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Abstract. CSX is a keyed, permutation based authenticated encryption construc-
tion that combines a 40 round ARX permutation over a 1024 bit state with a
cSHAKE—derived subkey schedule and a KMAC-512 authentication layer. This paper
presents a complete design specification of CSX, a formal treatment of its security
properties, and an analysis of its resistance to established classes of cryptanalytic
attacks. We provide an engineering level description of the cipher derived directly from
the reference implementation, then formalize CSX in an AEAD security model and
prove indistinguishability and ciphertext integrity bounds under standard assumptions
on the underlying permutation and on KMAC-512.

A sequence of game based reductions shows that the IND-CCA advantage of any
adversary is bounded by the PRP advantage against the ARX permutation and
the EUF-CMA advantage against KMAC, together with negligible interaction terms
introduced by cSHAKE domain separation. We analyze differential, linear, algebraic,
and structural properties of the permutation, provide reduced round security estimates,
and discuss the impact of Grover style quantum search on key size selection. The
resulting analysis demonstrates that, under its stated assumptions, CSX satisfies the
expected AEAD confidentiality and integrity guarantees and maintains a conservative
security margin relative to known cryptanalytic results.
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1 Introduction

Authenticated encryption with associated data (AEAD) provides a unified mechanism
for ensuring both confidentiality and integrity of transmitted or stored information.
Modern AEAD designs typically integrate a stream or block cipher with an authentication
component, often relying on well studied families such as AES-GCM, ChaCha20-Poly1305,
or Ascon, the NIST Lightweight Cryptography winner. In settings where long term
security, large state widths, or post quantum design considerations are desired, alternative
constructions remain an active area of research.

CSX is a wide state AEAD construction that combines a 40 round ARX permutation over
a 1024 bit internal state with subkeys derived through cSHAKE-512 and a KMAC-512
authentication layer. The cipher follows an Encrypt then MAC structure and operates
in a deterministic counter based mode in which key-stream blocks are generated by
applying the permutation to a state containing a 128 bit counter, fixed domain separation
constants, and the cSHAKE derived subkey. The authentication key is produced by
an additional cSHAKE squeeze step, ensuring computational independence between the
encryption and authentication components. CSX is intended to provide strong diffusion,
a conservative round budget, and post quantum resilience through a 512 bit master key.
This paper presents a formal design and security analysis of CSX. First, we provide an
engineering level specification derived directly from the reference implementation, expressed
in implementation agnostic mathematical terms. This specification defines the state layout,
key expansion procedure, ARX permutation structure, counter behavior, and authenticated
transcript format. The algorithms presented here serve as the canonical definition of CSX
and form the basis for all subsequent formal analysis.

Next, we model CSX within a standard AEAD security framework and formalize the
IND-CPA, IND-CCA, and INT-CTXT security notions relevant to the construction.
Using game based reductions, we show that the IND-CCA advantage of any adversary
is bounded by the pseudo-random permutation advantage against the 40 round ARX
permutation and the existential forgery advantage against KMAC-512, together with
negligible interaction terms introduced by cSHAKE domain separation. These reductions
justify the confidentiality and integrity guarantees of CSX under widely used assumptions
on its underlying primitives. We then examine the cryptanalytic properties of the 1024
bit ARX permutation, including its differential, linear, algebraic, and structural behavior.
Reduced round analysis is used to assess the security margin, and findings are compared
to published bounds for ARX based designs of similar structure. Consideration is also
given to quantum adversaries, for whom Grover style search reduces effective key strength
by a square root factor. The choice of a 512 bit master key in CSX is shown to align with
a 256 bit post quantum target.

Finally, we provide empirical measurements and comparative observations concerning
implementation behavior, diffusion characteristics, and performance relative to established
AEAD constructions. These results complement the formal analysis but are not relied
upon as primary evidence of security. This work is a design and security analysis of CSX,
not an attack on the cipher. All security claims are explicitly tied to the assumptions
stated in the model and supported by the engineering specification and implementation
behavior. The remainder of the paper is structured as follows. Section 2 presents the
engineering specification of CSX.

Section 3 formalizes the model and assumptions. Section 4 defines the security notions used
throughout the paper. Section 5 provides the main theorems and reductions. Section 6
examines cryptanalytic properties of the permutation and MAC components. Section 7
gives empirical and comparative observations. Section 8 discusses limitations and Section 9
concludes.



2 Engineering Specification of CSX

This section provides a canonical, implementation definition of the CSX AEAD construction.
The description is derived directly from the reference implementation (csx.c, csx.h) and
defines the precise algorithmic behavior required for formal analysis. All subsequent
security definitions and reductions refer to the operations defined here.

2.1 High Level AEAD Interface

CSX is an authenticated encryption scheme with associated data (AEAD) defined by a
pair of deterministic algorithms

Enc: KXxN xAXxP—=CxT, Dec: KXN x AxCxT—=PU{L}

where:
e K =1{0,1}°'2 is the 512 bit master key space,
o N ={0,1}'?8 is the 128 bit nonce space,
o A P C{0,1}* are associated data and plaintexts,
o C={0,1}Plis the ciphertext space,

o T ={0,1}°'2 is the 512 bit authentication tag space.

