
1

Post Quantum Shell– PQS 1.0
Revision 1.0, October 21, 2024

John G. Underhill – john.underhill@protonmail.com

This document is an engineering level description of the Post Quantum Shell protocol.

This document describes the network protocol PQS, a post-quantum secure shell.

Contents Page

Foreword 2

1. Introduction 2

2. Protocol Description 2

3. Terms and Definitions 3

4. Cryptographic Primitives 7

5. Protocol Components and State Structures 9

6. Protocol Operational Overview 16

7. Mathematical Description 25

8. Security Analysis 33

9. Application Scenarios 37

10. Conclusion 40

2

Foreword

This document is the first revision of the specification of PQS, further revisions may become

necessary during the pursuit of a standard model, and revision numbers shall be incremented

with changes to the specification. The reader is asked to consider only the most recent revision of

this draft, as the authoritative implementation of the PQS specification.

The author of this specification is John G. Underhill, and can be reached at

john.underhill@protonmail.com

PQS, the algorithm constituting the PQS messaging protocol is patent pending, and is owned by

John G. Underhill and Quantum Resistant Cryptographic Solutions Corporation. The code

described herein is copyrighted, and owned by John G. Underhill and Quantum Resistant

Cryptographic Solutions Corporation.

1. Introduction

The Post Quantum Shell (PQS) is a high security, post-quantum communication protocol

designed to replace traditional Secure Shell (SSH) for remote server access and communication.

With the advent of quantum computing, classical encryption algorithms like RSA, ECDH, and

DSA are at risk of being broken, making quantum-resistant cryptographic techniques essential.

PQS leverages post-quantum cryptographic primitives, including Kyber (lattice-based key

encapsulation), and digital signatures from Dilithium, which are designed to resist both classical

and quantum computing threats.

PQS is particularly well suited for industries and applications where long-term confidentiality is

critical, such as financial technology (fintech), government communication, healthcare, and

critical infrastructure. By offering enhanced security against quantum attacks, PQS ensures that

sensitive communications remain secure for years to come.

2. Protocol Description

The PQS exchange is a one-way trust, client-server key-exchange model in which the client

trusts the server, and a single shared secret is securely shared between them. Designed for

efficiency, the Simplex exchange is fast and lightweight, while providing 256-bit post-quantum

security, ensuring protection against future quantum-based threats.

This protocol is versatile and can be used in a wide range of applications, such as client

registration on networks, secure cloud storage, hub-and-spoke model communications,

commodity trading, and electronic currency exchange—essentially, any scenario where an

encrypted tunnel using strong, quantum-safe cryptography is required.

The server in this model is built as a multi-threaded communications platform capable of

generating a uniquely keyed encrypted tunnel for each connected client. With a lightweight state

3

footprint of less than 4 kilobytes per client, a single server instance has the capability to handle

potentially hundreds of thousands of simultaneous connections. The cipher encapsulation keys

utilized during each key exchange are ephemeral and unique, ensuring that every key exchange

remains secure and independent from previous key exchanges.

The server distributes a public signature verification key to its clients. This key is used to

authenticate the server's public cipher encapsulation key during the key exchange process. The

server's public verification key can be shared with clients through various secure methods,

including during a registration event, pre-embedding in client software, or via other secure

distribution channels.

3.Terms and Definitions

3.1 Cryptographic Primitives

3.1.1 Kyber

The Kyber asymmetric cipher and NIST Post Quantum Competition winner.

3.1.2 McEliece

The McEliece asymmetric cipher and NIST Round 3 Post Quantum Competition candidate.

3.1.3 Dilithium

The Dilithium asymmetric signature scheme and NIST Post Quantum Competition winner.

3.1.5 SPHINCS+

The SPHINCS+ asymmetric signature scheme and NIST Post Quantum Competition winner.

3.1.6 RCS

The wide-block Rijndael hybrid authenticated symmetric stream cipher.

3.1.7 SHA-3

The SHA3 hash function NIST standard, as defined in the NIST standards document FIPS-202;

SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

3.1.8 SHAKE

The NIST standard Extended Output Function (XOF) defined in the SHA-3 standard publication

FIPS-202; SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

4

3.1.9 KMAC

The SHA3 derived Message Authentication Code generator (MAC) function defined in NIST

special publication SP800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and

ParallelHash.

3.2 Network References

3.2.1 Bandwidth

The maximum rate of data transfer across a given path, measured in bits per second (bps).

3.2.2 Byte

Eight bits of data, represented as an unsigned integer ranged 0-255.

3.2.3 Certificate

A digital certificate, a structure that contains a signature verification key, expiration time, and

serial number and other identifying information. A certificate is used to verify the authenticity of

a message signed with an asymmetric signature scheme.

3.2.4 Domain

A virtual grouping of devices under the same authoritative control that shares resources between

members. Domains are not constrained to an IP subnet or physical location but are a virtual

group of devices, with server resources typically under the control of a network administrator,

and clients accessing those resources from different networks or locations.

3.2.5 Duplex

The ability of a communication system to transmit and receive data; half-duplex allows one

direction at a time, while full-duplex allows simultaneous two-way communication.

3.2.6 Gateway: A network point that acts as an entrance to another network, often connecting a

local network to the internet.

3.2.7 IP Address

A unique numerical label assigned to each device connected to a network that uses the Internet

Protocol for communication.

3.2.8 IPv4 (Internet Protocol version 4): The fourth version of the Internet Protocol, using 32-

bit addresses to identify devices on a network.

3.2.9 IPv6 (Internet Protocol version 6): The most recent version of the Internet Protocol, using

128-bit addresses to overcome IPv4 address exhaustion.

3.2.10 LAN (Local Area Network)

5

A network that connects computers within a limited area such as a residence, school, or office

building.

3.2.11 Latency

The time it takes for a data packet to move from source to destination, affecting the speed and

performance of a network.

3.2.12 Network Topology

The arrangement of different elements (links, nodes) of a computer network, including physical

and logical aspects.

3.2.13 Packet

A unit of data transmitted over a network, containing both control information and user data.

3.2.14 Protocol

A set of rules governing the exchange or transmission of data between devices.

3.2.15 TCP/IP (Transmission Control Protocol/Internet Protocol)

A suite of communication protocols used to interconnect network devices on the internet.

3.2.16 Throughput: The actual rate at which data is successfully transferred over a

communication channel.

3.2.17 UDP (User Datagram Protocol)

A communication protocol that offers a limited amount of service when messages are exchanged

between computers in a network that uses the Internet Protocol.

3.2.18 VLAN (Virtual Local Area Network)

A logical grouping of network devices that appear to be on the same LAN regardless of their

physical location.

3.2.19 VPN (Virtual Private Network)

Creates a secure network connection over a public network such as the internet.

