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Abstract. QMAC is a message authentication code that combines a polynomial
hash over the field GF (2256) with keys derived from the cSHAKE customizable
hash function. This paper presents a formal cryptanalysis of the construction and
provides a detailed examination of its algebraic structure, security properties, and
implementation alignment. The analysis includes an engineering description of the
mechanism based directly on the reference source code, a complete treatment of
the polynomial hash function and its ε almost universal bounds, and a reduction
based proof of existential unforgeability under chosen message attack. The reduction
separates the universal hashing component from the pseudo-randomness of the
cSHAKE based key derivation and yields explicit bounds that depend on adversarial
query limits and field size. Quantum security considerations are examined within
a quantum oracle model and are related to known results on polynomial hashing
and cSHAKE in the presence of quantum adversaries. The paper concludes with a
comparative and implementation oriented evaluation of QMAC and a discussion of
practical deployment conditions and limitations.
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1 Introduction
Message authentication codes are essential components of modern cryptographic proto-
cols. They provide integrity and authenticity guarantees for messages that travel across
potentially adversarial networks. Many widely deployed constructions, such as GMAC and
HMAC, rely on primitives whose long term security depends on the hardness of classical
problems. The transition to quantum resistant cryptographic systems has renewed interest
in MAC designs that rest purely on symmetric and information theoretic principles.

QMAC is a message authentication code that combines a polynomial hash over the field
GF (2256) with keys derived from the customizable hash function cSHAKE. Its structure
follows the approach of GMAC, which uses polynomial hashing over GF (2128), but QMAC
replaces the smaller field with a larger one and adopts cSHAKE based key derivation
rather than AES based processing. This offers a simple path to a symmetric authentication
mechanism that avoids reliance on block ciphers and supports quantum resistant deployment
objectives. The polynomial hash enables fast evaluation on common architectures, and the
use of cSHAKE provides a flexible key derivation interface and strong pseudo-randomness
guarantees.

This paper presents a formal cryptanalysis of QMAC, addressing both its algebraic structure
and its security properties. A complete engineering level description of the construction
is provided to establish a precise link between the reference implementation and the
mathematical model used in the analysis. The algebraic properties of the polynomial
hash are examined in detail, including proofs of its ε almost universal behavior over
an irreducible polynomial field of degree 256. These properties are combined with
assumptions on the pseudo-randomness of the cSHAKE based key derivation to obtain
explicit unforgeability bounds in the chosen message setting. The security model separates
the universal hashing component from the key derivation component, and the resulting
reduction yields interpretable expressions for the adversarial advantage.

The analysis also considers attackers with quantum capabilities. The polynomial hash is
evaluated in the context of quantum oracle access, and the use of cSHAKE is examined
under standard assumptions about the behavior of extendable output functions in the
presence of quantum queries. These results are related to work on polynomial MACs and
hash based constructions in the quantum setting.

1.1 Background and Motivation
The design of QMAC is motivated by several goals. The first is to obtain a MAC that
is suitable for use in symmetric systems that aim for quantum resistant security without
depending on asymmetric primitives. The second is to create a construction that retains
the simplicity and efficiency of GMAC while avoiding the need for AES. The third is to
provide a mechanism that integrates well with cSHAKE, which already forms the basis for
several modern post quantum schemes. By using a polynomial hash over a larger field,
QMAC inherits strong diffusion properties and retains a compact and regular structure
that maps well to vectorized instructions on common CPUs.

1.2 Contributions
This paper provides the following contributions.

• A complete engineering level description of QMAC based directly on the reference
implementation. This description captures the exact operational details of the
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construction, including block processing, field arithmetic, reduction rules, cSHAKE
based key derivation, and state management.

• A formal model of the polynomial hash over GF (2256), including proofs of its ε
almost universal collision bounds.

• An explicit reduction based proof of existential unforgeability under chosen message
attack. The reduction separates the universal hashing component from the pseudo-
randomness of the cSHAKE based key derivation and yields a concrete bound
involving both contributions.