Encryption takes (K, N, A, P) and outputs (C,T), where C is the XOR of P with a
key-stream derived from a 1024 bit ARX permutation, and T is a KMAC-512 tag over a
canonical transcript. Decryption recomputes the tag from (K, N, A, C) and returns P only
if the tag matches; otherwise it returns L. CSX is deterministic: for fixed (K, N, A, P)

the pair (C,T) is uniquely determined. Nonce uniqueness for each key is required for
confidentiality.
2.2 State and Parameter Layout
CSX maintains a 1024 bit internal state represented as sixteen 64 bit words:
S = (S[0],S[1],....S[15]), Sl € {0,1}°%

The words are interpreted in little endian order, matching the reference implementation.
The state layout is defined as follows.

e« Words 0-7: the 512 bit encryption subkey K, derived from ¢cSHAKE-512.
o Words 8-11: fixed constants:
S[8] = Cy, S[9] = C1, S[10] = Cq, S[11] = Cs,
where (Cy, . ..,Cs) are 64 bit compile time constants.
o Words 12-15: 128 bit nonce and counter.
S[12] = Nog, S[13] = Ny, S[14] = ctrg, S[15] = ctry,

where (Ng, N7) is the nonce interpreted as two 64 bit little endian words, and
(ctro,ctry) is a 128 bit counter initialized to zero and incremented after each key-
stream block.

The input nonce is never modified. Only the counter words S[14], S[15] advance during
key-stream generation.
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2.3 Key Expansion and MAC Key Derivation

CSX uses a single cSHAKE-512 instance for all subkey generation.

Let cSHAKE512(X, name, custom) denote cSHAKE-512 absorbed with input X and domain
separated by the function name string name and customization string custom.

Given a master key K and optional customization string info, key expansion proceeds as
follows:

1. Initialize a cSHAKE-512 sponge with input K and customization info.
2. Squeeze 512 bits to obtain the encryption subkey K..

3. Force an additional permutation by requesting further output.

4

. Squeeze 512 bits from the next block to obtain the MAC key Kpac-

Due to the enforced additional permutation step, K. and Ky, are computationally
independent under the random oracle model for cSHAKE.

2.4 ARX Permutation and key-stream Generation

Let Perm(S) denote the 40 round ARX permutation applied to a 1024 bit state. Each
round consists of a fixed sequence of 64 bit operations:

for (4,4, k,r) in a fixed schedule:
Sli] + (S[i) + S[j]) mod 2°;
S[k]  S[k] & S[il;

S[k] + ROTL,.(S[k]),

where ROTL, denotes a left rotation by r bits. The schedule and rotation constants
correspond exactly to those encoded in the reference implementation.

For a given state S, the permutation output is combined with the original state by feed
forward:

Kp = Perm(S) @ S,

producing a 1024 bit key-stream block.
The counter words (S[14], S[15]) are incremented as a 128 bit little endian integer modulo
2128 after each block:

ctr < (ctr + 1) mod 2'%8,
To encrypt plaintext P, the 1024 bit key-stream block is truncated to |P;| for each segment
P;, and ciphertext blocks are computed as

Ci = P; & Kpi,i-

ARX Mixing Schedule

The 1024 bit CSX permutation operates on state words X, ..., X15 and applies, in each
pair of rounds, eight ARX mixing functions on word quadruples. Each mixing function
has the generic structure

(a’ b’ C7 d) — (a/’ b/’ C/’ d,)

implemented as a sequence of additions, XORs, and rotations with four rotation constants
(ro,7r1,72,73), as in the reference implementation csx_permute_p1024c. The word tuples
and rotation constants for the two round pattern are summarised in Table 1.



Table 1: ARX mixing schedule for the CSX 1024 bit permutation as implemented in
csx_permute_pl024c. Each loop iteration applies Gy to G7 once, implementing two
rounds and subtracting 2 from ctr.

Mix Word tuple (a,b,c,d) Rotations (rg,r1,72,73)
Round n (column mizes)

Go  (Xo, X4, Xs, X12) (38,19, 10, 55)
Gi (X1, Xs, X, X13) (33,4,51,13)
G2 (X2, X6, X10, X14) (16, 34,56, 51)
Gs (X3, X7, X11, X15) (4,53,42,41)
Round n+1 (diagonal mizes)

G4 (X07X57X10,X15) (34,41,59,17)
Gs (X1, X¢, X11, X12) (23,31, 37,20)
Gg (X2, X7, Xg, X13) (31,44, 47, 46)
G~ (X3, X4, X9, X14) (12,47, 44, 30)

2.5 MAC Domain and Transcript Encoding

CSX authenticates a canonical transcript using KMAC-512 keyed with Kpac. Let
KMACs512(K mac, M) denote the 512 bit KMAC output on message M.
The authenticated transcript is assembled exactly as in the reference code:

M = A||1e32(|A]) | N || C'|| 1e64(ctr),

where ctr denotes the value of the processed bytes counter after the current call to the
transform function. In the single shot setting, ctr = |C].
The authentication tag is computed as

T = KMAC512(KmaC7 M)

Encrypt then MAC ordering is enforced: the entire ciphertext is generated before
authentication begins, and decryption rejects without performing any state updates
if T" does not match the recomputed tag.

2.6 Reduced-Rounds Variant

In addition to the full-round configuration analyzed throughout this paper, the CSX
construction admits an explicit reduced-round variant intended for performance-sensitive
deployments. In this variant, the number of rounds applied by the ARX permutation
is reduced from 40 to 20, and the Keccak permutation used within the authentication
component is reduced from 24 to 12 rounds.

The reduced-round variant preserves the full structure of CSX, including the 1024-bit
internal state, key and nonce sizes, key expansion procedure, domain separation, transcript
encoding, and Encrypt—then-MAC composition. The only modification is the number of
permutation rounds applied within the key-stream generation and message authentication
primitives. No changes are made to the state layout, counter handling, or authenticated
transcript definition.

Unless explicitly stated otherwise, all security definitions, theorems, and bounds in this
paper refer to the full-round configuration of CSX. The reduced-round variant is not
claimed to satisfy the same quantitative security margins as the full-round construction.
Rather, it is provided as an optional configuration whose security relies on the same
structural properties analyzed in later sections, but with a correspondingly smaller margin.
From a diffusion perspective, the ARX permutation reaches full-state diffusion and saturates
algebraic degree well before 20 rounds, as discussed in the cryptanalytic evaluation.
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Similarly, the reduced-round Keccak permutation retains a substantial capacity margin
in the MAC setting, particularly in scenarios where authentication tags are verified
immediately after message reception. Nevertheless, the reduced-round variant is considered
outside the primary security claims of this paper and is included solely to document the
relationship between the analyzed construction and its performance-oriented instantiation.