3.3 Normative References

The following documents serve as references for cryptographic components used by QSTP:

3.3.1 FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable Output

Functions: This standard specifies the SHA-3 family of hash functions, including SHAKE

extendable-output functions. https://doi.org/10.6028/NIST.FIPS.202

3.3.2 FIPS 203: Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM): This

standard specifies ML-KEM, a key encapsulation mechanism designed to be secure against

quantum computer attacks. https://doi.org/10.6028/NIST.FIPS.203

6

3.3.3 FIPS 204: Module-Lattice-Based Digital Signature Standard (ML-DSA): This standard

specifies ML-DSA, a set of algorithms for generating and verifying digital signatures, believed

to be secure even against adversaries with quantum computing capabilities.

https://doi.org/10.6028/NIST.FIPS.204

3.3.4 NIST SP 800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and

ParallelHash: This publication specifies four SHA-3-derived functions: cSHAKE, KMAC,

TupleHash, and ParallelHash. https://doi.org/10.6028/NIST.SP.800-185

3.3.5 NIST SP 800-90A Rev. 1: Recommendation for Random Number Generation Using

Deterministic Random Bit Generators: This publication provides recommendations for the

generation of random numbers using deterministic random bit generators.

https://doi.org/10.6028/NIST.SP.800-90Ar1

3.3.6 NIST SP 800-108: Recommendation for Key Derivation Using Pseudorandom

Functions: This publication offers recommendations for key derivation using pseudorandom

functions. https://doi.org/10.6028/NIST.SP.800-108

3.3.7 FIPS 197: The Advanced Encryption Standard (AES): This standard specifies the

Advanced Encryption Standard (AES), a symmetric block cipher used widely across the globe.

https://doi.org/10.6028/NIST.FIPS.197

7

4: Cryptographic Primitives

PQS relies on a set of cryptographic primitives designed to provide resilience against both

classical and quantum-based attacks. The following sections detail the specific cryptographic

algorithms and mechanisms that form the foundation of PQS's encryption, key exchange, and

authentication processes.

4.1 Asymmetric Cryptographic Primitives

PQS employs post-quantum secure asymmetric algorithms to ensure the integrity and

confidentiality of key exchanges, as well as to facilitate digital signatures. The primary

asymmetric primitives used are:

• Kyber: An IND-CCA secure lattice-based key encapsulation mechanism that provides

secure and efficient key exchange resistant to quantum attacks. Kyber is valued for its

balance between computational speed and cryptographic strength, making it suitable for

scenarios requiring rapid key generation and exchange.

• McEliece: A code-based cryptosystem that remains one of the most established and

trusted post-quantum algorithms. It leverages the difficulty of decoding general linear

codes, offering a high level of security even against advanced quantum decryption

techniques.

• Dilithium: A lattice-based digital signature scheme based on that of the underlying

MLWE and MSIS problems, that offers fast signing and verification while maintaining

strong security guarantees against quantum attacks.

• Sphincs+: A stateless hash-based signature scheme, which provides long-term security

without reliance on specific problem structures, making it robust against future

advancements in cryptographic research.

These asymmetric primitives are selected for their proven resilience against quantum

cryptanalysis, ensuring that PQS's key exchange and signature operations remain secure in the

face of evolving computational threats.

4.2 Symmetric Cryptographic Primitives

PQS's symmetric encryption employs the Rijndael Cryptographic Stream (RCS), a stream

cipher adapted from the Rijndael (AES) symmetric cipher to meet post-quantum security needs.

Key features of the RCS cipher include:

• Wide-Block Cipher Design: RCS extends the original AES design with a focus on

increasing the block size (from 128 to 256 bits) and number of transformation rounds

(from 14 to 21 for a 256-bit key, and 30 rounds for a 512-bit key), thereby enhancing its

resistance to differential and linear cryptanalysis.

• Enhanced Key Schedule: The key schedule in RCS is cryptographically strong using

Keccak (cSHAKE), ensuring that derived keys are resistant to known attacks, including

algebraic-based and differential attacks. RCS replaces Rijndael’s cryptographically-weak

key schedule, with a strong post-quantum secure key expansion function.

8

• Authenticated Encryption with Associated Data (AEAD): RCS integrates with KMAC

(Keccak-based Message Authentication Code) to provide both encryption and message

authentication in a single operation. This approach ensures that data integrity is

maintained alongside confidentiality.

The RCS stream cipher's design is optimized for high-performance environments, making it

suitable for low-latency applications that require secure and efficient data encryption. It

leverages AES-NI instructions embedded in modern CPUs.

4.3 Hash Functions and Key Derivation

Hash functions and key derivation functions (KDFs) are essential to PQS's ability to transform

raw cryptographic data into secure keys and hashes. The following primitives are used:

• SHA-3: SHA-3 serves as PQS's primary hash function, providing secure, collision-

resistant hashing capabilities.

• SHAKE: PQS employs the Keccak SHAKE XOF function for deriving symmetric keys

from shared secrets. This ensures that each session key is uniquely generated and

unpredictable, enhancing the protocol's security against key reuse attacks.

• KMAC: The SHA-3 keyed hashing function (MAC), part of the SHA-3 family of post-

quantum resistant hashing functions.

These cryptographic primitives ensure that PQS's key management processes remain secure,

even in scenarios involving high-risk adversaries and quantum-capable threats.

9

5. Protocol Components and State Structures

5.1 Protocol String

The protocol string in PQS is composed of four key components, each representing a specific

cryptographic element used in the secure communication process:

1. Asymmetric Signature Scheme: Specifies the signature scheme along with its security

strength (e.g., s1, s3, s5) from low to high. Example: dilithium-s3 correlates to the NIST

level 3 security designation (192 bits of post-quantum security).

2. Asymmetric Encapsulation Cipher: Defines the asymmetric encryption algorithm and

its security strength. Example: mceliece-s5.

3. Hash Function Family: The designated hash function used within the protocol, which is

set as SHA3.

4. Symmetric Cipher: The symmetric cipher used for data encryption, set as the

authenticated stream cipher RCS.

The protocol string plays a crucial role during the initial negotiation phase to ensure that both the

client and server agree on a common set of cryptographic parameters. If the client and server do

not support the same protocol settings, a secure connection cannot be established.

Signature Scheme Asymmetric Cipher HASH Function Symmetric Cipher

Dilithium Kyber SHA3 RCS

Dilithium McEliece SHA3 RCS

Sphincs+ McEliece SHA3 RCS

Table 5.1: The Protocol string choices in revision PQS 1.3a.

5.2 Client Key Structure

The client key is a publicly exportable structure that contains the signature verification key and

associated metadata. It includes parameters such as the key expiration time, protocol string,

public signature verification key, and key identity array.