• A discussion of quantum security in a quantum oracle model, including the behavior
of polynomial hashing and cSHAKE under quantum queries.

• A comparative cryptanalytic evaluation of QMAC in relation to GMAC and KMAC,
highlighting algebraic properties, performance considerations, and deployment char-
acteristics.

1.3 Organization of the Paper
Section 2 provides an engineering level description of QMAC that reflects the exact behavior
of the reference implementation. Section 3 introduces the mathematical preliminaries,
including notation, the field GF (2256), and the structure of the polynomial hash. Section
4 gives a formal specification of QMAC in functional terms. Section 5 defines the
security notions and adversarial model. Section 6 presents the algebraic analysis of
the polynomial hash and its universality bounds. Section 7 contains the security proofs,
including the reduction for existential unforgeability. Section 8 addresses quantum security
considerations. Section 9 provides comparative and cryptanalytic evaluations. Section 10
discusses implementation conformance and side channel issues. The paper concludes with
a summary of results, limitations, and directions for future work.

2 Engineering Description of QMAC
This section provides a functional description of QMAC based on the reference C
implementation. All operations are described at the level of mathematical data flow,
independent of optimization details. The purpose is to capture the exact behavior of the
algorithm as it is defined by the code, expressed in a form suitable for formal reasoning.

2.1 Parameters, Constants, and State Layout
QMAC operates on fixed size blocks and uses fixed size subkeys and internal state. These
parameters are expressed in the implementation as constants and are formalized as follows.

Block size = 32 bytes,
Key size = 32 bytes,
Tag size = 32 bytes,

Nonce size = 32 bytes.

The internal state consists of three field elements in GF (2256), each represented as a 256
bit vector:

H ∈ GF (2256), F ∈ GF (2256), Y ∈ GF (2256).
During initialization Y is set to the zero element.
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2.2 Key Derivation with cSHAKE
Initialization derives the pair of subkeys (H, F ) using a single call to cSHAKE that absorbs
a secret key K, a nonce N , and an optional information string info. The C implementation
constructs a cSHAKE state with appropriate domain separation values and then squeezes
64 bytes of output. Mathematically, we express this as:

(H, F ) = Split256,256
(
cSHAKE(K, N, info)

)
.

The function Split256,256 takes the first 256 bits of the cSHAKE output as H and the next
256 bits as F .
Formally:

H = cSHAKE(K, N, info)[0..255], F = cSHAKE(K, N, info)[256..511].

The accumulator is initialized as:
Y = 0256.

No additional key material is retained after initialization.

2.3 Message Encoding, Padding, and Block Processing
A message M is divided into blocks of 32 bytes. Let

M = M1 ∥M2 ∥ · · · ∥Mℓ, |Mi| = 32 bytes for i < ℓ.

The final block Mℓ is padded with zeros on the right if necessary so that it is exactly 32
bytes.
Each 32 byte block is interpreted as an element of GF (2256) through a fixed big endian
mapping:

Xi = Encode(Mi) ∈ GF (2256).
For each block the accumulator is updated by:

Y ← H · (Y ⊕Xi),

where multiplication and addition are taken in GF (2256). This update rule is implemented
exactly by the reference code.

2.4 Polynomial Multiplication over GF (2256)
The field GF (2256) is instantiated as the quotient ring:

GF (2)[x]
/
⟨m(x)⟩,

where the C implementation uses the irreducible pentanomial

m(x) = x256 + x10 + x5 + x2 + 1.

Every field element is represented as a 256 bit vector corresponding to a polynomial of
degree at most 255.
Given two field elements A and B, QMAC computes:

A ·B = (A(x)B(x)) mod m(x).

The reduction is equivalent to repeatedly replacing terms x256+k with:

xk ⊕ xk+2 ⊕ xk+5 ⊕ xk+10, 0 ≤ k < 256.

This reduction rule captures exactly the bit level behavior of the implementation while
remaining agnostic to the carryless multiply method used in the C code.
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2.5 Tag Finalization and Output
After the final message block is processed, the accumulator Y is combined with the
finalization key F :

T = Y ⊕ F.