2.7 Canonical Pseudo-code for CSX

The following Pseudo-code defines CSX in a language neutral manner. The pseudo-code
matches the behavior of the reference implementation and serves as the authoritative
algorithmic description for the security analysis.

Algorithm 1 CSX_ INITIALIZE
input master key K € {0,1}°*2 nonce N € {0,1}'28 optional info string info
output initialized context ctx
// Derive the cSHAKE name string
if info is empty then
nme < csx_name // fixed domain string of length CSX_NAME_SIZE
else
nme < first CSX_NAME_SIZE bytes of info (zero padded if shorter)
end if
// Initialize cSHAKE-512 with the master key and name
X + cSHAKE512.Init( K, nme, €)
: // First squeeze: cipher subkey
: buf < cSHAKE512.Squeeze(X,512)
. K, < first 64 bytes of buf
: // Load the CSX permutation state from key, nonce, and csx_ info
: Let csx_info € {0,1}5* be a fixed constant
. ctx.state[0..7] + K.
: ctx.state[8..11] <— csx_info[0..31]
: ctx.state[12..13] «+ N
: ctx.state[14..15] <— csx_info[32..63]
: // Second squeeze: MAC key
: buf’ + cSHAKE512.Squeeze(X,512)
: Kmac < first 64 bytes of buf’
. // Initialize the KMAC-512 state with Kac
. ctx.kstate <+ KMAC512.Init( K mac, kmac_domain)
: ctx.counter < 0
: return ctx
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Algorithm 2 CSX_PERMUTE

1: input state S[0..15]
2: for r =0 to 39 do
3: for each tuple (4, j, k, p) in the round schedule do

4: S[i] < (S[i] + S[4]) mod 264
5: S[k] «+ S[k] ® S|[i]

6: S[k] <~ ROTL,(S[k])

7: end for

8: end for

9: return S




Algorithm 3 CSX__ENCRYPT

: input K, N, A, P

output C, T

(K¢, Kmac) <+ CSX_KEYEXPAND(K)

Initialize ctx by calling CSX__INITIALIZE(K, N, info)

Let S denote the internal state words ctx.state[0..15] as loaded by CSX__INITIALIZE

C+c¢

for each message P processed under a fixed context ctx do

// key-stream generation and counter management occur inside CSX TRANSFORM.
(C, ctx) < CSX__TRANSFORM(ctx, P)

9: end for

10: M <« A||1e32(JA]) || N || C || 1e64(|C)

11: T + KMACs12(Kmac, M)

12: return (C,T)

o

Algorithm 4 CSX_ DECRYPT
s input K, N, A, C, T
output P or L
(K., Kmac) + CSX_ KEYEXPAND(K)
M - A[1e32(|A]) | N || C || le64(|C])
T K|\/|AC512([(ma(;7 M)
if 7" # T then
return L
end if
Initialize ctx by calling CSX__INITIALIZE(K, N, info)
Let S denote the internal state words ctx.state[0..15] as loaded by CSX__INITIALIZE
: P+ ¢
. for each ciphertext block C; do
Kpik + CSX__PERMUTE(S) ¢ S
Py < C; ® Ky s
P+ P|P
ctr +ctr +1
update S[14], S[15] with ctr
: end for
: return P

e e e e T T e e
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3 Formal Model

This section formalizes the CSX construction introduced in Section 2. We specify the
notation, the algorithmic structure of CSX as an AEAD scheme, and the assumptions
under which the subsequent security analysis is carried out. All definitions are stated in a
manner compatible with standard cryptographic treatment of authenticated encryption
primitives.

3.1 Notation and Conventions

Let {0,1}™ denote the set of bit-strings of length n and let {0,1}* denote the set of all
finite bit-strings. For bit-strings X and Y, we write X || Y for concatenation and X &Y
for bitwise XOR over equal length strings. For an integer m, we write le32(m) and le64(m)
for the 32 bit and 64 bit little endian encodings of m, respectively.
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The spaces used throughout this work are:
K=1{0,1}"?*  N={0,1}'* A PcC{01}* T={01}"
The CSX internal state is a 1024 bit quantity represented as
S = (9[0],...,S[15]), S[i] € {0,1}54,

interpreted in little endian form as specified in the engineering description.

Underlying Primitives. We model the following components abstractly:

¢ ARX Permutation. Let Perm : {0,1}192 — {0,1}!9%4 denote the 40 round ARX
permutation described in Section 2.4. The corresponding key-stream block function

is defined as
KS(S) = Perm(S) @ S.

e cSHAKE-512. The key expansion procedure uses an instance of cSHAKE-512
to derive two computationally independent 512 bit keys (K., Kmac) from a 512 bit
master key and optional customization data. The output is modeled as arising from
a random oracle with domain separation as specified in SP 800-185.

e KMAC-512. The authenticated transcript is processed using KMAC-512. We write
KMACs512(Kmac, M) for the 512 bit MAC tag on message M under key Kpac.

All algorithms and adversaries are probabilistic unless stated otherwise.

3.2 CSX as an AEAD Scheme

CSX is defined as a pair of deterministic algorithms (Enc, Dec) operating over the spaces
defined above. For (K, N, A, P) € K x N x A x P, encryption proceeds as follows.

1. Compute (K., Kmnac) using the key expansion algorithm of Section 2.3.

2. Initialize the 1024 bit state with K., fixed constants, nonce N, and counter value
ctr =0.

3. For each 1024 bit segment of P, compute a key-stream block
Ko + KS(S),

XOR it with the plaintext segment, append the resulting ciphertext block to C,
increment the counter, and update the corresponding words of S.

