses the Internet Protocol. 

 

3.2.18 VLAN (Virtual Local Area Network) 

A logical grouping of network devices that appear to be on the same LAN regardless of their 

physical location. 

 

3.2.19 VPN (Virtual Private Network) 

Creates a secure network connection over a public network such as the internet. 

 

3.3 Normative References 

The following documents serve as references for cryptographic components used by QSTP: 

3.3.1 FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable Output 

Functions: This standard specifies the SHA-3 family of hash functions, including SHAKE 

extendable-output functions. https://doi.org/10.6028/NIST.FIPS.202 

3.3.2 FIPS 203: Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM): This 

standard specifies ML-KEM, a key encapsulation mechanism designed to be secure against 

quantum computer attacks. https://doi.org/10.6028/NIST.FIPS.203 
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3.3.3 FIPS 204: Module-Lattice-Based Digital Signature Standard (ML-DSA): This standard 

specifies ML-DSA, a set of algorithms for generating and verifying digital signatures, believed 

to be secure even against adversaries with quantum computing capabilities. 

https://doi.org/10.6028/NIST.FIPS.204 

3.3.4 NIST SP 800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and 

ParallelHash: This publication specifies four SHA-3-derived functions: cSHAKE, KMAC, 

TupleHash, and ParallelHash. https://doi.org/10.6028/NIST.SP.800-185 

3.3.5 NIST SP 800-90A Rev. 1: Recommendation for Random Number Generation Using 

Deterministic Random Bit Generators: This publication provides recommendations for the 

generation of random numbers using deterministic random bit generators. 

https://doi.org/10.6028/NIST.SP.800-90Ar1 

3.3.6 NIST SP 800-108: Recommendation for Key Derivation Using Pseudorandom 

Functions: This publication offers recommendations for key derivation using pseudorandom 

functions. https://doi.org/10.6028/NIST.SP.800-108 

3.3.7 FIPS 197: The Advanced Encryption Standard (AES): This standard specifies the 

Advanced Encryption Standard (AES), a symmetric block cipher used widely across the globe. 

https://doi.org/10.6028/NIST.FIPS.197 
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4: Cryptographic Primitives 

PQS relies on a set of cryptographic primitives designed to provide resilience against both 

classical and quantum-based attacks. The following sections detail the specific cryptographic 

algorithms and mechanisms that form the foundation of PQS's encryption, key exchange, and 

authentication processes. 

4.1 Asymmetric Cryptographic Primitives 

PQS employs post-quantum secure asymmetric algorithms to ensure the integrity and 

confidentiality of key exchanges, as well as to facilitate digital signatures. The primary 

asymmetric primitives used are: 

• Kyber: An IND-CCA secure lattice-based key encapsulation mechanism that provides 

secure and efficient key exchange resistant to quantum attacks. Kyber is valued for its 

balance between computational speed and cryptographic strength, making it suitable for 

scenarios requiring rapid key generation and exchange. 

• McEliece: A code-based cryptosystem that remains one of the most established and 

trusted post-quantum algorithms. It leverages the difficulty of decoding general linear 

codes, offering a high level of security even against advanced quantum decryption 

techniques. 

• Dilithium: A lattice-based digital signature scheme based on that of the underlying 

MLWE and MSIS problems, that offers fast signing and verification while maintaining 

strong security guarantees against quantum attacks. 

• Sphincs+: A stateless hash-based signature scheme, which provides long-term security 

without reliance on specific problem structures, making it robust against future 

advancements in cryptographic research. 

These asymmetric primitives are selected for their proven resilience against quantum 

cryptanalysis, ensuring that PQS's key exchange and signature operations remain secure in the 

face of evolving computational threats. 

4.2 Symmetric Cryptographic Primitives 

PQS's symmetric encryption employs the Rijndael Cryptographic Stream (RCS), a stream 

cipher adapted from the Rijndael (AES) symmetric cipher to meet post-quantum security needs. 

Key features of the RCS cipher include: 

• Wide-Block Cipher Design: RCS extends the original AES design with a focus on 

increasing the block size (from 128 to 256 bits) and number of transformation rounds 

(from 14 to 21 for a 256-bit key, and 30 rounds for a 512-bit key), thereby enhancing its 

resistance to differential and linear cryptanalysis. 

• Enhanced Key Schedule: The key schedule in RCS is cryptographically strong using 

Keccak (cSHAKE), ensuring that derived keys are resistant to known attacks, including 

algebraic-based and differential attacks. RCS replaces Rijndael’s cryptographically-weak 

key schedule, with a strong post-quantum secure key expansion function. 
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• Authenticated Encryption with Associated Data (AEAD): RCS integrates with KMAC 

(Keccak-based Message Authentication Code) to provide both encryption and message 

authentication in a single operation. This approach ensures that data integrity is 

maintained alongside confidentiality. 

The RCS stream cipher's design is optimized for high-performance environments, making it 

suitable for low-latency applications that require secure and efficient data encryption. It 

leverages AES-NI instructions embedded in modern CPUs. 

4.3 Hash Functions and Key Derivation 

Hash functions and key derivation functions (KDFs) are essential to PQS's ability to transform 

raw cryptographic data into secure keys and hashes. The following primitives are used: 

• SHA-3: SHA-3 serves as PQS's primary hash function, providing secure, collision-

resistant hashing capabilities. 

• SHAKE: PQS employs the Keccak SHAKE XOF function for deriving symmetric keys 

from shared secrets. This ensures that each session key is uniquely generated and 

unpredictable, enhancing the protocol's security against key reuse attacks. 

• KMAC: The SHA-3 keyed hashing function (MAC), part of the SHA-3 family of post-

quantum resistant hashing functions. 

These cryptographic primitives ensure that PQS's key management processes remain secure, 

even in scenarios involving high-risk adversaries and quantum-capable threats. 
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5. Protocol Components and State Structures 

5.1 Protocol String 

The protocol string in PQS is composed of four key components, each representing a specific 

cryptographic element used in the secure communication process: 

1. Asymmetric Signature Scheme: Specifies the signature scheme along with its security 

strength (e.g., s1, s3, s5) from low to high. Example: dilithium-s3 correlates to the NIST 

level 3 security designation (192 bits of post-quantum security). 

2. Asymmetric Encapsulation Cipher: Defines the asymmetric encryption algorithm and 

its security strength. Example: mceliece-s5. 