The tag T is then returned as a 32 byte value obtained by the inverse of the big endian
encoding.
State erasure is performed in the implementation, but this does not affect the mathematical
semantics of the construction.

2.6 Auxiliary Operations
The C implementation includes a set of utility functions for integer conversion, zero
padding, and secure memory clearing. In the formal description these correspond to the
following abstract operations:

• A fixed encoding map from 32 byte strings to GF (2256).

• Zero padding of the final block to 32 bytes.

• Erasure of temporary values after use.

None of these affect the logical structure of QMAC and are treated as standard functional
primitives.

This engineering description defines QMAC as a composition of cSHAKE based key
derivation and a polynomial hash over GF (2256), expressed in a form that can be analyzed
independently of implementation details but remains fully aligned with the behavior of
the reference code.

3 Mathematical Preliminaries
This section introduces the notation, algebraic structures, and hashing framework used in
the analysis of QMAC. These definitions abstract the implementation level behavior of the
algorithm into formal mathematical operations that will support the subsequent security
proofs.

3.1 Notation
We use the following notation throughout the paper.

• {0, 1}n denotes the set of bit strings of length n.

• For bit strings A and B, the symbol A ∥ B denotes concatenation.

• For a string X, the notation X[i..j] refers to the substring from bit i through bit j,
inclusive, with bit 0 as the most significant bit.

• Random sampling from a finite set S is written as x
$←− S.

• For a probabilistic algorithm A, Pr[A ⇒ 1] denotes the probability that A outputs 1.

• We write negl(λ) for a function negligible in the security parameter λ.

• All polynomial expressions are over GF (2) unless otherwise stated.
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A 256 bit string corresponds naturally to a polynomial in GF (2)[x] of degree at most 255.
This correspondence is used to define the field arithmetic in QMAC.

3.2 The Field GF (2256) and the Irreducible Polynomial

QMAC operates over the finite field GF (2256), defined as the quotient ring

GF (2256) = GF (2)[x]
/
⟨m(x)⟩,

where the modulus m(x) is the irreducible pentanomial

m(x) = x256 + x10 + x5 + x2 + 1.

This polynomial is irreducible over GF (2) and provides an efficient basis for polynomial
reduction. Every element of GF (2256) is represented as a polynomial

A(x) = a255x255 + a254x254 + · · ·+ a1x + a0,

with coefficients ai ∈ GF (2). The implementation uses a fixed encoding of such polynomials
as 256 bit strings in big endian order:

A ∈ {0, 1}256 ←→ A(x) =
255∑
i=0

A[i]x255−i.

Field addition is bitwise xor of the string representations. Multiplication is defined by
polynomial multiplication modulo m(x), described next.

3.3 Carryless Multiplication and Reduction

Given A, B ∈ GF (2256), their product in the field is defined as:

A ·B =
(
A(x)B(x)

)
mod m(x).

The polynomial product A(x)B(x) has degree at most 510 and can be written as:

C(x) =
510∑
i=0

cix
i.

The reduction modulo m(x) is performed by eliminating all terms of degree at least 256
using the relation:

x256 ≡ x10 ⊕ x5 ⊕ x2 ⊕ 1 (mod m(x)).

Thus, for any k ≥ 0, the term x256+k reduces to:

x256+k ≡ xk ⊕ xk+2 ⊕ xk+5 ⊕ xk+10.

The full field product is obtained by repeatedly applying this rule to eliminate all terms of
degree 256 through 510, after which the remaining polynomial has degree at most 255 and
represents the final field element.
This mathematical reduction corresponds exactly to the behavior of the reference imple-
mentation, which processes bits of the product from high to low and applies the same
reduction map.
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3.4 Polynomial Hashing and Universal Hash Functions
QMAC uses a polynomial hash evaluated in GF (2256) with a secret key H ∈ GF (2256).
Let a message M be parsed into fixed size blocks:

M = M1 ∥M2 ∥ · · · ∥Mℓ, |Mi| = 32 bytes.