Parameter Data Type Bit Length Function

Expiration Uint64 64 Validity check

Configuration Uint8 array 320 Protocol check

Key ID Uint8 array 128 Identification

Verification Key Uint8 array Variable Authentication

Table 5.2: The client key structure.

• Expiration: A 64-bit unsigned integer indicating the number of seconds since the epoch

(01/01/1900) until the UTC time when the key remains valid. If the key has expired, the

client must request a new public key from the server.

10

• Configuration: Contains the protocol string that defines the cryptographic parameters. If

the protocol string on both hosts does not match, the connection is aborted.

• Key ID: A unique identifier for the public verification key, facilitating quick reference on

the server.

• Verification Key: The public asymmetric signature verification key used for

authenticating asymmetric encapsulation keys and data during the key exchange.

The client key can be distributed openly or could be encapsulated using X.509 certificates to

create a chain of trust, enhancing its security in diverse environments.

5.3 Server Key Structure

The server key is a private (secret) key retained by the server. It contains all elements of the

client key plus an additional parameter, the asymmetric signing key.

Data Name Data Type Bit Length Function

Expiration Uint64 64 Validity check

Configuration Uint8 array 320 Protocol check

Key ID Uint8 array 128 Identification

Verification Key Uint8 array Variable Authentication

Signing Key Uint8 array Variable Signing

Table 5.3: The server key structure.

The inclusion of the signing key in the server key structure allows the server to sign messages

during the key exchange, ensuring that data exchanges are authenticated and trusted.

5.4 Keep Alive State

PQS uses an internal keep-alive mechanism to maintain active connections. The server

periodically sends a keep-alive packet to the client, which the client must acknowledge within

the defined interval.

Parameter Data Type Bit Length Function

Expiration Time Uint64 64 Validity check

Packet Sequence Uint64 64 Protocol check

Received Status Bool 8 Status

Table 5.4: The keep alive state.

If the server does not receive a response within the timeout period, it logs a keep-alive error and

terminates the connection to prevent stale sessions.

5.5 Connection State

11

The internal connection state structure stores the critical information needed for PQS operations,

including cipher states, sequence counters, and the ratchet key.

Data Name Data Type Bit Length Function

Target Socket struct 664 Validity check

Cipher Send State Structure Variable Symmetric Encryption

Cipher Receive State Structure Variable Symmetric Decryption

Receive Sequence Uint64 64 Packet Verification

Send Sequence Uint64 64 Packet Verification

Connection Instance Uint32 32 Identification

KEX Flag Uint8 8 KEX State Flag

Ratchet Key Uint8 array 512 Symmetric Ratchet

PkHash Uint8 array 256 Authentication

Session Token Uint8 array 256 Authentication

ExFlag Uint8 8 Protocol Check

Table 5.5: The connection state structure.

This data structure ensures secure handling of connection parameters, packet sequencing, and

cryptographic states during active communication sessions.

5.8 Client KEX State

The Simplex protocol's client and server state structures focus on one-way authentication, storing

essential key exchange data:

Data Name Data Type Bit Length Function

Key ID Uint8 array 128 Key Identification

Session Token Uint8 array 512 Verification

Remote Verification Key Uint8 array Variable Asymmetric Authentication

Signature Key Uint8 array Variable Asymmetric Authentication

Shared Secret Uint8 array 256 Symmetric Key

Verification Key Uint8 array Variable Asymmetric Authentication

Expiration Uint64 64 Verification

Table 5.7: The Simplex client KEX state structure.

5.9 Server KEX State

The Simplex server state structure stores the asymmetric cipher and signature keys used during

the key exchange execution.

Data Name Data Type Bit Length Function

12

Key ID Uint8 array 128 Key Identification

Session Token Uint8 array 512 Verification

Private Cipher Key Uint8 array Variable Asymmetric Encryption

Public Cipher Key Uint8 array Variable Asymmetric Encryption

Signature Key Uint8 array Variable Asymmetric Authentication

Shared Secret Uint8 array 256 Symmetric Key

Verification Key Uint8 array Variable Asymmetric Authentication

Expiration Uint64 64 Verification

Table 5.8: The Simplex server KEX state structure.

5.10 PQS Packet Header

The PQS packet header is 21 bytes in length, and contains:

1. The Packet Flag, the type of message contained in the packet; this can be any one of the

key-exchange stage flags, a message flag, or an error flag.

2. The Packet Sequence, this indicates the sequence number of the packet in the exchange.

3. The Message Size, this is the size in bytes of the message payload.

4. The UTC time, the time the packet was created, used in an anti-replay attack mechanism.

The message is a variable sized array, up to PQS_MESSAGE_MAX in size.

Packet Flag

1 byte

Packet Sequence

8 bytes

Message Size

4 bytes

UTC Time

8 bytes

Message

Variable Size

Figure 5.7: The PQS packet structure.

This packet structure is used for both the key exchange protocol, and the communications

stream.

5.11 Flag Types

The following is a list of packet flag types used by PQS:

Flag Name Numerical Value Flag Purpose

None 0x00 No flag was specified, the default value.

Connect Request 0x01 The key-exchange client connection

request flag.

13

Connect Response 0x02 The key-exchange server connection

response flag.

Connection Terminated 0x03 The connection is to be terminated.

Encrypted Message 0x04 The message has been encrypted by the

communications stream.

Exchange Request 0x07 The key-exchange client exchange request

flag.

Exchange Response 0x08 The key-exchange server exchange

response flag.

Establish Request 0x09 The key- exchange client establish request

flag.

Establish Response 0x0A The key- exchange server establish

response flag.

Keep Alive Request 0x0B The packet contains a keep alive request.

Keep Alive Response 0x0C The packet contains a keep alive

response.

Remote Connected 0x0D The remote host has terminated the

connection.

Remote Terminated 0x0E The remote host has terminated the

connection.

Session Established 0x0F The session is in the established state.

Establish Verify 0x10 The session is in the verify state.

Unrecognized Protocol 0x11 The protocol string is not recognized

Asymmetric Ratchet Request 0x12 The packet contains an asymmetric

ratchet request.

Asymmetric Ratchet Response 0x13 The packet contains an asymmetric

ratchet response.

Symmetric Ratchet Request 0x14 The packet contains a symmetric ratchet

request.

Error Condition 0xFF The connection experienced an error.

Table 5.8: Packet header flag types.

5.12 Error Types

The following is a list of error messages used by PQS:

Error Name Numerical Value Description

None 0x00 No error condition was detected.

Authentication Failure 0x01 The symmetric cipher had an

authentication failure.

Bad Keep Alive 0x02 The keep alive check failed.

Channel Down 0x03 The communications channel has failed.

14

Connection Failure 0x04 The device could not make a connection

to the remote host.

Connect Failure 0x05 The transmission failed at the KEX

connection phase.

Decapsulation Failure 0x06 The asymmetric cipher failed to

decapsulate the shared secret.