3. Hash Function Family: The designated hash function used within the protocol, which is 

set as SHA3. 

4. Symmetric Cipher: The symmetric cipher used for data encryption, set as the 

authenticated stream cipher RCS. 

The protocol string plays a crucial role during the initial negotiation phase to ensure that both the 

client and server agree on a common set of cryptographic parameters. If the client and server do 

not support the same protocol settings, a secure connection cannot be established. 

Signature Scheme Asymmetric Cipher HASH Function Symmetric Cipher 

Dilithium Kyber SHA3 RCS 

Dilithium McEliece SHA3 RCS 

Sphincs+ McEliece SHA3 RCS 

Table 5.1: The Protocol string choices in revision PQS 1.3a. 

5.2 Client Key Structure 

The client key is a publicly exportable structure that contains the signature verification key and 

associated metadata. It includes parameters such as the key expiration time, protocol string, 

public signature verification key, and key identity array. 

Parameter Data Type Bit Length Function 

Expiration Uint64 64 Validity check 

Configuration Uint8 array 320 Protocol check 

Key ID Uint8 array 128 Identification 

Verification Key Uint8 array Variable Authentication 

Table 5.2: The client key structure. 

• Expiration: A 64-bit unsigned integer indicating the number of seconds since the epoch 

(01/01/1900) until the UTC time when the key remains valid. If the key has expired, the 

client must request a new public key from the server. 
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• Configuration: Contains the protocol string that defines the cryptographic parameters. If 

the protocol string on both hosts does not match, the connection is aborted. 

• Key ID: A unique identifier for the public verification key, facilitating quick reference on 

the server. 

• Verification Key: The public asymmetric signature verification key used for 

authenticating asymmetric encapsulation keys and data during the key exchange. 

The client key can be distributed openly or could be encapsulated using X.509 certificates to 

create a chain of trust, enhancing its security in diverse environments. 

5.3 Server Key Structure 

The server key is a private (secret) key retained by the server. It contains all elements of the 

client key plus an additional parameter, the asymmetric signing key. 

Data Name Data Type Bit Length Function 

Expiration Uint64 64 Validity check 

Configuration Uint8 array 320 Protocol check 

Key ID Uint8 array 128 Identification 

Verification Key Uint8 array Variable Authentication 

Signing Key Uint8 array Variable Signing 

Table 5.3: The server key structure. 

The inclusion of the signing key in the server key structure allows the server to sign messages 

during the key exchange, ensuring that data exchanges are authenticated and trusted. 

5.4 Keep Alive State 

PQS uses an internal keep-alive mechanism to maintain active connections. The server 

periodically sends a keep-alive packet to the client, which the client must acknowledge within 

the defined interval. 

Parameter Data Type Bit Length Function 

Expiration Time Uint64 64 Validity check 

Packet Sequence Uint64 64 Protocol check 

Received Status Bool 8 Status 

Table 5.4: The keep alive state. 

If the server does not receive a response within the timeout period, it logs a keep-alive error and 

terminates the connection to prevent stale sessions. 

5.5 Connection State 
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The internal connection state structure stores the critical information needed for PQS operations, 

including cipher states, sequence counters, and the ratchet key. 

Data Name Data Type Bit Length Function 

Target Socket struct 664 Validity check 

Cipher Send State Structure Variable Symmetric Encryption 

Cipher Receive State Structure Variable Symmetric Decryption 

Receive Sequence Uint64 64 Packet Verification 

Send Sequence Uint64 64 Packet Verification 

Connection Instance Uint32 32 Identification 

KEX Flag Uint8 8 KEX State Flag 

Ratchet Key Uint8 array 512 Symmetric Ratchet 

PkHash Uint8 array 256 Authentication 

Session Token Uint8 array 256 Authentication 

ExFlag Uint8 8 Protocol Check 

Table 5.5: The connection state structure. 

This data structure ensures secure handling of connection parameters, packet sequencing, and 

cryptographic states during active communication sessions. 

5.8 Client KEX State 

The Simplex protocol's client and server state structures focus on one-way authentication, storing 

essential key exchange data: 

Data Name Data Type Bit Length Function 

Key ID Uint8 array 128 Key Identification 

Session Token Uint8 array 512 Verification 

Remote Verification Key Uint8 array Variable Asymmetric Authentication 

Signature Key Uint8 array Variable Asymmetric Authentication 

Shared Secret Uint8 array 256 Symmetric Key 

Verification Key Uint8 array Variable Asymmetric Authentication 

Expiration Uint64 64 Verification 

Table 5.7: The Simplex client KEX state structure. 

5.9 Server KEX State 

The Simplex server state structure stores the asymmetric cipher and signature keys used during 

the key exchange execution. 

Data Name Data Type Bit Length Function 
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Key ID Uint8 array 128 Key Identification 

Session Token Uint8 array 512 Verification 

Private Cipher Key Uint8 array Variable Asymmetric Encryption 

Public Cipher Key Uint8 array Variable Asymmetric Encryption 

Signature Key Uint8 array Variable Asymmetric Authentication 

Shared Secret Uint8 array 256 Symmetric Key 

Verification Key Uint8 array Variable Asymmetric Authentication 

Expiration Uint64 64 Verification 

Table 5.8: The Simplex server KEX state structure. 

5.10 PQS Packet Header 

The PQS packet header is 21 bytes in length, and contains: 

1. The Packet Flag, the type of message contained in the packet; this can be any one of the 

key-exchange stage flags, a message flag, or an error flag.  

2. The Packet Sequence, this indicates the sequence number of the packet in the exchange. 

3. The Message Size, this is the size in bytes of the message payload. 

4. The UTC time, the time the packet was created, used in an anti-replay attack mechanism. 

The message is a variable sized array, up to PQS_MESSAGE_MAX in size. 

Packet Flag 

1 byte 

Packet Sequence 

8 bytes 

Message Size  

4 bytes 

UTC Time 

8 bytes 

Message 

Variable Size 

Figure 5.7: The PQS packet structure. 

This packet structure is used for both the key exchange protocol, and the communications 

stream.  

5.11 Flag Types 

The following is a list of packet flag types used by PQS: 

Flag Name Numerical Value Flag Purpose 

None 0x00 No flag was specified, the default value. 

Connect Request 0x01 The key-exchange client connection 

request flag. 
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Connect Response 0x02 The key-exchange server connection 

response flag. 