Each block is encoded as an element of GF (2256):

Xi = Encode(Mi).

The QMAC polynomial hash is then:

Y0 = 0256, Yi = H · (Yi−1 ⊕Xi), 1 ≤ i ≤ ℓ.

The value Yℓ is the internal hash state before finalization.
A family of hash functions H = {hH}H∈K is called ε almost universal (AU) if for any two
distinct messages M and M ′:

Pr
H

$←−K

[hH(M) = hH(M ′)] ≤ ε.

It is called ε almost xor universal (AXU) if for all M ̸= M ′ and all ∆:

Pr
H

$←−K

[hH(M)⊕ hH(M ′) = ∆] ≤ ε.

Polynomial hashing over GF (2n) is well known to form an ε AU family with ε proportional
to 2−n. For QMAC, with n = 256, the collision probability is bounded by:

ε ≤ ℓ · 2−256,

where ℓ is the number of message blocks. These bounds will be used in the subsequent
security analysis.

4 The QMAC Construction
This section gives a formal and implementation agnostic description of QMAC. The
construction presented here is derived directly from the behavior of the reference imple-
mentation but is expressed in mathematical terms suitable for analysis. All arithmetic
takes place in the field GF (2256) defined by the irreducible polynomial:

m(x) = x256 + x10 + x5 + x2 + 1.

4.1 High Level Construction
Let K = {0, 1}256 be the key space, N = {0, 1}256 the nonce space, I an arbitrary
information space, and M = {0, 1}∗ the message space. The tag space is T = {0, 1}256.

Initialization proceeds by deriving two field elements (H, F ) from a master key K ∈ K,
a nonce N ∈ N , and an auxiliary string info ∈ I. The derivation uses a single call to
cSHAKE with a fixed domain separation structure. The derivation is formalized as:

(H, F ) = Split256,256(cSHAKE(K, N, info)),

where the first 256 output bits define H and the next 256 bits define F .
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The message M is parsed into blocks of 32 bytes:

M = M1 ∥M2 ∥ · · · ∥Mℓ,

and the final block Mℓ is padded on the right with zeros to reach 32 bytes. Each block is
interpreted as an element of GF (2256) by a fixed big endian encoding:

Xi = Encode(Mi).

The accumulator state is initialized as:

Y0 = 0256.

The polynomial hash is computed by the recurrence:

Yi = H · (Yi−1 ⊕Xi), 1 ≤ i ≤ ℓ,

where multiplication and addition are the operations in GF (2256).
Finalization produces the tag

T (M) = Yℓ ⊕ F.

Thus QMAC is a Carter Wegman style construction that combines a universal hash function
with an independent pseudo-random value obtained from cSHAKE. The universal hashing
properties of the polynomial map and the pseudo-randomness of the cSHAKE output form
the basis for the security analysis.

4.2 Relation to GMAC and KMAC
QMAC is structurally related to GMAC, which also uses a polynomial hash evaluated over
a binary field. GMAC operates in GF (2128) and derives its hash key from AES. QMAC
instead uses GF (2256) and replaces AES based derivation with cSHAKE. The larger field
increases the collision resistance of the polynomial hash, and the use of cSHAKE provides
a simpler interface for domain separation and key customization.

Compared to KMAC, which applies cSHAKE directly as a keyed sponge based pseudo-
random function, QMAC separates the universal hashing layer from the pseudo-random
masking layer. KMAC evaluates the sponge on the entire message, while QMAC evaluates
a polynomial hash and uses cSHAKE only to derive the subkeys (H, F ). This permits
parallel block processing and makes the structure closer to well studied Carter Wegman
families.

Both approaches achieve strongly unforgeable MACs when instantiated with cSHAKE, but
QMAC exposes algebraic structure that supports clean analytical bounds. The simplicity
of the polynomial hash also makes it well suited for the engineering setting that motivated
the design.

4.3 Domain Separation and Customization Strings
The security of QMAC relies on the independent derivation of H and F from the master
key. The reference implementation instantiates cSHAKE with a fixed function name
string and a fixed customization string. The master key, nonce, and information fields are
absorbed into the cSHAKE state before any output is squeezed.