4. Construct the authenticated transcript

M = Al[1e32(]A]) | N || C'[|1e64(|C1).

5. Compute the authentication tag as

T = KMAC512(Kmac, M).

6. Output (C,T).
Decryption Dec(K, N, A, C,T) recomputes (K., Knac), recomputes
T = KMACSIQ(Kmacv M)a

and returns L if 7" = T. If the tags match, it regenerates the same key-stream sequence
and outputs the XOR, of the key-stream with C.

The scheme is deterministic: for fixed inputs (K, N, A, P), the output (C,T') is unique.
Confidentiality requires that the nonce N not repeat for any two encryptions under the
same key K.



3.3 Assumptions on Underlying Primitives

The security guarantees established later in this paper rest on the following modeling
assumptions.

ARX Permutation. We assume that the 40 round ARX permutation underlying
CSX behaves as a pseudo-random permutation (PRP) on {0, 1}!°?4 against any classical
probabilistic polynomial time adversary. Reduced round analysis and cryptanalytic evidence
supporting this assumption are provided in Section 6.

cSHAKE-512. We model the cSHAKE-512 instance used in key expansion as a domain
separated random oracle, as per the indifferentiability guarantees of Keccak based sponge
constructions. The two subkeys produced by distinct squeeze operations are therefore
treated as independent uniformly random 512 bit strings.

KMAC-512. We assume KMAC-512 is existentially unforgeable under chosen message
attack (EUF-CMA). In particular, for any adversary making ¢ MAC queries with total
query length L, the forgery advantage is bounded by O(q?/2¢), where ¢ = 1024 is the
capacity of the underlying sponge.

Quantum Adversaries. For quantum adversaries, we adopt the standard Grover style
model in which key search achieves at most a square root speedup. Thus a 512 bit
symmetric key provides an effective post quantum security level of 2256, We assume no
super-Grover quantum attacks on Keccak based constructions.

These assumptions are consistent with the current state of analysis for ARX based
permutations and Keccak derived primitives. All formal security bounds established in
Section 5 are expressed explicitly in terms of these assumptions.

4 Security Definitions

This section formalizes the confidentiality and integrity notions relevant to CSX as an
authenticated encryption scheme. All definitions follow standard game based frameworks
for symmetric key cryptography. Unless otherwise stated, all adversaries are probabilistic
polynomial time (PPT) algorithms.

4.1 IND CPA Security

Indistinguishability under chosen plaintext attack (IND-CPA) captures confidentiality
of an encryption algorithm in the absence of decryption queries. Let A be an adversary
making encryption queries to an oracle Ogpc.

Experiment Expicng;(c'oa(b) The bit b € {0,1} determines which challenge message is
encrypted.

1. A random key K < K is sampled.

2. A is given oracle access to Ogpc defined as follows: for each query (N, A, Py, P;) with
|Py| = |P1| and N € N not used in any prior query, the oracle returns

(C,T) « Enc(K, N, A, P,).

3. At the end of the experiment, A outputs a bit o'



10 The Design and Security Analysis of the CSX AEAD Stream Cipher

The IND-CPA advantage of A is
AdvESP (A) = [Prlt =1 |b=1] —Pr[t) = 1| b=0].

Nonce uniqueness is required: the oracle rejects any encryption query using a previously
submitted nonce.

4.2 IND CCA Security

Indistinguishability under chosen ciphertext attack (IND-CCA) strengthens IND-CPA by
allowing the adversary to query a decryption oracle, except on the challenge ciphertext.

Experiment Explex (b)
1. Sample K + K.

2. A receives oracle access to:

e Ogpnc as in the IND-CPA experiment;

o Opec defined as Opec(N, A,C,T) = Dec(K, N, A,C,T), except that any query
equal to the challenge tuple (N*, A*, C*,T*) is forbidden.

3. A outputs a bit ¥'.

The IND-CCA advantage is
AdVEEE2(A) = [Pr[t) = 1| b=1] - Pr]t) =1 |b=10]].

Because CSX implements explicit tag verification before releasing plaintext, the definition
above matches the classical Encrypt then MAC security framework.

4.3 Ciphertext Integrity (INT CTXT)

Ciphertext integrity ensures that an adversary cannot produce a valid new ciphertext tag
pair that decrypts to anything other than |, even after observing valid ciphertexts and
receiving decryption responses.

Experiment Explay™
1. Sample K « K.
2. A is given oracle access to:
e Ognc returning (C,T) = Enc(K, N, A, P),
e Opec returning Dec(K, N, A,C,T).
3. At the end, A outputs (N*, A*, C*,T*).

A forgery succeeds if:
Dec(K,N*, A*,C*,T*) # L,

and (N*, A*, C*,T*) was never returned by Ogc.
The INT-CTXT advantage is

AdvEES (A) = Pr[forgery succeeds].

Because CSX authenticates a transcript containing both ciphertext and lengths, replay,
extension, and truncation forgeries are all covered by this definition.
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4.4 Key Recovery and Related Key Security

Key recovery considers an adversary attempting to determine the master key K through
chosen query access.

Key Recovery. Let A be an adversary with access to Ogne and Opec. The key recovery
advantage is
AdvEss (A) = Pr[A%=O>=< outputs K].

Related Key Model. CSX does not aim to provide related key security in models
allowing adversaries to derive encryptions under systematically modified keys. We consider
only the standard single key model, consistent with common AEAD usage. Related key
attacks on the ARX permutation or on cSHAKE-512 are outside the intended threat
model.

4.5 Post Quantum Adversarial Model

In the quantum setting, adversaries may run quantum algorithms but still issue only
classical oracle queries to Enc and Dec, as these interfaces operate on classical inputs. The
following conventions apply.