Connection Terminated 0x03 The connection is to be terminated. 

Encrypted Message 0x04 The message has been encrypted by the 

communications stream. 

Exchange Request 0x07 The key-exchange client exchange request 

flag. 

Exchange Response 0x08 The key-exchange server exchange 

response flag. 

Establish Request 0x09 The key- exchange client establish request 

flag. 

Establish Response 0x0A The key- exchange server establish 

response flag. 

Keep Alive Request 0x0B The packet contains a keep alive request. 

Keep Alive Response 0x0C The packet contains a keep alive 

response. 

Remote Connected 0x0D The remote host has terminated the 

connection. 

Remote Terminated 0x0E The remote host has terminated the 

connection. 

Session Established 0x0F The session is in the established state. 

Establish Verify 0x10 The session is in the verify state. 

Unrecognized Protocol 0x11 The protocol string is not recognized 

Asymmetric Ratchet Request 0x12 The packet contains an asymmetric 

ratchet request. 

Asymmetric Ratchet Response 0x13 The packet contains an asymmetric 

ratchet response. 

Symmetric Ratchet Request 0x14 The packet contains a symmetric ratchet 

request. 

Error Condition 0xFF The connection experienced an error. 

Table 5.8: Packet header flag types. 

5.12 Error Types 

The following is a list of error messages used by PQS: 

Error Name Numerical Value Description 

None 0x00 No error condition was detected. 

Authentication Failure 0x01 The symmetric cipher had an 

authentication failure. 

Bad Keep Alive 0x02 The keep alive check failed. 

Channel Down 0x03 The communications channel has failed. 
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Connection Failure 0x04 The device could not make a connection 

to the remote host. 

Connect Failure 0x05 The transmission failed at the KEX 

connection phase. 

Decapsulation Failure 0x06 The asymmetric cipher failed to 

decapsulate the shared secret. 

Establish Failure 0x07 The transmission failed at the KEX 

establish phase. 

Exstart Failure 0x08 The transmission failed at the KEX 

exstart phase. 

Exchange Failure 0x09 The transmission failed at the KEX 

exchange phase. 

Hash Invalid 0x0A The public-key hash is invalid. 

Invalid Input 0x0B The expected input was invalid. 

Invalid Request 0x0C The packet flag was unexpected. 

Keep Alive Expired 0x0D The keep alive has expired with no 

response. 

Key Expired 0x0E The PQS public key has expired. 

Key Unrecognized 0x0F The key identity is unrecognized. 

Packet Un-Sequenced 0x10 The packet was received out of sequence. 

Random Failure 0x11 The random generator has failed. 

Receive Failure 0x12 The receiver failed at the network layer. 

Transmit Failure 0x13 The transmitter failed at the network 

layer. 

Verify Failure 0x14 The expected data could not be verified. 

Unknown Protocol 0x15 The protocol string was not recognized. 

Listener Failure 0x16 The listener function failed to initialize. 

Accept Failure 0x17 The socket accept function returned an 

error. 

Hosts Exceeded 0x18 The server has run out of socket 

connections. 

Allocation Failure 0x19 The server has run out of memory. 

Decryption Failure 0x1A The decryption authentication has failed. 

Ratchet Failure 0x1C The ratchet operation has failed. 

Table 5.9: Error type messages. 

5.10 Function Definitions in pqs.h 

Function Description 

pqs_packet_to_stream Serializes a network packet into a byte stream for 

transmission. 
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pqs_stream_to_packet Deserializes a byte array back into a packet structure. 

pqs_public_key_decode Decodes a public key string into a client verification key 

structure. 

pqs_public_key_encode Encodes a client key structure into a public key string. 

pqs_public_key_hash Hashes a public key structure and returns the result in a byte 

array. 

pqs_signature_key_deserialize Decodes a secret signature key from a byte array into a 

server key structure. 

pqs_signature_key_serialize Encodes a server key structure into a serialized byte array. 

 

5.10.1 Function: pqs_packet_to_stream 

Purpose: Serializes a network packet into a byte stream for transmission. 

Description: Converts a structured packet, containing fields such as message, sequence number, 

and timestamp, into a byte stream ready for network transmission. The function ensures proper 

byte ordering, padding, and integrity checks before sending the data over the network. 

5.10.2 Function: pqs_stream_to_packet 

Purpose: Deserializes a byte array back into a packet structure. 

Description: Converts a byte array received from the network back into a packet structure. It 

verifies the packet format, validates sequence numbers, timestamps, and other fields to ensure 

the message is legitimate and intact. 

5.10.3 Function: pqs_public_key_decode 

Purpose: Decodes a public key string into a client verification key structure. 

Description: Converts a serialized public key string (typically in base64 or hexadecimal form) 

into a structured key format that can be used for cryptographic operations. 

5.10.4 Function: pqs_public_key_encode 

Purpose: Encodes a client key structure into a public key string. 

Description: Converts a structured public key into a string format, often used for transmission or 

storage in human-readable forms like base64. 

5.10.5 Function: pqs_public_key_hash 

Purpose: Hashes a public key structure and returns the result in a byte array. 
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Description: Applies a secure hash function to the public key and returns a fixed-size hash value 

that can be used for verification or integrity checks. 

5.10.6 Function: pqs_signature_key_serialize 

Purpose: Encodes a server key structure into a serialized byte array. 

Description: Converts a signature key (either private or public) into a byte array for storage or 

transmission. 

5.10.7 Function: pqs_signature_key_deserialize 

Purpose: Decodes a secret signature key from a byte array into a server key structure. 

Description: Converts a serialized byte array containing a signature key back into its structured 

format to be used in cryptographic operations such as signing or verification. 
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6 Protocol Operational Overview 

6.1 Connection Request 

 

Figure 6.1: PQS Simplex connection request. 

1) The client inspects the packet header for the correct flag, sequence number, expected 

message size, and that the valid-time has not expired.  

2) The client begins the key exchange operation by sending a connect request packet to the 

server. This packet contains the server’s key identification array and the protocol 

configuration string.  

3) The client hashes the configuration string, the key identification array, and its signature 

verification key. This combined hash is stored in the session cookie state value (sch) and is 

used as a unique session identifier. This approach ensures that the session's cryptographic 

parameters are referenced and that the session state is uniquely identifiable. 