Let cSHAKEN,S denote cSHAKE with function name string N and customization string
S. QMAC uses a fixed pair (N, S) that is not shared with any other primitive or protocol
component that may use the same master key. The derivation step is therefore:

(H, F ) = Split256,256 (cSHAKEN,S(K, N, info)) .
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This ensures domain separation. The hash key H and mask key F are independent under
the assumed pseudo-randomness of cSHAKE, and no other protocol component can cause
cross interference by reusing the same master key with a different construction.

This domain separation choice is essential for preventing structural attacks and will be
referenced later in the cryptanalysis sections. It also prevents the construction from
exposing xor periodicity or structural symmetries that could enable quantum attacks in
the Q2 model, including Simon type attacks, which are discussed later in the cryptanalytic
analysis.

5 Security Definitions
The security of QMAC is analyzed in the standard framework for message authentication
codes. This section defines the adversarial model, oracle access rules, and advantage
functions used in the formal reductions. The definitions abstract the behavior of the
implementation into standard security experiments.

5.1 Adversarial Model and Oracles

An adversary A is modeled as a probabilistic algorithm that interacts with a tagging
oracle. The adversary is allowed to adaptively query the oracle on messages of its choice
and eventually outputs a candidate forgery. The oracle is defined with respect to a secret
key K, a nonce N , and an information string info that are sampled during initialization.
The tagging oracle is defined as:

Tag(M) = T (M) = Yℓ ⊕ F,

where (H, F ) are derived from (K, N, info) using cSHAKE, and Yℓ is computed using the
polynomial hash defined in Section 3.
The adversary may issue any number of adaptive queries M to the oracle and obtain the
corresponding tags Tag(M). At the end of the interaction, the adversary outputs a pair
(M∗, T ∗).

A forgery is valid if:

• M∗ was never queried to the tagging oracle, and

• T ∗ = T (M∗) under the secret key.

Trivial forgeries are disallowed. In particular, the adversary may not output the tag for a
message it has already queried, nor may it exploit empty messages unless the construction
defines a valid tag for them.

5.2 MAC Security Experiment and EUF-CMA

The unforgeability of QMAC is defined using the standard existential unforgeability under
chosen message attack (EUF-CMA) experiment.
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Experiment EUF-CMAA
QMAC:

1. Sample K
$←− K, N

$←− N , and choose info as appropriate for the protocol.

2. Compute (H, F ) = Split256,256(cSHAKE(K, N, info)).

3. Give A oracle access to Tag(M) for any M of its choice.

4. A outputs (M∗, T ∗).

5. The experiment returns 1 if (M∗, T ∗) is a valid forgery, and returns 0 otherwise.

The EUF-CMA advantage of A is defined as:

AdvEUF-CMA
QMAC (A) = Pr

[
EUF-CMAA

QMAC = 1
]

.

A MAC is secure if this advantage is negligible in the security parameter, for all efficient
adversaries.

5.3 Universal Hashing and Collision Bounds
The polynomial hash used in QMAC is parameterized by a randomly sampled H ∈
GF (2256). For a message M parsed into blocks (X1, . . . , Xℓ), the hash value is:

hH(M) = Yℓ, Yi = H · (Yi−1 ⊕Xi), Y0 = 0.

The collection H = {hH}H∈GF (2256) is treated as a family of hash functions. The standard
universal hashing security notions are defined as follows.
The family is ε almost universal (AU) if for all distinct messages M ̸= M ′:

Pr
H

$←−GF (2256)

[hH(M) = hH(M ′)] ≤ ε.

It is ε almost xor universal (AXU) if for all M ̸= M ′ and all ∆ ∈ GF (2256):

Pr
H

$←−GF (2256)

[hH(M)⊕ hH(M ′) = ∆] ≤ ε.