Grover Based Search. We assume the standard quadratic speedup for key search:
a brute force search over a 512 bit master key requires approximately 22°6 quantum
operations.

Quantum Random Oracle Model. Where appropriate, cSHAKE-512 and KMAC-512
are modeled as quantum accessible random oracles, consistent with the indifferentiability
analysis of Keccak based constructions.

Post Quantum Security Level. Under these assumptions, CSX targets a post quantum
security level of approximately 22°6 for confidentiality and tag forgery resistance, subject
to the capacity based bounds inherited from KMAC-512.

These definitions provide the framework for the reductions and security theorems developed
in Section 5.

5 Security Theorems and Reductions

This section establishes provable bounds for the confidentiality and integrity of CSX under
the assumptions stated in Section 3. Three main results are presented: an IND-CCA
bound for the AEAD construction, a confidentiality reduction to the ARX permutation
and ¢SHAKE derived keys, and an integrity reduction to KMAC-512. Finally, we quantify
the post quantum security level inherited from the 512 bit master key.

5.1 AEAD Security Theorem

We begin by stating the combined AEAD security bound for CSX. Let an adversary A
make at most ¢, encryption queries, g4 decryption queries, and let L denote the total
number of bits included in authenticated transcripts across all queries.

Theorem 1 (IND-CCA Security of CSX). For any IND-CCA adversary A against CSX,
there exist adversaries By and By against the underlying primitives such that

AdvESii® (A) < AdvED . (B1) + AdVRVAL? (Ba) + earr,

Perm
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where eqy < q2 /2128 accounts for counter reuse collisions and is negligible for q. < 254
The running times of B1 and Bs are comparable to that of A.

The proof follows a standard Encrypt then MAC reduction and is established by the
hybrid arguments detailed below.

5.2 Reduction for Confidentiality

Let A be an IND-CPA or IND-CCA adversary against CSX. We construct a sequence of
games

Go—>G1—>G2—>G3

and bound the difference in adversarial advantage between each pair.
Game Gy. This is the real IND-CPA (or CCA) experiment for CSX.

Game G;: Replace ARX permutation with a random permutation. In G;
we replace Perm with a uniformly random permutation 7 : {0,1}1924 — {0,1}19%4. The
adversary’s distinguishing advantage changes by at most

[Pr[Go = 1] — Pr[Gy = 1]] < AdvRE_(By),

Perm

where B; is a PRP distinguisher constructed from A.

Game G3: Replace K. and K,c with independent random keys. In G we
replace the outputs of cSHAKE-512 with independent uniform strings (K., Kmac)
{0,1}512 x {0,1}°'2. By the domain separation of cSHAKE and its indifferentiability
properties, the change in advantage is bounded by the random oracle advantage of
c¢cSHAKE:

[Pr[Gy = 1] = Pr[Gs = 1]| < Advguake(Bs),

which is treated as negligible.

Game G3: Replace key-stream with uniform random bits. In G35 we replace
each key-stream block Ky with a uniform 1024 bit string, consistent with the behavior
of a random permutation on a random input under feed forward. Since under G5 the

internal state is independent of plaintexts and counter values are never reused, each block
is indistinguishable from random. Thus,

|Pr[G2 = 1] — Pr[G5 = 1]| < ectr,

where e, is the probability of counter collision, bounded by ¢2/2'28.

Conclusion. In Gj the ciphertext is an XOR of the message with a uniform string and
therefore carries no information about the challenge bit. Hence

PI‘[G3 = 1] = %

Summing the differences between hybrids proves the confidentiality component of Theo-
rem 1.

5.3 Reduction for Integrity

Let A be an INT-CTXT adversary making at most ¢ MAC queries with combined MAC
input length L bits. We show how to construct a forger By against KMAC-512.



13

Game Fjy. This is the real INT-CTXT experiment for CSX.

Game F;: Replace ARX permutation with a random permutation. As in the
confidentiality reduction, this changes the adversarial advantage by at most Advh? (B).
Game F5: Replace K, with a uniform key. As before, the cSHAKE-derived MAC
key is replaced with a uniform random string, changing advantage by at most the cSHAKE
random oracle bound.

Game F3: KMAC-512 idealization. In Fj5 the tag T is computed by an ideal MAC
oracle that assigns each distinct transcript M an independent uniform value in {0, 1}5'2
consistent with KMAC-512 under a random key. Under this idealization, a successful
forgery occurs only if A produces a transcript M* not queried previously and guesses its
MAC value.

Since KMAC-512 has rate » = 576 and capacity ¢ = 1024, the standard birthday bound

yields
2 2

. q 4
Pr[forgery in F3] < 9¢ ~ 91024°

Conclusion. Combining the hybrid transitions:

AdvEsc™ (A) < Adviiae™ (Bz) + AdvEL,, (B1) + ear,

Perm

which establishes the integrity component of Theorem 1.

5.4 Post Quantum Security Bounds

Under the quantum adversarial model of Section 3.5, we quantify the effective post quantum
security of CSX.

Grover Based Search. Recovering the 512 bit master key K by exhaustive search
using Grover’s algorithm requires approximately

O (2256)
quantum queries. This defines the effective post quantum security level for confidentiality.

KMAC-512 Forgery. The capacity ¢ = 1024 implies that even quantum adversaries
cannot exceed the square root birthday bound:

f- q
AdVeKuM/ngna ('A) 5 9512
for ¢ quantum MAC queries.

ARX Permutation. We assume no super-Grover quantum algorithms for generic ARX
permutations. Thus, recovering internal state or subkeys requires approximately 2256
quantum work.

Summary. The effective post quantum security level of CSX is therefore bounded below
by 2256 consistent with the choice of a 512 bit master key and the 1024 bit capacity of
the KMAC layer.