4) The client adds the key-id and the configuration string, and sends the connection request to 

the server. 
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6.2 Connection Response 

 

Figure 6.2: PQS server connection response. 

1) The server inspects the packet header for the correct flag, sequence number, expected 

message size, and that the valid-time has not expired.  

2) The server checks its database for a key that matches the key identification array provided in 

the request. If the verification key is not found, the server sends an unknown key error 

message to the client, aborts the key exchange, logs the event, and tears down the session. 

3) The server compares the protocol configuration string sent by the client with its own stored 

protocol string to ensure compatibility.  
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4) The server verifies the expiration time of the key. If all these fields are validated successfully, 

the server loads the key into its active state. 

5) The server hashes the configuration string, the key identification array, and its signature 

verification key, and stores this combined hash in its session cookie state value (sch). 

6) The server generates a new public/private asymmetric cipher key pair. It hashes the public 

encapsulation key and the serialized connection response packet header, and signs this hash 

with its private signing key. 

7) The server adds the public asymmetric encapsulation key and the signed hash of the public 

key to the connect response message and sends it to the client to continue the key exchange 

process. 
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6.3 Exchange Request 

 

Figure 7.3: PQS client exchange request. 

1) The client inspects the packet header for the correct flag, sequence number, expected 

message size, and that the valid-time has not expired.  

2) The client uses the server’s signature verification key to verify the signature on the hash of 

the asymmetric encapsulation key and serialized packet header. If the signature verification 

fails, the client sends an authentication failure message and terminates the connection. 

3) If the signature is successfully verified, the client hashes the asymmetric cipher key and 

serialized header, and compares this hash to the signed hash in the server's response message. 
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If the hash check fails, the client sends a hash invalid error message and closes the 

connection. 

4) The client uses the asymmetric cipher key to encapsulate a shared secret, creating the 

ciphertext. 

5) The shared secret is combined with the session cookie to key the KDF, which generates the 

symmetric cipher keys and nonces used to key the transmit and receive cipher instances. 

6) The cipher rx and tx symmetric instances are initialized and ready to transmit and receive 

data. 

7) The asymmetric ciphertext is then included in the exchange request packet, which the client 

sends to the server. 
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6.4 Exchange Response 

 

Figure 7.4: PQS server exchange response. 

1) The server inspects the packet header for the correct flag, sequence number, expected 

message size, and that the valid-time has not expired.  

2) The server uses its stored asymmetric cipher private key to decapsulate the shared secret 

from the ciphertext.  

3) The decapsulated shared secret is combined with the session cookie to derive the two 

symmetric session keys and nonces. 

4) These derived session keys are used to initialize the symmetric cipher instances, activating 

both the transmit and receive channels of the encrypted tunnel. 
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6.5 Establish Verify 

 

Figure 7.5: PQS client establish request. 

1) The client inspects the packet header for the correct flag, sequence number, expected 

message size, and that the valid-time has not expired.  

2) The client verifies that the encrypted tunnel is now active and fully operational. If the packet 

contains an error flag, indicating that an issue occurred during the tunnel setup, the client 

immediately initiates a connection teardown.  

3) The client should then handle the error according to its predefined procedures, ensuring the 

user or application is informed of the failure. 
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7. Mathematical Description 

Mathematical Symbols  

← ↔ → -Assignment and direction symbols 

:=, !=, ?= -Equality operators; assign, not equals, evaluate 

C  -The client host, initiates the exchange 

S  -The server host, listens for a connection 

G(λ, r)  -The asymmetric cipher key generation with parameter set and random source 

-Esk  -The asymmetric decapsulation function and secret key 

Epk  -The asymmetric encapsulation function and public key 

Ssk  -Sign data with the secret signature key 

Vpk  -Verify a signature the public verification key 

cfg  -The protocol configuration string 

cprrx  -A receive channels symmetric cipher instance 

cprtx  -A transmit channels symmetric cipher instance 

cpt  -The symmetric ciphers cipher-text 

cpta  -The asymmetric ciphers cipher-text 

-Ek  -The symmetric decryption function and key 

Ek  -The symmetric encryption function and key 

H  -The hash function (SHA3) 

k, mk  -A symmetric cipher or MAC key 

KDF  -The key expansion function (SHAKE) 

kid  -The public keys unique identity array 

Mmk  -The MAC function and key (KMAC) 

pk, sk  -Asymmetric public and secret keys 

pvk  -Public signature verification key 

sch -A hash of the configuration string and and asymmetric verification-keys 

sec  -The shared secret derived from asymmetric encapsulation and decapsulation 

spkh  -The signed hash of the asymmetric public encapsulation-key 
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Simplex Key Exchange Sequence 

Preamble 

The Simplex key exchange sequence begins with the client verifying the validity of the server's 

public signature verification key. The client checks the expiration date of this key, and if it is 

found to be invalid or expired, the client initiates a re-authentication session with the server. 

During this session, a new key is distributed over an encrypted channel, and the client verifies 

the new key's certificate using the designated authentication authority or scheme implemented by 

the server and client software. 

7.1 Connect Request 

The client initiates the connection process by sending a connection request to the server that 

includes its configuration string and asymmetric public signature key identity. 

Key Identity 

The key identity (kid) is a multi-part, 16-byte array that acts as a public asymmetric verification 

key and device identification string. It is used to match the target server to its corresponding 

cryptographic key, ensuring that the correct key is used during the exchange. 

Configuration String 

The configuration string (cfg) specifies the cryptographic protocol set being used in the key 

exchange process. For the exchange to proceed successfully, the configuration strings used by 

both the client and server must match, indicating that they are using the same cryptographic 

parameters. 

Session Cookie 

To securely manage the state of the key exchange, the client generates a session cookie by 

hashing a combination of the configuration string, the key identity, and the server public 

asymmetric signature verification key: 

sch ← H(cfg || kid || pvk) 

Where: 

• cfg is the configuration string. 

• kid is the key identity. 

• pvk is the server's public signature verification key. 

This session cookie (sch) serves as a unique identifier for the session, helping to ensure that the 

cryptographic parameters are consistently referenced throughout the exchange. 
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The client then sends the key identity string (kid) and the configuration string (cfg) to the server 

to initiate the connection: 

C{ kid, cfg } → S 

 

7.2 Connect Response 

The server processes the client's connection request and responds with either an error message or 

a connect response packet. If any error occurs during the key exchange, the server generates an 

error packet and sends it to the remote host, which triggers a teardown of the session and 

network connection on both sides. 