The polynomial hash over GF (2256) instantiated through the irreducible polynomial m(x)
satisfies:

ε ≤ ℓ · 2−256,

for messages of at most ℓ blocks. These bounds form the universal hashing term of the
QMAC unforgeability reduction.
We denote the advantage of an adversary B in distinguishing collisions from the behavior
of an ideal universal hash as:

AdvUH
poly(B).

5.4 PRF Security of cSHAKE Based Key Derivation
The pair (H, F ) used by QMAC is derived from the master key via a single cSHAKE call.
For the purpose of the reduction, cSHAKE is treated as a pseudo-random function of the
absorbed key material and associated customization choices.
Let KDF denote the deterministic derivation function:

KDF(K, N, info) = (H, F ).
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We say that cSHAKE based key derivation is secure if no efficient adversary can distinguish
the output of KDF, from two independent uniform elements of GF (2256).
Formally, the PRF security game samples either:

(H, F ) = KDF(K, N, info) or (H, F ) $←− GF (2256)×GF (2256),

and the adversary must guess which distribution it is interacting with.
The advantage of an adversary C in this game is defined as:

AdvPRF
cSHAKE(C) = |Pr[C outputs 1 | real]− Pr[C outputs 1 | random]| .

This term appears in the final unforgeability bound, combined with the universal hashing
advantage.

6 Algebraic Analysis of the Polynomial Hash
The security of QMAC as a Carter Wegman style construction depends on the algebraic
properties of its polynomial hash over GF (2256). In this section we analyze the collision
behavior of the hash family, derive explicit ε almost universal bounds, discuss almost xor
universality, and justify the choice of the modulus polynomial.

6.1 Collision Properties over GF (2256)
Recall that messages are parsed into 32 byte blocks and encoded as field elements Xi ∈
GF (2256). For a fixed secret key H ∈ GF (2256), the QMAC polynomial hash on a message
M with blocks (X1, . . . , Xℓ) is given by

Y0 = 0, Yi = H · (Yi−1 ⊕Xi), 1 ≤ i ≤ ℓ,

and we set hH(M) = Yℓ.
We first express hH(M) as a polynomial in H with coefficients determined by the message
blocks. Expanding the recurrence gives:

Y1 = H · (0⊕X1) = HX1,

Y2 = H · (Y1 ⊕X2) = H(HX1 ⊕X2) = H2X1 ⊕HX2,

Y3 = H · (Y2 ⊕X3) = H(H2X1 ⊕HX2 ⊕X3)
= H3X1 ⊕H2X2 ⊕HX3,

and by induction we obtain

hH(M) = Yℓ =
ℓ⊕

i=1
Hℓ+1−iXi.

Now let M and M ′ be two distinct messages of at most ℓ blocks, with corresponding block
encodings (X1, . . . , Xℓ) and (X ′

1, . . . , X ′
ℓ) (zero padding is applied as needed so that both

sequences have the same length). Define the difference coefficients

Di = Xi ⊕X ′
i,

and observe that M ≠ M ′ implies that the vector (D1, . . . , Dℓ) is not identically zero. The
difference of the hash values is

hH(M)⊕ hH(M ′) =
ℓ⊕

i=1
Hℓ+1−iDi.
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This defines a polynomial in H over GF (2256):

P (H) =
ℓ⊕

i=1
Hℓ+1−iDi.

At least one coefficient Di is nonzero when M ≠ M ′, hence P (H) is a nonzero polynomial
of degree at most ℓ in the indeterminate H.
If H were allowed to range over the extension field as an algebraic indeterminate, the
equation P (H) = 0 would have at most ℓ roots within any field extension. In our setting
H is sampled uniformly from GF (2256), which has 2256 elements, and we can condition
on H ̸= 0 without significantly affecting the bound. It follows that the probability, over
uniform choice of H, that hH(M) = hH(M ′) holds for distinct messages is bounded by

Pr
H

$←−GF (2256)

[hH(M) = hH(M ′)] = Pr[P (H) = 0] ≤ deg P

2256 ≤
ℓ

2256 .

This establishes that the polynomial hash is injective on messages of at most ℓ blocks
except with probability at most ℓ · 2−256 over the choice of H.