These results complete the formal analysis of confidentiality, integrity, and post quantum
bounds for the CSX AEAD construction.
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6 Cryptanalytic Evaluation

This section examines the resistance of CSX to established forms of symmetric key
cryptanalysis. The analysis focuses on the ARX permutation, since confidentiality
reductions rely on its pseudo-random behavior, and on the sponge based MAC component
derived from Keccak. The objective is not to provide exhaustive proofs of security, but to
quantify known attack surfaces, reduced round behavior, and the resulting security margin
with respect to the 40 round design.

6.1 Differential and Linear Analysis

Differential and linear cryptanalysis study how input differences or linear masks propagate
through iterative round functions. The ARX structure in CSX consists of modular
additions, bitwise XORs, and fixed rotations, which collectively lead to rapid diffusion and
nonlinearity across the 1024 bit state.

Differential Activity. Across a single round, each addition operation introduces carries
that depend on all lower order bits, creating nonlocal dependencies between state words.
Over multiple rounds, these carry chains propagate widely. For an active addition, the
probability that a specific differential characteristic holds is at most 27!, since the low
bit of the output is uniformly affected by the difference distribution of addition. With n,.
active additions across r rounds, a differential characteristic has probability bounded by
27",

The reference implementation’s round structure applies a fixed sequence of addition, XOR,
and rotation operations to the 16 state words in each round. Empirically, even a single
bit input difference triggers at least 4 to 6 active additions in the first two rounds and
expands to all 8 active triples by rounds 3 and 4. Thus, for r rounds, the number of active
additions satisfies

anS(T_Q)v T23a
which yields the conservative probability bound

Pr[differential characteristic over r rounds] < 278(0=2),

For r = 40 rounds, this yields a bound below 273%4, well beneath any feasible cryptanalytic
threshold.

Linear Correlations. The algebraic normal form of an addition exhibits degree one
dependence between input bits and output low bits, with carries propagating nonlinear
terms across word boundaries. Standard bounds for ARX designs show that for n,. active
additions, the maximum absolute linear correlation is at most 27 "7/2.

For CSX, the lower bound n4y > 304 gives

|corr| < 27152,

which is far smaller than any exploitable threshold for a 1024 bit permutation.

Implications. No practical differential or linear distinguishers extending beyond approx-
imately 10-12 rounds are known for ARX permutations with comparable round counts and
diffusion structure. The 40 round design therefore maintains a substantial margin relative
to the best known approaches.
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6.2 Algebraic and Integral Attacks

Algebraic attacks attempt to exploit the polynomial structure of a cipher, while integral
attacks track how sets of inputs evolve across rounds. Both depend critically on the
evolution of algebraic degree and diffusion properties.

Algebraic Degree Growth. Each ARX round increases the algebraic degree due to
the interaction of addition and rotation. A single round of addition introduces nonlinear
terms whose degree is at least 2, and the rotation mixes these degree 2 components across
the state. Recursively, the algebraic degree satisfies a recurrence of the form

dr+1 Z mln(64, 2- dr)7 d1 = 2.

Thus the degree saturates the 64 bit word size after approximately 6-7 rounds and saturates
the full 1024 bit state shortly thereafter. Once the algebraic degree reaches the dimension
of the state, algebraic attacks lose all structural advantage.

Integral Characteristics. Integral attacks rely on finding subsets of inputs whose XOR
sum remains balanced or predictable across rounds. For permutations with rapid diffusion,
such properties hold only for reduced rounds. Simulations on reduced variants of the CSX
permutation show that after 6 rounds each state word depends on all input bits. Beyond 8
rounds no balanced sets of practical size persist. This aligns with known behavior in ARX
designs with comparable width.

Implications. Given that algebraic degree saturates by round 7 and full state diffusion
is observed by round 8, no meaningful algebraic or integral shortcuts are expected at or
near the full 40 round configuration.

6.3 Reduced Round Analysis and Security Margin

Reduced round analysis provides insight into the slack between the designed round count
and empirical cryptanalytic limits. For ARX permutations of this structure, practical
distinguishers rarely extend beyond 10-12 rounds, and attacks with nontrivial complexity
typically stop around 16 rounds.

Empirical Observations. Testing reduced round versions of the CSX permutation
indicates:

e For r < 6 rounds, simple bit based distinguishers exploiting low degree occur.
e For r < 8 rounds, certain truncated differential trails can be detected.
e For r = 10 rounds, differential and linear distinguishers degrade to near random.

« For 7 > 12 rounds, no distinguisher was observed with advantage above 2740,

Security Margin. Adopting a conservative threshold of 12 rounds as the boundary of
empirical distinguishability, the 40 round design leaves a margin of

40 — 12 = 28 rounds,

which is consistent with conservative practice in ARX based cipher design.

Interpretation. This margin reflects the gap between the round count required to defeat
observed attack classes and the round count chosen for CSX. Similar ratios appear in other
conservative designs such as Threefish and NORX.
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6.4 Attacks on the cSHAKE and KMAC Components

The authentication layer in CSX relies on KMAC-512, a Keccak based MAC derived from
the Keccak sponge with rate r = 576 and capacity ¢ = 1024. The cSHAKE instance used
during key expansion also inherits the indifferentiability properties of the Keccak sponge.

Known Bounds for Keccak Based Primitives. The capacity ¢ = 1024 provides
strong resistance to collision and preimage attacks. State of the art analysis gives:

Pr[collision] ~ 27/% = 27712, Prlforgery] ~ 27¢ = 271024,

The best known distinguishing or preimage attacks on Keccak-f[1600] require more than
2512 operations and do not apply to the KMAC domain separation used here.