Key Verification and Protocol Check 

The server begins by verifying that it has the appropriate asymmetric signature verification key 

that corresponds to the client's request, using the key-identity array (kid).  

It then checks that its protocol configuration matches the one specified by the client. To securely 

manage the state of the exchange, the server creates a session cookie by hashing the 

configuration string, the key identity, and the public signature verification key: 

sch ← H(cfg || kid || pvk) 

Where: 

• cfg is the configuration string. 

• kid is the key identity. 

• pvk is the server's public signature verification key. 

This session cookie (sch) serves as a unique identifier for the session, helping maintain the 

integrity of the key exchange. 

Asymmetric Key Generation and Signing 

The server generates a new asymmetric encryption key pair and securely stores the private key. It 

hashes the public encapsulation key and the serialized connect response packet header, and signs 

this hash using its private asymmetric signature key. The signature provides a cryptographic 

guarantee that the public asymmetric cipher key has not been tampered with during transmission. 

Key generation and signing steps: 

Generate the public (pk) and private (sk) asymmetric encryption keys. 

pk, sk ← G(λ, r) 
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Create a hash of the public key and serialized connect response packet header (sh). 

pkh ← H(pk || sh) 

Sign the hashed public key using the server's private signature key. 

spkh ← Ssk(pkh) 

The public signature verification key itself can be signed using a 'chain of trust' model, such as 

X.509, to ensure further authentication through a signature verification extension to the protocol. 

Server Response 

The server sends a connect response message back to the client, containing the signed hash of the 

public asymmetric encapsulation key (spkh) and a copy of the public key itself: 

S{ spkh, pk } → C 

 

7.3 Exchange Request 

The client processes the server's connect response and initiates the next steps of the key 

exchange by verifying the received data, encapsulating a shared secret, and preparing the session 

keys. 

Signature Verification and Hash Check 

The client begins by verifying the signature of the hash using the server's public verification key. 

It then generates its own hash of the server's public key and compares it to the hash contained in 

the server's message. If the hashes match, the client proceeds to encapsulate the shared secret. If 

the hashes do not match, the key exchange is aborted. 

The client uses the server's public verification key to check the hash of the public key. If the 

verification is successful, the process continues; otherwise, the key exchange fails. 

Vpk(H(pk)) ← (true ?= pk : 0) 

The public encapsulation key and connect response packet header are hashed, and the hash is 

compared with signed hash received from the server. Once the packet header and public key are 

verified, the client uses the server's public key to encapsulate a shared secret. 

The client generates a ciphertext (cpt) and encapsulates the shared secret (sec) using the server's 

public key. 

cpt, sec ← Epk(sec) 
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The client combines the shared secret and the session cookie to derive the session keys and two 

unique nonces for the communication channels. 

The Key Derivation Function (KDF) generates two session keys (k1, k2) and two nonces (n1, n2) 

using the shared secret (sec) and the session cookie (sch). 

k1, k2, n1, n2 ← KDF(sec || sch) 

Cipher Initialization 

The receive and transmit channel ciphers are then initialized using the derived keys and nonces. 

Initializes the receive channel cipher with key k2 and nonce n2. 

cprrx(k2, n2) 

Initializes the transmit channel cipher with key k1 and nonce n1. 

cprtx(k1, n1) 

Client Transmission 

The client sends the ciphertext to the server as part of the exchange request. 

The client transmits the encapsulated shared secret to the server. 

C{ cpt } → S 

 

7.4 Exchange Response 

The server processes the client's exchange request by decapsulating the shared secret, deriving 

the session keys, and confirming the secure communication channel. 

Shared Secret Decapsulation 

The server decapsulates the shared secret from the ciphertext received from the client. 

The server uses its private asymmetric key to decapsulate the shared secret (sec) from the 

received ciphertext (cpt). 

sec ← -Esk(cpt) 

Session Key Derivation 
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The server combines the decapsulated shared secret and the session cookie hash to derive two 

session keys and two unique nonces for the communication channels. 

The Key Derivation Function (KDF) generates two symmetric session keys (k1, k2) and two 

nonces (n1, n2) using the shared secret (sec) and the session cookie (sch). 

k1, k2, n1, n2 ← KDF(sec || sch) 

Cipher Initialization 

The server initializes the symmetric ciphers for the receive and transmit channels. 

Initializes the receive channel cipher with key k1 and nonce n1. 

cprrx(k1, n1) 

Initializes the transmit channel cipher with key k2 and nonce n2. 

cprtx(k2, n2) 

Server Response 

The server sets the packet flag to "exchange response," indicating that the encrypted channels 

have been successfully established. It then sends this notification back to the client to confirm the 

secure communication channel. 

The server sends an exchange response flag to the client, confirming that the secure tunnel is 

established. 

S{ f } → C 

The server updates its operational state to session established, indicating that it is now ready to 

securely process data over the encrypted channels. 

 

7.5 Establish Verify 

In the final step of the key exchange sequence, the client verifies the status of the encrypted 

tunnel based on the server's exchange response. 

Client Verification 

The client inspects the flag of the exchange response packet received from the server. If the flag 

indicates an error state, the client immediately tears down the tunnel to prevent any further data 

transmission. This ensures that no data is sent over an insecure or compromised connection. 
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If the flag does not indicate an error state, the client confirms that the tunnel is successfully 

established and in an operational state. 

Operational State 

Once the verification is complete and the tunnel is confirmed, the client updates its internal state 

to session established, indicating that the secure communication channels are fully operational. 

The client is now ready to process data over the encrypted tunnel. 

 

7.6 Transmission 

During the transmission phase, either the client or server sends messages over the established 

encrypted tunnel using the RCS stream cipher's MAC, AEAD (Authenticated Encryption with 

Associated Data), and encryption functions. This process ensures the integrity and confidentiality 

of the transmitted data. 

Message Serialization and Encryption 

The transmitting host (client or server) starts by serializing the packet header, which includes 

critical details such as the message size, timestamp, protocol flag, and sequence number. This 

serialized header is then added to the symmetric cipher’s associated data parameter, which adds 

metadata authentication to the encryption process. 