Establish Failure 0x07 The transmission failed at the KEX

establish phase.

Exstart Failure 0x08 The transmission failed at the KEX

exstart phase.

Exchange Failure 0x09 The transmission failed at the KEX

exchange phase.

Hash Invalid 0x0A The public-key hash is invalid.

Invalid Input 0x0B The expected input was invalid.

Invalid Request 0x0C The packet flag was unexpected.

Keep Alive Expired 0x0D The keep alive has expired with no

response.

Key Expired 0x0E The PQS public key has expired.

Key Unrecognized 0x0F The key identity is unrecognized.

Packet Un-Sequenced 0x10 The packet was received out of sequence.

Random Failure 0x11 The random generator has failed.

Receive Failure 0x12 The receiver failed at the network layer.

Transmit Failure 0x13 The transmitter failed at the network

layer.

Verify Failure 0x14 The expected data could not be verified.

Unknown Protocol 0x15 The protocol string was not recognized.

Listener Failure 0x16 The listener function failed to initialize.

Accept Failure 0x17 The socket accept function returned an

error.

Hosts Exceeded 0x18 The server has run out of socket

connections.

Allocation Failure 0x19 The server has run out of memory.

Decryption Failure 0x1A The decryption authentication has failed.

Ratchet Failure 0x1C The ratchet operation has failed.

Table 5.9: Error type messages.

5.10 Function Definitions in pqs.h

Function Description

pqs_packet_to_stream Serializes a network packet into a byte stream for

transmission.

15

pqs_stream_to_packet Deserializes a byte array back into a packet structure.

pqs_public_key_decode Decodes a public key string into a client verification key

structure.

pqs_public_key_encode Encodes a client key structure into a public key string.

pqs_public_key_hash Hashes a public key structure and returns the result in a byte

array.

pqs_signature_key_deserialize Decodes a secret signature key from a byte array into a

server key structure.

pqs_signature_key_serialize Encodes a server key structure into a serialized byte array.

5.10.1 Function: pqs_packet_to_stream

Purpose: Serializes a network packet into a byte stream for transmission.

Description: Converts a structured packet, containing fields such as message, sequence number,

and timestamp, into a byte stream ready for network transmission. The function ensures proper

byte ordering, padding, and integrity checks before sending the data over the network.

5.10.2 Function: pqs_stream_to_packet

Purpose: Deserializes a byte array back into a packet structure.

Description: Converts a byte array received from the network back into a packet structure. It

verifies the packet format, validates sequence numbers, timestamps, and other fields to ensure

the message is legitimate and intact.

5.10.3 Function: pqs_public_key_decode

Purpose: Decodes a public key string into a client verification key structure.

Description: Converts a serialized public key string (typically in base64 or hexadecimal form)

into a structured key format that can be used for cryptographic operations.

5.10.4 Function: pqs_public_key_encode

Purpose: Encodes a client key structure into a public key string.

Description: Converts a structured public key into a string format, often used for transmission or

storage in human-readable forms like base64.

5.10.5 Function: pqs_public_key_hash

Purpose: Hashes a public key structure and returns the result in a byte array.

16

Description: Applies a secure hash function to the public key and returns a fixed-size hash value

that can be used for verification or integrity checks.

5.10.6 Function: pqs_signature_key_serialize

Purpose: Encodes a server key structure into a serialized byte array.

Description: Converts a signature key (either private or public) into a byte array for storage or

transmission.

5.10.7 Function: pqs_signature_key_deserialize

Purpose: Decodes a secret signature key from a byte array into a server key structure.

Description: Converts a serialized byte array containing a signature key back into its structured

format to be used in cryptographic operations such as signing or verification.

17

6 Protocol Operational Overview

6.1 Connection Request

Figure 6.1: PQS Simplex connection request.

1) The client inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The client begins the key exchange operation by sending a connect request packet to the

server. This packet contains the server’s key identification array and the protocol

configuration string.

3) The client hashes the configuration string, the key identification array, and its signature

verification key. This combined hash is stored in the session cookie state value (sch) and is

used as a unique session identifier. This approach ensures that the session's cryptographic

parameters are referenced and that the session state is uniquely identifiable.

4) The client adds the key-id and the configuration string, and sends the connection request to

the server.

18

6.2 Connection Response

Figure 6.2: PQS server connection response.

1) The server inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The server checks its database for a key that matches the key identification array provided in

the request. If the verification key is not found, the server sends an unknown key error

message to the client, aborts the key exchange, logs the event, and tears down the session.

3) The server compares the protocol configuration string sent by the client with its own stored

protocol string to ensure compatibility.

19

4) The server verifies the expiration time of the key. If all these fields are validated successfully,

the server loads the key into its active state.

5) The server hashes the configuration string, the key identification array, and its signature

verification key, and stores this combined hash in its session cookie state value (sch).

6) The server generates a new public/private asymmetric cipher key pair. It hashes the public

encapsulation key and the serialized connection response packet header, and signs this hash

with its private signing key.

7) The server adds the public asymmetric encapsulation key and the signed hash of the public

key to the connect response message and sends it to the client to continue the key exchange

process.

20

6.3 Exchange Request

Figure 7.3: PQS client exchange request.

1) The client inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The client uses the server’s signature verification key to verify the signature on the hash of

the asymmetric encapsulation key and serialized packet header. If the signature verification

fails, the client sends an authentication failure message and terminates the connection.

3) If the signature is successfully verified, the client hashes the asymmetric cipher key and

serialized header, and compares this hash to the signed hash in the server's response message.

21

If the hash check fails, the client sends a hash invalid error message and closes the

connection.

4) The client uses the asymmetric cipher key to encapsulate a shared secret, creating the

ciphertext.

5) The shared secret is combined with the session cookie to key the KDF, which generates the

symmetric cipher keys and nonces used to key the transmit and receive cipher instances.

6) The cipher rx and tx symmetric instances are initialized and ready to transmit and receive

data.

7) The asymmetric ciphertext is then included in the exchange request packet, which the client

sends to the server.

22

6.4 Exchange Response

Figure 7.4: PQS server exchange response.

1) The server inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The server uses its stored asymmetric cipher private key to decapsulate the shared secret

from the ciphertext.

3) The decapsulated shared secret is combined with the session cookie to derive the two

symmetric session keys and nonces.

4) These derived session keys are used to initialize the symmetric cipher instances, activating

both the transmit and receive channels of the encrypted tunnel.

23

6.5 Establish Verify

Figure 7.5: PQS client establish request.

1) The client inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The client verifies that the encrypted tunnel is now active and fully operational. If the packet

contains an error flag, indicating that an issue occurred during the tunnel setup, the client

immediately initiates a connection teardown.

3) The client should then handle the error according to its predefined procedures, ensuring the

user or application is informed of the failure.