Domain Separation. c¢SHAKE and KMAC employ distinct function name and cus-
tomization strings. Since the MAC key K, is generated by an additional cSHAKE
squeeze after an extra permutation, the pair (K., Kmac) is computationally independent.
This prevents cross component attacks such as key recovery via MAC queries or violation
of Encrypt then MAC ordering.

Transcript Binding. The authenticated transcript includes:
Al[1e32(JA] [| N [| C'[|1e64(|C1),

which binds nonce, lengths, and ciphertext to the tag. Thus truncation, extension,
reordering, and substitution attacks are equivalent to MAC forgeries under the KMAC
assumption.

Implications. Given current cryptanalysis of Keccak and its derived constructions, the
¢SHAKE and KMAC components of CSX are considered secure well beyond the bounds
relevant for the ARX permutation. The dominant attack surface for confidentiality and
integrity is therefore the ARX permutation, which is addressed in the preceding subsections.

7 Empirical Tests and Sanity Checks

Empirical evaluations can provide coarse validation of expected behavior, but they do
not constitute evidence of cryptographic security. The results presented here are intended
solely as implementation sanity checks and informal confirmation of the diffusion and
statistical properties already addressed through formal analysis.

7.1 key-stream Statistical Tests

To verify the absence of low order statistical anomalies in the key-stream, we generated
streams of length between 220 and 226 bits using varying keys, nonces, and associated
data. These streams were subjected to standard statistical test suites, including the NIST
SP 800-22 battery and a subset of the Dieharder tests.

No test indicated a detectable deviation from uniformity. In particular, frequency, block
frequency, runs, and autocorrelation tests all returned values consistent with the expected
distribution for uniformly random bit-strings. As is standard in cryptographic evaluation,
these results are interpreted only as confirming the expected behavior of a well diffused
stream cipher and do not imply resistance to deeper structural attacks.
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7.2 Diffusion and Avalanche Measurements

To quantify low level diffusion behavior, we measured the bitwise avalanche effect of the
ARX permutation on the 1024 bit internal state. For each of 10* random states S, a
single input bit was toggled to obtain S/, and both were processed through the full 40
round permutation. The average Hamming distance between Perm(S) and Perm(S’) was
recorded.

In empirical tests on the reference implementation, the mean output difference was close
to 512 bits with small variance, consistent with the behavior of a random permutation on
a 1024 bit space. Repeating the measurement after r rounds shows that the avalanche
effect approaches its asymptotic distribution rapidly, stabilizing around » = 7 to 8 rounds.
This aligns with the diffusion and algebraic degree analysis in Section 6.

These empirical results support the conclusion that the permutation diffuses input
differences quickly and uniformly, but they are not relied upon as evidence of security.
They serve only as an implementation check and as a practical confirmation of the formal
diffusion analysis.

8 Discussion and Limitations

The analysis presented in this paper establishes confidentiality and integrity bounds for
CSX under a set of clearly delineated assumptions about its internal permutation and
its Keccak based components. While these results support the security claims made for
the construction within the stated model, several limitations and areas for further work
remain. This section summarizes these boundaries and highlights open questions that are
natural targets for continued investigation.

8.1 Modeling Assumptions and Boundaries

The security reductions in Section 5 rely on treating the 40 round ARX permutation as a
pseudo-random permutation and on modeling cSHAKE-512 and KMAC-512 within the
random oracle and PRF frameworks, respectively. These assumptions are widely used
in the analysis of permutation based constructions, but they form the foundation of the
provable bounds and must be made explicit. The analysis in this paper does not address:

e Side channel attacks. Timing, power, electromagnetic, cache based, or fault based
attacks are outside the scope of the model. Constant time implementations and
implementation level countermeasures are considered separate engineering concerns.

e Nonce misuse. CSX requires nonce uniqueness for confidentiality. The consequences
of repeated nonces are not treated in this paper.

e« Related key attacks. The model is strictly a single key model. Systematic
modifications of the master key or induced correlations between keys are not part of
the intended threat space.

e Implementation bugs. Buffer overruns, incorrect state initialization, compiler
dependent behavior, or inconsistencies in platform specific builds fall outside the
cryptographic scope of the analysis.

e Adversaries beyond the random oracle model. The indifferentiability properties
of Keccak justify the cSHAKE and KMAC assumptions, but adversaries operating
outside the random oracle or quantum random oracle model are not considered.

Within these boundaries, the reductions and cryptanalytic evaluations provide a coherent
picture of the security properties expected of the CSX construction.
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8.2 Limitations and Open Questions

While the structural analysis of the permutation and the AEAD composition gives
confidence in the design, several open areas remain where further investigation could
provide a clearer picture of long term security.

Reduced Round Cryptanalysis. The differential, linear, and integral evaluations
presented in Section 6 provide qualitative and quantitative evidence, but do not constitute
exhaustive proofs for all reduced round variants. More detailed automated searches, includ-
ing MILP or SAT based techniques, could refine the understanding of how the permutation
behaves for round counts near the boundary of currently observable distinguishers.

Formal Treatment in the Quantum Model. The post quantum bounds presented in
Section 5 use standard Grover based arguments and capacity based limits. A more precise
treatment in the quantum random oracle model, especially concerning the indifferentiability
of cSHAKE and the behavior of KMAC under quantum queries, would further clarify the
margin available against quantum adversaries.

Automated Proof Frameworks. Recent work on mechanized proofs for symmetric
cryptography, using frameworks such as EasyCrypt or F*, suggests that portions of the
CSX analysis could be formalized within such systems. This includes both the game based
reductions and the structural properties of the ARX permutation.

Permutation Structural Analysis. Full cryptanalytic transparency would benefit
from a deeper analysis of rotational symmetries, word wise correlations, and truncated
differentials in the ARX structure. These properties are well understood for other ARX
designs and could similarly be quantified here.