The message encryption process is as follows: 

1. Encrypt the Message: The plaintext message is encrypted using the symmetric 

encryption function of the RCS stream cipher. The symmetric encryption function (Ek) is 

applied to the plaintext message (m) to produce the ciphertext (cpt). 

cpt ← Ek(m) 

 

2. Update the MAC State: The serialized packet header is added to the MAC (Message 

Authentication Code) state through the additional-data parameter of the RCS cipher. 

The MAC function (Mmk) is updated with the serialized packet header (sh) and the 

ciphertext (cpt) to produce the MAC code (mc). 

mc ← Mmk(sh, cpt) 

 

3. Append the MAC Code: The MAC code is appended to the end of the ciphertext, 

ensuring that any tampering with the data during transmission will be detected. 

Packet Decryption and Verification 

Upon receiving the packet, the recipient host deserializes the packet header and adds it to the 

MAC state along with the received ciphertext. The MAC computation is then finalized and 

compared with the MAC code that was appended to the ciphertext. The packet timestamp is 
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compared to the UTC time, if the time is outside of a tolerance threshold, the packet is 

rejected and the session is torn down. 

1. Generate the MAC Code: Add the serialized packet header to the cipher AEAD. Add 

the ciphertext and generate the MAC code. 

mc` ← Mmk(sh, cpt) 

Compare the MAC tag copy with the MAC tag appended to the ciphertext. 

mc` ?= mc 

If the MAC check fails, indicating potential data tampering or corruption, the decryption 

function returns an empty message array and an error status. The application shall handle 

this error accordingly. 

2. Decrypt the Ciphertext: If the MAC code matches, the ciphertext is considered 

authenticated, and the message is decrypted. 

The ciphertext (cpt) is decrypted back into the plaintext message (m) if the MAC 

verification succeeds. 

m ← -Ek(cpt) 

This process ensures that the transmitted data remains confidential and tamper-evident, providing 

both encryption and authentication to protect the integrity of the communication. Any errors 

during decryption signal an immediate response to prevent the further exchange of potentially 

compromised data. 
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8. Security Analysis 

PQS is designed to withstand both classical and quantum attacks, offering future-proof 

cryptographic security. This section analyzes the protocol's defense mechanisms against common 

cryptographic threats, focusing on man-in-the-middle attacks, replay attacks, side-channel 

attacks, and quantum-specific threats. Additionally, we perform a cryptanalysis of the key 

exchange construction and compare it to other common key exchange protocols. 

8.1 Post-Quantum Cryptographic Primitives 

PQS relies on post-quantum cryptographic primitives that are resistant to quantum computers, 

which can break classical cryptography through algorithms like Shor’s algorithm and Grover’s 

algorithm. The following primitives are used in PQS: 

• Kyber: A lattice-based key encapsulation mechanism (KEM) that offers both efficiency 

and post-quantum security. Kyber ensures that shared session keys are secure against 

quantum adversaries. 

• Dilithium: A lattice-based digital signature algorithm used for authentication. Dilithium 

ensures that digital signatures cannot be forged even with quantum capabilities. 

These primitives replace classical algorithms like RSA and ECDH, which are vulnerable to 

quantum attacks. 

8.2 Resistance to Classical Attacks 

8.2.1 Man-in-the-Middle (MiTM) Attacks 

PQS prevents man-in-the-middle attacks through the use of authenticated key exchange. The key 

exchange involves signing the server’s public key using a post-quantum digital signature 

(Dilithium) which the client verifies using the server’s certificate. 

• Mathematical Defense: Cs = Sign(Sr, Ps), Verify(Pr, Ps, Cs) 

This guarantees that only the legitimate server’s public key is used for key exchange. 

8.2.2 Replay Attacks 

Replay attacks are mitigated using a message valid-time check (UTCₜ). Each packet includes a 

timestamp, and the server only processes messages that fall within a predefined time window. 

This ensures that even if an attacker intercepts and replays a packet, it will be rejected if it falls 

outside the valid time window. 

• Mathematical Defense: Accept if ∣ UTCreceived − UTCcurrent ∣ < Threshold 

8.2.3 Forward Secrecy 

PQS provides forward secrecy through the use of ephemeral key pairs. During the key 

exchange, both the client and server generate new public-private key pairs for each session. Once 
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the session is complete, the ephemeral keys are discarded, ensuring that even if a long-term 

private key is compromised, past communications remain secure. 

• Mathematical Defense: The ephemeral session key k is derived for each session:  

k = KEX(Ss, Pl) = KEX(Sl, Ps) 

•  Since Sₛ and Sₗ are discarded after use, future key compromises do not affect past 

session security. 

8.2.4 Message Integrity and Authentication 

PQS uses KMAC (Keccak-based Message Authentication Code) for message integrity and 

authentication. After encrypting a message, a MAC is generated over the ciphertext to ensure that 

the message has not been tampered with during transmission. Both the encryption key and the 

MAC key are derived from the shared session key. 

• Mathematical Defense:  

T = MACkauth(M), Verify T′ = T 

If the MAC check fails, the message is rejected. 

8.3 Resistance to Quantum Attacks 

Quantum computers pose a significant threat to classical cryptography by being able to solve 

problems like factoring large integers or computing discrete logarithms in polynomial time. PQS 

uses post-quantum cryptographic primitives that are resistant to quantum attacks. 

8.3.1 Kyber (Key Encapsulation Mechanisms) 

Kyber is used for key encapsulation in PQS, and is the NIST Post Quantum competition winner 

and standardized for quantum resistant asymmetric ciphers. Kyber is based on the learning with 

errors (LWE) problem involving findng the shortest path through a lattice. Lattice problems are 

believed to be resistant to quantum algorithms such as Shor’s algorithm. 

8.3.2 Dilithium 

Dilithium is based on the hardness of finding short vectors in lattices, and is the NIST Post 

Quantum competition winner and standardized for quantum resistant digital signature schemes. 

8.3.3 McEliece 

McEliece is a code-based cryptosystem that remains one of the most established and trusted 

post-quantum algorithms. It leverages the difficulty of decoding general linear codes, offering a 

high level of security even against advanced quantum decryption techniques. 

8.3.4 SPHINCS+ 
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Sphincs+ is a stateless hash-based signature scheme, which provides long-term security without 

reliance on specific problem structures, making it robust against future advancements in 

cryptographic research. 