24

7. Mathematical Description

Mathematical Symbols

← ↔ → -Assignment and direction symbols

:=, !=, ?= -Equality operators; assign, not equals, evaluate

C -The client host, initiates the exchange

S -The server host, listens for a connection

G(λ, r) -The asymmetric cipher key generation with parameter set and random source

-Esk -The asymmetric decapsulation function and secret key

Epk -The asymmetric encapsulation function and public key

Ssk -Sign data with the secret signature key

Vpk -Verify a signature the public verification key

cfg -The protocol configuration string

cprrx -A receive channels symmetric cipher instance

cprtx -A transmit channels symmetric cipher instance

cpt -The symmetric ciphers cipher-text

cpta -The asymmetric ciphers cipher-text

-Ek -The symmetric decryption function and key

Ek -The symmetric encryption function and key

H -The hash function (SHA3)

k, mk -A symmetric cipher or MAC key

KDF -The key expansion function (SHAKE)

kid -The public keys unique identity array

Mmk -The MAC function and key (KMAC)

pk, sk -Asymmetric public and secret keys

pvk -Public signature verification key

sch -A hash of the configuration string and and asymmetric verification-keys

sec -The shared secret derived from asymmetric encapsulation and decapsulation

spkh -The signed hash of the asymmetric public encapsulation-key

25

Simplex Key Exchange Sequence

Preamble

The Simplex key exchange sequence begins with the client verifying the validity of the server's

public signature verification key. The client checks the expiration date of this key, and if it is

found to be invalid or expired, the client initiates a re-authentication session with the server.

During this session, a new key is distributed over an encrypted channel, and the client verifies

the new key's certificate using the designated authentication authority or scheme implemented by

the server and client software.

7.1 Connect Request

The client initiates the connection process by sending a connection request to the server that

includes its configuration string and asymmetric public signature key identity.

Key Identity

The key identity (kid) is a multi-part, 16-byte array that acts as a public asymmetric verification

key and device identification string. It is used to match the target server to its corresponding

cryptographic key, ensuring that the correct key is used during the exchange.

Configuration String

The configuration string (cfg) specifies the cryptographic protocol set being used in the key

exchange process. For the exchange to proceed successfully, the configuration strings used by

both the client and server must match, indicating that they are using the same cryptographic

parameters.

Session Cookie

To securely manage the state of the key exchange, the client generates a session cookie by

hashing a combination of the configuration string, the key identity, and the server public

asymmetric signature verification key:

sch ← H(cfg || kid || pvk)

Where:

• cfg is the configuration string.

• kid is the key identity.

• pvk is the server's public signature verification key.

This session cookie (sch) serves as a unique identifier for the session, helping to ensure that the

cryptographic parameters are consistently referenced throughout the exchange.

26

The client then sends the key identity string (kid) and the configuration string (cfg) to the server

to initiate the connection:

C{ kid, cfg } → S

7.2 Connect Response

The server processes the client's connection request and responds with either an error message or

a connect response packet. If any error occurs during the key exchange, the server generates an

error packet and sends it to the remote host, which triggers a teardown of the session and

network connection on both sides.

Key Verification and Protocol Check

The server begins by verifying that it has the appropriate asymmetric signature verification key

that corresponds to the client's request, using the key-identity array (kid).

It then checks that its protocol configuration matches the one specified by the client. To securely

manage the state of the exchange, the server creates a session cookie by hashing the

configuration string, the key identity, and the public signature verification key:

sch ← H(cfg || kid || pvk)

Where:

• cfg is the configuration string.

• kid is the key identity.

• pvk is the server's public signature verification key.

This session cookie (sch) serves as a unique identifier for the session, helping maintain the

integrity of the key exchange.

Asymmetric Key Generation and Signing

The server generates a new asymmetric encryption key pair and securely stores the private key. It

hashes the public encapsulation key and the serialized connect response packet header, and signs

this hash using its private asymmetric signature key. The signature provides a cryptographic

guarantee that the public asymmetric cipher key has not been tampered with during transmission.

Key generation and signing steps:

Generate the public (pk) and private (sk) asymmetric encryption keys.

pk, sk ← G(λ, r)

27

Create a hash of the public key and serialized connect response packet header (sh).

pkh ← H(pk || sh)

Sign the hashed public key using the server's private signature key.

spkh ← Ssk(pkh)

The public signature verification key itself can be signed using a 'chain of trust' model, such as

X.509, to ensure further authentication through a signature verification extension to the protocol.

Server Response

The server sends a connect response message back to the client, containing the signed hash of the

public asymmetric encapsulation key (spkh) and a copy of the public key itself:

S{ spkh, pk } → C

7.3 Exchange Request

The client processes the server's connect response and initiates the next steps of the key

exchange by verifying the received data, encapsulating a shared secret, and preparing the session

keys.

Signature Verification and Hash Check

The client begins by verifying the signature of the hash using the server's public verification key.

It then generates its own hash of the server's public key and compares it to the hash contained in

the server's message. If the hashes match, the client proceeds to encapsulate the shared secret. If

the hashes do not match, the key exchange is aborted.

The client uses the server's public verification key to check the hash of the public key. If the

verification is successful, the process continues; otherwise, the key exchange fails.

Vpk(H(pk)) ← (true ?= pk : 0)

The public encapsulation key and connect response packet header are hashed, and the hash is

compared with signed hash received from the server. Once the packet header and public key are

verified, the client uses the server's public key to encapsulate a shared secret.

The client generates a ciphertext (cpt) and encapsulates the shared secret (sec) using the server's

public key.

cpt, sec ← Epk(sec)

28

The client combines the shared secret and the session cookie to derive the session keys and two

unique nonces for the communication channels.

The Key Derivation Function (KDF) generates two session keys (k1, k2) and two nonces (n1, n2)

using the shared secret (sec) and the session cookie (sch).

k1, k2, n1, n2 ← KDF(sec || sch)

Cipher Initialization

The receive and transmit channel ciphers are then initialized using the derived keys and nonces.

Initializes the receive channel cipher with key k2 and nonce n2.

cprrx(k2, n2)

Initializes the transmit channel cipher with key k1 and nonce n1.

cprtx(k1, n1)

Client Transmission

The client sends the ciphertext to the server as part of the exchange request.

The client transmits the encapsulated shared secret to the server.

C{ cpt } → S

7.4 Exchange Response

The server processes the client's exchange request by decapsulating the shared secret, deriving

the session keys, and confirming the secure communication channel.

Shared Secret Decapsulation

The server decapsulates the shared secret from the ciphertext received from the client.

The server uses its private asymmetric key to decapsulate the shared secret (sec) from the

received ciphertext (cpt).

sec ← -Esk(cpt)

Session Key Derivation

29

The server combines the decapsulated shared secret and the session cookie hash to derive two

session keys and two unique nonces for the communication channels.