Further Performance Study. The empirical performance measurements in Section 8
reflect a reference software implementation. Hardware oriented implementations, SIMD
based optimizations, or alternative KMAC parameterizations may affect the practical
deployment profile.

Overall, the present analysis establishes a conservative security baseline for CSX, while
leaving several natural directions for continued study.

9 Conclusion

This paper presented a formal design and analysis of the CSX authenticated encryption
scheme. Beginning with an engineering level specification derived directly from the reference
implementation, we defined the precise state structure, key expansion mechanism, ARX
permutation, key-stream generation process, and authenticated transcript format that
constitute the CSX construction. This specification provides the canonical algorithmic
foundation for all subsequent reasoning.

Within this formal model, we established confidentiality and integrity bounds using
standard game based reductions. These reductions show that the IND-CCA security of
CSX follows from the pseudo-random behavior of its 40 round ARX permutation and
the existential unforgeability of KMAC-512 under chosen message attack, together with
the domain separation guarantees of cSHAKE-512. The reductions make explicit the
dependence on query counts, state size, and the 1024 bit capacity of the underlying sponge.
We further examined the structural properties of the ARX permutation, considering
differential, linear, algebraic, and integral behavior across reduced and full round variants.
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The observed diffusion characteristics, algebraic degree growth, and the lack of distin-
guishers beyond reduced round thresholds collectively indicate a conservative security
margin relative to established cryptanalytic methods. The analysis also addressed the post
quantum setting, where Grover style search bounds justify the use of a 512 bit master key
to target an effective security level of approximately 2256,

Empirical performance measurements and comparative observations situate CSX among
other wide state, permutation based AEAD schemes, highlighting the tradeoffs between
security margin, state width, tag size, and throughput. These results provide practical
context without forming the basis for any security claim.

Several areas remain open for further study, including deeper reduced round cryptanalysis,
more precise quantum model proofs for Keccak based components, and possible mechanized
verification of the security arguments. Nonetheless, the analysis presented here offers a
coherent and conservative assessment of the CSX construction within the stated modeling
assumptions.



20 The Design and Security Analysis of the CSX AEAD Stream Cipher
References
1. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G. The Keccak Reference. Submission

10.

to the NIST SHA3 Competition, 2011. Available at: https://keccak.team/files/Kecca
k-reference-3.0.pdf

Bernstein, D. J. ChaCha, a Variant of Salsa20. In SASC 2008, The State of the Art in
Stream Ciphers. Available at: https://cr.yp.to/chacha/chacha-20080128.pdf

. NIST. Recommendation for Keyed Hash Message Authentication Code (KMAC). NIST

Special Publication 800-185. Available at: https://doi.org/10.6028 /NIST.SP.800-185

NIST. SHAS8 Derived Functions: ¢SHAKE and KMAC. NIST Special Publication
800-185. Available at: https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.
800-185.pdf

. McGrew, D., Viega, J. The Security and Performance of the Galois Counter Mode

(GCM) of Operation. INDOCRYPT 2004. Available at: https://csrc.nist.gov/csrc/med
ia/projects/block-cipher-techniques/documents/bem /megrew-gem. pdf

Rogaway, M. Authenticated Encryption with Associated Data. ACM Conference on
Computer and Communications Security, 2002. Available at: https://web.cs.ucdavis.e
du/~rogaway /papers/ad.pdf

NIST. Recommendation for Block Cipher Modes of Operation, The CCM Mode. NIST
Special Publication 800-38C. Available at: https://doi.org/10.6028 /NIST.SP.800-38C

. NIST. Recommendation for Block Cipher Modes of Operation, Galois Counter Mode

(GCM). NIST Special Publication 800-38D. Available at: https://doi.org/10.6028 /NI
ST.SP.800-38D

. J.G Underhill. CSX Technical Specification 1.0. QRCS Corporation, 2025. Available at:

https://www.qrescorp.ca/documents /csx__specification.pdf

QRCS Corporation. GitHub Source Code Repository. https://github.com/QRCS-COR
P/QSC


https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://cr.yp.to/chacha/chacha-20080128.pdf
https://doi.org/10.6028/NIST.SP.800-185
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-185.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/mcgrew-gcm.pdf
https://csrc.nist.gov/csrc/media/projects/block-cipher-techniques/documents/bcm/mcgrew-gcm.pdf
https://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
https://web.cs.ucdavis.edu/~rogaway/papers/ad.pdf
https://doi.org/10.6028/NIST.SP.800-38C
https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/NIST.SP.800-38D
https://www.qrcscorp.ca/documents/csx_specification.pdf
https://github.com/QRCS-CORP/QSC
https://github.com/QRCS-CORP/QSC

	Introduction
	Engineering Specification of CSX
	High Level AEAD Interface
	State and Parameter Layout
	Key Expansion and MAC Key Derivation
	ARX Permutation and key-stream Generation
	MAC Domain and Transcript Encoding
	Reduced-Rounds Variant
	Canonical Pseudo-code for CSX

	Formal Model
	Notation and Conventions
	CSX as an AEAD Scheme
	Assumptions on Underlying Primitives

	Security Definitions
	IND CPA Security
	IND CCA Security
	Ciphertext Integrity (INT CTXT)
	Key Recovery and Related Key Security
	Post Quantum Adversarial Model

	Security Theorems and Reductions
	AEAD Security Theorem
	Reduction for Confidentiality
	Reduction for Integrity
	Post Quantum Security Bounds

	Cryptanalytic Evaluation
	Differential and Linear Analysis
	Algebraic and Integral Attacks
	Reduced Round Analysis and Security Margin
	Attacks on the cSHAKE and KMAC Components

	Empirical Tests and Sanity Checks
	key-stream Statistical Tests
	Diffusion and Avalanche Measurements

	Discussion and Limitations
	Modeling Assumptions and Boundaries
	Limitations and Open Questions

	Conclusion
	References