 

8.4 Cryptanalysis of Key Exchange 

The PQS key exchange uses a hybrid post-quantum approach, combining classical techniques 

(like hashing and MACs) with post-quantum encryption and digital signatures. This combination 

ensures that the key exchange is secure even in the presence of quantum adversaries. 

8.4.1 Key Exchange Process 

The key exchange in PQS relies on two main operations: 

• Key encapsulation using Kyber or McEliece. 

• Digital signatures using Dilithium or SPHINCS+. 

The server's public key is signed using a post-quantum signature scheme and verified by the 

client. The client then generates a shared secret using the server’s public cipher key and its own 

private key, ensuring confidentiality and authenticity. 

8.4.2 Defense Against Known Attacks 

• Quantum Attacks: The use of post-quantum algorithms ensures that PQS is secure 

against both classical and quantum adversaries. 

• Man-in-the-Middle Attacks: PQS’s key exchange mechanism authenticates both the 

client and server, preventing attackers from intercepting or altering the exchange. 

• Replay Attacks: The message valid-time check prevents an attacker from reusing 

packets to replay previous communications. 

• Side-Channel Attacks: The use of constant-time implementations and secure memory 

management helps mitigate side-channel attacks, where attackers try to exploit 

information leaks from cryptographic operations. 

8.5 Summary of Security Benefits 

• Post-Quantum Security: PQS’s use of McEliece, Kyber, Dilithium, and SPHINCS+ 

ensures that it is resistant to quantum attacks. 

• Forward Secrecy: Each session uses ephemeral key pairs, ensuring that past 

communications remain secure even if long-term keys are compromised. 

• Replay Attack Prevention: The message valid-time check ensures that previously 

transmitted packets cannot be replayed by an adversary. 
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• Man-in-the-Middle Attack Prevention: PQS authenticates both the server and client, 

preventing any third party from injecting or altering messages. 

• Resilience Against Side-Channel Attacks: PQS is designed to resist side-channel 

attacks through constant-time implementations and secure memory management. 
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9. Application Scenarios 

As quantum computing technology progresses, many existing cryptographic protocols, 

particularly those based on classical algorithms like RSA, ECDH, and DSA, will no longer be 

secure. PQS addresses this challenge by offering quantum-resistant cryptographic solutions that 

ensure long-term security, making it a prime candidate to replace SSH and other classical 

protocols in critical industries. Below are several key areas where PQS could be applied. 

9.1 Financial Technology (Fintech) 

In the financial technology industry, secure communications are essential for a variety of tasks, 

including secure online transactions, financial data transfers, and remote access to trading 

systems. SSH is currently widely used to secure communications between remote systems in 

financial institutions. However, with the looming threat of quantum computers, the existing 

cryptographic methods (such as RSA and ECDH) will soon become vulnerable. 

PQS can provide a quantum-secure alternative to SSH in the following ways: 

• Quantum-Secure Transaction Processing: Payment gateways and financial servers rely 

on remote secure shell access to manage systems. PQS ensures that even if quantum 

computing becomes a reality, the transaction channels remain secure. 

• Data Protection in Stock Trading: Remote trading systems can use PQS to prevent 

unauthorized access or tampering with trading data. 

• Long-Term Data Confidentiality: Fintech companies that store large amounts of 

sensitive data, such as transaction records and customer information, will benefit from 

PQS’s forward secrecy and resistance to quantum attacks. This ensures that data remains 

secure well into the future, even after quantum computers become operational. 

9.2 Government and Military Communication 

Government and military communications require the highest level of security, especially for 

classified data and remote access to critical infrastructure. SSH is commonly used in secure 

environments for server management, file transfers, and system monitoring. However, its 

reliance on classical cryptographic primitives makes it vulnerable to future quantum threats. 

PQS offers several advantages for secure government and military applications: 

• Secure Remote Access to Critical Infrastructure: PQS can replace SSH for remote 

management of servers and critical systems that control infrastructure such as electricity 

grids, water supply systems, and communication networks. 

• Classified Communications: PQS ensures the confidentiality and integrity of sensitive 

information, protecting against both classical and quantum attacks. This is particularly 

crucial for secure messaging and file transfers involving classified government and 

military data. 
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• Post-Quantum Secure Diplomatic Communication: Diplomatic channels used by 

embassies and consulates for secure communication with the home country can be 

upgraded with PQS to prevent future breaches of sensitive information. 

By implementing PQS, governments can future-proof their communication infrastructure, 

ensuring long-term security even as quantum computing develops. 

9.3 Healthcare Systems 

The healthcare industry is increasingly reliant on remote access solutions for managing medical 

devices, electronic health records (EHRs), and telemedicine platforms. SSH is widely used to 

manage and secure these systems. However, the sensitive nature of healthcare data, combined 

with the long-term requirement to store patient records securely, makes the adoption of quantum-

resistant cryptography essential. 

PQS can improve the security of healthcare systems in the following ways: 

• Secure Access to Medical Devices: Remote management of critical medical devices, 

such as MRI machines, ventilators, and infusion pumps, can be secured using PQS to 

prevent unauthorized access or tampering. 

• Telemedicine Platforms: Doctors can use PQS to securely communicate with patients 

over encrypted channels, ensuring that sensitive medical information is protected. 

• Secure Health Record Storage: PQS ensures that patient data, including health records 

and diagnostic results, remain encrypted and safe from quantum-enabled breaches, 

preserving patient privacy in the long term. 

The US HIPAA law requires the protection of sensitive patient information. PQS helps 

organizations comply with these regulations by providing advanced encryption that remains 

secure against quantum attacks, thus mitigating future risks. 

9.4 Critical Infrastructure 

Critical infrastructure systems that control national power grids, transportation networks, water 

supply systems, and industrial control systems require secure remote management solutions. 

SSH is often used for remote access to these systems, but as the quantum threat becomes more 

prominent, it is crucial to transition to post-quantum solutions like PQS. 

• Quantum-Secure Power Grid Management: Power grids, which require constant 

remote monitoring and control, can benefit from PQS’s secure key exchange and 

authentication to protect against both classical and quantum threats. 

• Secure Transportation Networks: Autonomous and remotely managed transportation 

systems, including train control systems and smart highways, can use PQS to ensure that 

malicious actors cannot compromise their communications. 