The Key Derivation Function (KDF) generates two symmetric session keys (k1, k2) and two

nonces (n1, n2) using the shared secret (sec) and the session cookie (sch).

k1, k2, n1, n2 ← KDF(sec || sch)

Cipher Initialization

The server initializes the symmetric ciphers for the receive and transmit channels.

Initializes the receive channel cipher with key k1 and nonce n1.

cprrx(k1, n1)

Initializes the transmit channel cipher with key k2 and nonce n2.

cprtx(k2, n2)

Server Response

The server sets the packet flag to "exchange response," indicating that the encrypted channels

have been successfully established. It then sends this notification back to the client to confirm the

secure communication channel.

The server sends an exchange response flag to the client, confirming that the secure tunnel is

established.

S{ f } → C

The server updates its operational state to session established, indicating that it is now ready to

securely process data over the encrypted channels.

7.5 Establish Verify

In the final step of the key exchange sequence, the client verifies the status of the encrypted

tunnel based on the server's exchange response.

Client Verification

The client inspects the flag of the exchange response packet received from the server. If the flag

indicates an error state, the client immediately tears down the tunnel to prevent any further data

transmission. This ensures that no data is sent over an insecure or compromised connection.

30

If the flag does not indicate an error state, the client confirms that the tunnel is successfully

established and in an operational state.

Operational State

Once the verification is complete and the tunnel is confirmed, the client updates its internal state

to session established, indicating that the secure communication channels are fully operational.

The client is now ready to process data over the encrypted tunnel.

7.6 Transmission

During the transmission phase, either the client or server sends messages over the established

encrypted tunnel using the RCS stream cipher's MAC, AEAD (Authenticated Encryption with

Associated Data), and encryption functions. This process ensures the integrity and confidentiality

of the transmitted data.

Message Serialization and Encryption

The transmitting host (client or server) starts by serializing the packet header, which includes

critical details such as the message size, timestamp, protocol flag, and sequence number. This

serialized header is then added to the symmetric cipher’s associated data parameter, which adds

metadata authentication to the encryption process.

The message encryption process is as follows:

1. Encrypt the Message: The plaintext message is encrypted using the symmetric

encryption function of the RCS stream cipher. The symmetric encryption function (Ek) is

applied to the plaintext message (m) to produce the ciphertext (cpt).

cpt ← Ek(m)

2. Update the MAC State: The serialized packet header is added to the MAC (Message

Authentication Code) state through the additional-data parameter of the RCS cipher.

The MAC function (Mmk) is updated with the serialized packet header (sh) and the

ciphertext (cpt) to produce the MAC code (mc).

mc ← Mmk(sh, cpt)

3. Append the MAC Code: The MAC code is appended to the end of the ciphertext,

ensuring that any tampering with the data during transmission will be detected.

Packet Decryption and Verification

Upon receiving the packet, the recipient host deserializes the packet header and adds it to the

MAC state along with the received ciphertext. The MAC computation is then finalized and

compared with the MAC code that was appended to the ciphertext. The packet timestamp is

31

compared to the UTC time, if the time is outside of a tolerance threshold, the packet is

rejected and the session is torn down.

1. Generate the MAC Code: Add the serialized packet header to the cipher AEAD. Add

the ciphertext and generate the MAC code.

mc` ← Mmk(sh, cpt)

Compare the MAC tag copy with the MAC tag appended to the ciphertext.

mc` ?= mc

If the MAC check fails, indicating potential data tampering or corruption, the decryption

function returns an empty message array and an error status. The application shall handle

this error accordingly.

2. Decrypt the Ciphertext: If the MAC code matches, the ciphertext is considered

authenticated, and the message is decrypted.

The ciphertext (cpt) is decrypted back into the plaintext message (m) if the MAC

verification succeeds.

m ← -Ek(cpt)

This process ensures that the transmitted data remains confidential and tamper-evident, providing

both encryption and authentication to protect the integrity of the communication. Any errors

during decryption signal an immediate response to prevent the further exchange of potentially

compromised data.

32

8. Security Analysis

PQS is designed to withstand both classical and quantum attacks, offering future-proof

cryptographic security. This section analyzes the protocol's defense mechanisms against common

cryptographic threats, focusing on man-in-the-middle attacks, replay attacks, side-channel

attacks, and quantum-specific threats. Additionally, we perform a cryptanalysis of the key

exchange construction and compare it to other common key exchange protocols.

8.1 Post-Quantum Cryptographic Primitives

PQS relies on post-quantum cryptographic primitives that are resistant to quantum computers,

which can break classical cryptography through algorithms like Shor’s algorithm and Grover’s

algorithm. The following primitives are used in PQS:

• Kyber: A lattice-based key encapsulation mechanism (KEM) that offers both efficiency

and post-quantum security. Kyber ensures that shared session keys are secure against

quantum adversaries.

• Dilithium: A lattice-based digital signature algorithm used for authentication. Dilithium

ensures that digital signatures cannot be forged even with quantum capabilities.

These primitives replace classical algorithms like RSA and ECDH, which are vulnerable to

quantum attacks.

8.2 Resistance to Classical Attacks

8.2.1 Man-in-the-Middle (MiTM) Attacks

PQS prevents man-in-the-middle attacks through the use of authenticated key exchange. The key

exchange involves signing the server’s public key using a post-quantum digital signature

(Dilithium) which the client verifies using the server’s certificate.

• Mathematical Defense: Cs = Sign(Sr, Ps), Verify(Pr, Ps, Cs)

This guarantees that only the legitimate server’s public key is used for key exchange.

8.2.2 Replay Attacks

Replay attacks are mitigated using a message valid-time check (UTCₜ). Each packet includes a

timestamp, and the server only processes messages that fall within a predefined time window.

This ensures that even if an attacker intercepts and replays a packet, it will be rejected if it falls

outside the valid time window.

• Mathematical Defense: Accept if ∣ UTCreceived − UTCcurrent ∣ < Threshold

8.2.3 Forward Secrecy

PQS provides forward secrecy through the use of ephemeral key pairs. During the key

exchange, both the client and server generate new public-private key pairs for each session. Once

33

the session is complete, the ephemeral keys are discarded, ensuring that even if a long-term

private key is compromised, past communications remain secure.

• Mathematical Defense: The ephemeral session key k is derived for each session:

k = KEX(Ss, Pl) = KEX(Sl, Ps)

• Since Sₛ and Sₗ are discarded after use, future key compromises do not affect past

session security.

8.2.4 Message Integrity and Authentication

PQS uses KMAC (Keccak-based Message Authentication Code) for message integrity and

authentication. After encrypting a message, a MAC is generated over the ciphertext to ensure that

the message has not been tampered with during transmission. Both the encryption key and the

MAC key are derived from the shared session key.

• Mathematical Defense:

T = MACkauth(M), Verify T′ = T

If the MAC check fails, the message is rejected.

8.3 Resistance to Quantum Attacks

Quantum computers pose a significant threat to classical cryptography by being able to solve

problems like factoring large integers or computing discrete logarithms in polynomial time. PQS

uses post-quantum cryptographic primitives that are resistant to quantum attacks.

8.3.1 Kyber (Key Encapsulation Mechanisms)

Kyber is used for key encapsulation in PQS, and is the NIST Post Quantum competition winner

and standardized for quantum resistant asymmetric ciphers. Kyber is based on the learning with

errors (LWE) problem involving findng the shortest path through a lattice. Lattice problems are

believed to be resistant to quantum algorithms such as Shor’s algorithm.

8.3.2 Dilithium

Dilithium is based on the hardness of finding short vectors in lattices, and is the NIST Post

Quantum competition winner and standardized for quantum resistant digital signature schemes.

8.3.3 McEliece

McEliece is a code-based cryptosystem that remains one of the most established and trusted

post-quantum algorithms. It leverages the difficulty of decoding general linear codes, offering a

high level of security even against advanced quantum decryption techniques.

8.3.4 SPHINCS+

34

Sphincs+ is a stateless hash-based signature scheme, which provides long-term security without

reliance on specific problem structures, making it robust against future advancements in

cryptographic research.

8.4 Cryptanalysis of Key Exchange

The PQS key exchange uses a hybrid post-quantum approach, combining classical techniques

(like hashing and MACs) with post-quantum encryption and digital signatures. This combination

ensures that the key exchange is secure even in the presence of quantum adversaries.

8.4.1 Key Exchange Process

The key exchange in PQS relies on two main operations:

• Key encapsulation using Kyber or McEliece.

• Digital signatures using Dilithium or SPHINCS+.

The server's public key is signed using a post-quantum signature scheme and verified by the

client. The client then generates a shared secret using the server’s public cipher key and its own

private key, ensuring confidentiality and authenticity.

8.4.2 Defense Against Known Attacks

• Quantum Attacks: The use of post-quantum algorithms ensures that PQS is secure

against both classical and quantum adversaries.

• Man-in-the-Middle Attacks: PQS’s key exchange mechanism authenticates both the

client and server, preventing attackers from intercepting or altering the exchange.

• Replay Attacks: The message valid-time check prevents an attacker from reusing

packets to replay previous communications.

• Side-Channel Attacks: The use of constant-time implementations and secure memory

management helps mitigate side-channel attacks, where attackers try to exploit

information leaks from cryptographic operations.

8.5 Summary of Security Benefits

• Post-Quantum Security: PQS’s use of McEliece, Kyber, Dilithium, and SPHINCS+

ensures that it is resistant to quantum attacks.

• Forward Secrecy: Each session uses ephemeral key pairs, ensuring that past

communications remain secure even if long-term keys are compromised.

• Replay Attack Prevention: The message valid-time check ensures that previously

transmitted packets cannot be replayed by an adversary.

35

• Man-in-the-Middle Attack Prevention: PQS authenticates both the server and client,

preventing any third party from injecting or altering messages.

• Resilience Against Side-Channel Attacks: PQS is designed to resist side-channel

attacks through constant-time implementations and secure memory management.

36

9. Application Scenarios

As quantum computing technology progresses, many existing cryptographic protocols,

particularly those based on classical algorithms like RSA, ECDH, and DSA, will no longer be

secure. PQS addresses this challenge by offering quantum-resistant cryptographic solutions that

ensure long-term security, making it a prime candidate to replace SSH and other classical

protocols in critical industries. Below are several key areas where PQS could be applied.

9.1 Financial Technology (Fintech)

In the financial technology industry, secure communications are essential for a variety of tasks,

including secure online transactions, financial data transfers, and remote access to trading

systems. SSH is currently widely used to secure communications between remote systems in

financial institutions. However, with the looming threat of quantum computers, the existing

cryptographic methods (such as RSA and ECDH) will soon become vulnerable.

PQS can provide a quantum-secure alternative to SSH in the following ways:

• Quantum-Secure Transaction Processing: Payment gateways and financial servers rely

on remote secure shell access to manage systems. PQS ensures that even if quantum

computing becomes a reality, the transaction channels remain secure.

• Data Protection in Stock Trading: Remote trading systems can use PQS to prevent

unauthorized access or tampering with trading data.

• Long-Term Data Confidentiality: Fintech companies that store large amounts of

sensitive data, such as transaction records and customer information, will benefit from

PQS’s forward secrecy and resistance to quantum attacks. This ensures that data remains

secure well into the future, even after quantum computers become operational.

9.2 Government and Military Communication

Government and military communications require the highest level of security, especially for

classified data and remote access to critical infrastructure. SSH is commonly used in secure

environments for server management, file transfers, and system monitoring. However, its

reliance on classical cryptographic primitives makes it vulnerable to future quantum threats.

PQS offers several advantages for secure government and military applications:

• Secure Remote Access to Critical Infrastructure: PQS can replace SSH for remote

management of servers and critical systems that control infrastructure such as electricity

grids, water supply systems, and communication networks.

• Classified Communications: PQS ensures the confidentiality and integrity of sensitive

information, protecting against both classical and quantum attacks. This is particularly

crucial for secure messaging and file transfers involving classified government and

military data.

37

• Post-Quantum Secure Diplomatic Communication: Diplomatic channels used by

embassies and consulates for secure communication with the home country can be

upgraded with PQS to prevent future breaches of sensitive information.

By implementing PQS, governments can future-proof their communication infrastructure,

ensuring long-term security even as quantum computing develops.

9.3 Healthcare Systems

The healthcare industry is increasingly reliant on remote access solutions for managing medical

devices, electronic health records (EHRs), and telemedicine platforms. SSH is widely used to

manage and secure these systems. However, the sensitive nature of healthcare data, combined

with the long-term requirement to store patient records securely, makes the adoption of quantum-

resistant cryptography essential.

PQS can improve the security of healthcare systems in the following ways:

• Secure Access to Medical Devices: Remote management of critical medical devices,

such as MRI machines, ventilators, and infusion pumps, can be secured using PQS to

prevent unauthorized access or tampering.

• Telemedicine Platforms: Doctors can use PQS to securely communicate with patients

over encrypted channels, ensuring that sensitive medical information is protected.

• Secure Health Record Storage: PQS ensures that patient data, including health records

and diagnostic results, remain encrypted and safe from quantum-enabled breaches,

preserving patient privacy in the long term.

The US HIPAA law requires the protection of sensitive patient information. PQS helps

organizations comply with these regulations by providing advanced encryption that remains

secure against quantum attacks, thus mitigating future risks.