• Industrial Control Systems (ICS): Remote access to ICS, such as SCADA systems used 

in manufacturing, can be secured with PQS to protect against unauthorized control or 

sabotage. 
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By integrating PQS, critical infrastructure can be protected against the vulnerabilities posed by 

future quantum threats, ensuring national security and system reliability. 

9.5 Cloud Service Providers 

Cloud computing environments rely heavily on remote shell protocols like SSH to manage data 

centers, virtual machines, and customer environments. As quantum computers become more 

capable, securing the communication between cloud providers and their customers will be 

essential to maintaining trust in cloud-based services. 

• Secure Cloud Data Centers: PQS can replace SSH in data centers where administrators 

manage thousands of virtual machines and sensitive data. This will ensure that critical 

administrative tasks, such as system updates and security patching, are quantum-safe. 

• Post-Quantum Secure Cloud Storage: Customers that rely on cloud storage for 

confidential business or personal data can use PQS to securely access and manage their 

data. 

• Virtual Private Cloud (VPC) Management: PQS can be used to manage remote access 

to VPCs, ensuring that customer environments remain secure even in a quantum 

computing world. 

By adopting PQS, cloud service providers can offer quantum-safe communication channels to 

their customers, ensuring continued trust in their services. 

9.6 PQS as a Replacement for SSH 

PQS is designed as a post-quantum alternative to SSH, offering quantum-resistant 

cryptography without sacrificing the functionality that SSH provides for secure remote access 

and communication. Some key comparisons include: 

• Key Exchange Security: SSH relies on ECDH and RSA, which are vulnerable to 

quantum attacks. PQS uses Kyber and Dilithium, offering quantum resistance while 

maintaining secure key exchange and authentication. 

• Message Authentication: PQS uses KMAC for message integrity, offering quantum-

resistant authentication in place of SSH’s HMAC-based approach, which will be 

vulnerable in a quantum world. 

• Scalability and Performance: PQS, with its optimized post-quantum algorithms, can 

provide similar or better performance compared to SSH when used in environments that 

require high-throughput, secure communication, such as cloud environments or data 

centers. 

PQS is an ideal replacement for SSH, providing future-proof security, ensuring that systems 

remain safe from both classical and quantum threats. 
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10. Conclusion 

The Post Quantum Shell (PQS) represents a significant advancement in secure communication 

protocols, providing robust protection against both classical and quantum adversaries. As 

quantum computing capabilities evolve, many currently used cryptographic systems, including 

SSH, will become vulnerable. PQS addresses this critical challenge by incorporating post-

quantum cryptographic primitives that are designed to remain secure even when faced with 

powerful quantum attacks. 

10.1 Summary of Key Findings 

Throughout the analysis, several key advantages of PQS over traditional protocols like SSH have 

emerged: 

10.1.1 Quantum-Resistant Cryptography 

The primary strength of PQS lies in its foundation on post-quantum cryptographic primitives. By 

using Kyber, Dilithium, RCS and Keccak, PQS ensures that its cryptographic operations such as 

key exchange, encryption, and digital signatures are secure against both classical and quantum 

adversaries. These algorithms rely on mathematical problems (such as lattice-based, hash-based, 

and code-based cryptography) that are believed to be hard for quantum computers to solve. 

• Kyber provides strong protection for key exchange. 

• McEliece proven code-based key encapsulation alternative. 

• Dilithium ensures that signatures are quantum-safe and secure. 

• SPHINCS+ strong hash based signature scheme alternative. 

• Keccak (SHA-3) and KMAC provide secure hashing and message authentication. 

• RCS provides a powerful post-quantum symmetric cipher with AEAD message 

authentication. 

This quantum-resistance makes PQS a highly secure protocol that will remain effective even as 

quantum computers become a reality. 

10.1.2 Enhanced Key Exchange Security 

Compared to SSH, which relies on vulnerable ECDH and RSA for key exchange, PQS uses 

Kyber or McEliece, which is are resistant to quantum attacks. The key exchange process in PQS 

is also authenticated using Dilithium signatures, ensuring that the public keys cannot be forged 

or compromised. 

The message valid-time check (previously referred to as UTCₜ) and other security mechanisms 

within PQS ensure protection against replay attacks and man-in-the-middle attacks, providing 

enhanced integrity and authenticity for every communication session. 

10.1.3 Future-Proof Security 
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PQS is built with future security challenges in mind. Its use of quantum-resistant cryptography 

ensures that it will continue to provide secure communication channels long after quantum 

computers become practical. This future-proofing makes PQS an ideal replacement for SSH, 

particularly in industries where long-term confidentiality and integrity are critical, such as 

financial technology (fintech), government, military, healthcare, and cloud service providers. 

As countries like the United States and the the nations of the European Union begin to mandate 

the use of stronger encryption standards (e.g., 256-bit keys), PQS offers a viable and efficient 

alternative to classical protocols, which would otherwise struggle with the increased 

computational load of larger key sizes. 

10.1.4 Performance and Scalability 

Despite its use of quantum-resistant algorithms, PQS has been designed to remain efficient and 

scalable. The post-quantum algorithms used in PQS such as Kyber, and RCS are optimized for 

performance, ensuring that PQS can handle large volumes of concurrent connections in 

environments like data centers and cloud platforms without introducing significant latency or 

overhead. 

This makes PQS an ideal solution for industries that require high throughput and scalability, such 

as cloud computing and fintech, where millions of transactions or remote connections need to be 

securely managed. 

10.2 Potential for Wide Adoption 

As quantum computing moves from theory to practice, many industries will be forced to 

transition away from classical cryptographic protocols like SSH and TLS to ensure the security 

of their communications and data. PQS is well-positioned to replace these older protocols, 

offering: 

• Quantum-Secure Remote Access: Industries that rely on remote access to manage 

infrastructure, such as cloud service providers, government agencies, and critical 

infrastructure operators, can deploy PQS as a quantum-resistant alternative to SSH. 

• Secure Transactions in Fintech: Financial institutions can adopt PQS to ensure that 

online banking, payment systems, and transaction data remain secure against future 

quantum threats. 

• Long-Term Confidentiality in Healthcare: Healthcare organizations can use PQS to 

protect patient data, ensuring compliance with privacy laws like HIPAA and maintaining 

the confidentiality of sensitive medical records well into the future. 

By adopting PQS, organizations in these sectors can future-proof their operations against 

quantum-based attacks while maintaining the same functionality and performance offered by 

current classical protocols. 