9.4 Critical Infrastructure

Critical infrastructure systems that control national power grids, transportation networks, water

supply systems, and industrial control systems require secure remote management solutions.

SSH is often used for remote access to these systems, but as the quantum threat becomes more

prominent, it is crucial to transition to post-quantum solutions like PQS.

• Quantum-Secure Power Grid Management: Power grids, which require constant

remote monitoring and control, can benefit from PQS’s secure key exchange and

authentication to protect against both classical and quantum threats.

• Secure Transportation Networks: Autonomous and remotely managed transportation

systems, including train control systems and smart highways, can use PQS to ensure that

malicious actors cannot compromise their communications.

• Industrial Control Systems (ICS): Remote access to ICS, such as SCADA systems used

in manufacturing, can be secured with PQS to protect against unauthorized control or

sabotage.

38

By integrating PQS, critical infrastructure can be protected against the vulnerabilities posed by

future quantum threats, ensuring national security and system reliability.

9.5 Cloud Service Providers

Cloud computing environments rely heavily on remote shell protocols like SSH to manage data

centers, virtual machines, and customer environments. As quantum computers become more

capable, securing the communication between cloud providers and their customers will be

essential to maintaining trust in cloud-based services.

• Secure Cloud Data Centers: PQS can replace SSH in data centers where administrators

manage thousands of virtual machines and sensitive data. This will ensure that critical

administrative tasks, such as system updates and security patching, are quantum-safe.

• Post-Quantum Secure Cloud Storage: Customers that rely on cloud storage for

confidential business or personal data can use PQS to securely access and manage their

data.

• Virtual Private Cloud (VPC) Management: PQS can be used to manage remote access

to VPCs, ensuring that customer environments remain secure even in a quantum

computing world.

By adopting PQS, cloud service providers can offer quantum-safe communication channels to

their customers, ensuring continued trust in their services.

9.6 PQS as a Replacement for SSH

PQS is designed as a post-quantum alternative to SSH, offering quantum-resistant

cryptography without sacrificing the functionality that SSH provides for secure remote access

and communication. Some key comparisons include:

• Key Exchange Security: SSH relies on ECDH and RSA, which are vulnerable to

quantum attacks. PQS uses Kyber and Dilithium, offering quantum resistance while

maintaining secure key exchange and authentication.

• Message Authentication: PQS uses KMAC for message integrity, offering quantum-

resistant authentication in place of SSH’s HMAC-based approach, which will be

vulnerable in a quantum world.

• Scalability and Performance: PQS, with its optimized post-quantum algorithms, can

provide similar or better performance compared to SSH when used in environments that

require high-throughput, secure communication, such as cloud environments or data

centers.

PQS is an ideal replacement for SSH, providing future-proof security, ensuring that systems

remain safe from both classical and quantum threats.

39

10. Conclusion

The Post Quantum Shell (PQS) represents a significant advancement in secure communication

protocols, providing robust protection against both classical and quantum adversaries. As

quantum computing capabilities evolve, many currently used cryptographic systems, including

SSH, will become vulnerable. PQS addresses this critical challenge by incorporating post-

quantum cryptographic primitives that are designed to remain secure even when faced with

powerful quantum attacks.

10.1 Summary of Key Findings

Throughout the analysis, several key advantages of PQS over traditional protocols like SSH have

emerged:

10.1.1 Quantum-Resistant Cryptography

The primary strength of PQS lies in its foundation on post-quantum cryptographic primitives. By

using Kyber, Dilithium, RCS and Keccak, PQS ensures that its cryptographic operations such as

key exchange, encryption, and digital signatures are secure against both classical and quantum

adversaries. These algorithms rely on mathematical problems (such as lattice-based, hash-based,

and code-based cryptography) that are believed to be hard for quantum computers to solve.

• Kyber provides strong protection for key exchange.

• McEliece proven code-based key encapsulation alternative.

• Dilithium ensures that signatures are quantum-safe and secure.

• SPHINCS+ strong hash based signature scheme alternative.

• Keccak (SHA-3) and KMAC provide secure hashing and message authentication.

• RCS provides a powerful post-quantum symmetric cipher with AEAD message

authentication.

This quantum-resistance makes PQS a highly secure protocol that will remain effective even as

quantum computers become a reality.

10.1.2 Enhanced Key Exchange Security

Compared to SSH, which relies on vulnerable ECDH and RSA for key exchange, PQS uses

Kyber or McEliece, which is are resistant to quantum attacks. The key exchange process in PQS

is also authenticated using Dilithium signatures, ensuring that the public keys cannot be forged

or compromised.

The message valid-time check (previously referred to as UTCₜ) and other security mechanisms

within PQS ensure protection against replay attacks and man-in-the-middle attacks, providing

enhanced integrity and authenticity for every communication session.

10.1.3 Future-Proof Security

40

PQS is built with future security challenges in mind. Its use of quantum-resistant cryptography

ensures that it will continue to provide secure communication channels long after quantum

computers become practical. This future-proofing makes PQS an ideal replacement for SSH,

particularly in industries where long-term confidentiality and integrity are critical, such as

financial technology (fintech), government, military, healthcare, and cloud service providers.

As countries like the United States and the the nations of the European Union begin to mandate

the use of stronger encryption standards (e.g., 256-bit keys), PQS offers a viable and efficient

alternative to classical protocols, which would otherwise struggle with the increased

computational load of larger key sizes.

10.1.4 Performance and Scalability

Despite its use of quantum-resistant algorithms, PQS has been designed to remain efficient and

scalable. The post-quantum algorithms used in PQS such as Kyber, and RCS are optimized for

performance, ensuring that PQS can handle large volumes of concurrent connections in

environments like data centers and cloud platforms without introducing significant latency or

overhead.

This makes PQS an ideal solution for industries that require high throughput and scalability, such

as cloud computing and fintech, where millions of transactions or remote connections need to be

securely managed.

10.2 Potential for Wide Adoption

As quantum computing moves from theory to practice, many industries will be forced to

transition away from classical cryptographic protocols like SSH and TLS to ensure the security

of their communications and data. PQS is well-positioned to replace these older protocols,

offering:

• Quantum-Secure Remote Access: Industries that rely on remote access to manage

infrastructure, such as cloud service providers, government agencies, and critical

infrastructure operators, can deploy PQS as a quantum-resistant alternative to SSH.

• Secure Transactions in Fintech: Financial institutions can adopt PQS to ensure that

online banking, payment systems, and transaction data remain secure against future

quantum threats.

• Long-Term Confidentiality in Healthcare: Healthcare organizations can use PQS to

protect patient data, ensuring compliance with privacy laws like HIPAA and maintaining

the confidentiality of sensitive medical records well into the future.

By adopting PQS, organizations in these sectors can future-proof their operations against

quantum-based attacks while maintaining the same functionality and performance offered by

current classical protocols.