6.2 Epsilon Almost Universal Bounds
We now formalize the almost universality property of the QMAC polynomial hash family.
For each H ∈ GF (2256), define the function

hH :M≤ℓ → GF (2256),

where M≤ℓ is the set of messages of at most ℓ blocks. The family H = {hH}H∈GF (2256) is
said to be ε(ℓ) almost universal if for all distinct messages M, M ′ ∈M≤ℓ,

Pr
H

$←−GF (2256)

[hH(M) = hH(M ′)] ≤ ε(ℓ).

From the polynomial argument above, we have established:

Lemma 1. For any positive integer ℓ and any distinct messages M, M ′ of at most ℓ blocks,
the QMAC polynomial hash satisfies

Pr
H

$←−GF (2256)

[hH(M) = hH(M ′)] ≤ ℓ

2256 .

In particular, the family H is ε(ℓ) almost universal with

ε(ℓ) ≤ ℓ · 2−256.

In the QMAC construction, H is not sampled directly from GF (2256) but derived from the
master key via cSHAKE. Under the assumption that the cSHAKE based key derivation
is pseudo-random and that H is computationally indistinguishable from a uniform field
element, the same ε(ℓ) bound holds from the point of view of any efficient adversary.

6.3 Epsilon Almost Xor Universal Properties
The almost xor universal property considers the distribution of differences of hash values.
A hash family H is ε almost xor universal (AXU) if for all M ≠ M ′ and all ∆ ∈ GF (2256),

Pr
H

$←−GF (2256)

[hH(M)⊕ hH(M ′) = ∆] ≤ ε.
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For the QMAC polynomial hash, we can write

hH(M)⊕ hH(M ′) = ∆ ⇐⇒
ℓ⊕

i=1
Hℓ+1−iDi = ∆,

which is equivalent to the polynomial equation

P (H)⊕∆ = 0.

For fixed M, M ′, ∆, the left hand side is again a polynomial in H of degree at most ℓ, with
coefficients determined by (Di) and the constant term shifted by ∆. As long as M ≠ M ′,
at least one Di remains nonzero, so the polynomial is nonzero regardless of the choice of
∆. Therefore the same root counting argument gives

Pr
H

$←−GF (2256)

[hH(M)⊕ hH(M ′) = ∆] ≤ ℓ

2256 .

We obtain:

Lemma 2. For messages of at most ℓ blocks, the QMAC polynomial hash family is ε(ℓ)
almost xor universal with

ε(ℓ) ≤ ℓ · 2−256.

In the present work QMAC is used purely as a message authentication code and not as
an encryption or xor masking mechanism. The almost universal property is sufficient to
derive the unforgeability bounds, but the stronger almost xor universal property also holds
and can be relevant for potential composition with other primitives.

6.4 Justification of the Modulus Choice
The field GF (2256) used by QMAC is instantiated with the pentanomial

m(x) = x256 + x10 + x5 + x2 + 1.

This choice is motivated by three considerations.
First, m(x) is irreducible over GF (2), so the quotient GF (2)[x]/⟨m(x)⟩ is a field. This
ensures that the polynomial hash is evaluated in an algebraic structure with no zero
divisors and that the usual universality arguments apply.
Second, the polynomial has low Hamming weight. Only five nonzero terms are present.
This property allows the reduction of a product modulo m(x) to be realized with a small
number of xor operations and bit shifts. In the engineering description, this corresponds
to the reduction rule

x256+k ≡ xk ⊕ xk+2 ⊕ xk+5 ⊕ xk+10,

which can be implemented efficiently in constant time.
Third, the polynomial has been selected to avoid trivial algebraic structure such as
repeated factors or easily exploitable linearized forms. In particular, m(x) is not of the
form x256 + xr + 1 for a reducible trinomial, and it does not introduce a symmetry that
would endow the polynomial hash with a hidden period that could be exploited by classical
or quantum attacks.
Together, these properties yield a field that supports efficient implementation while
preserving the theoretical guarantees of polynomial hashing. The algebraic analysis in this
section assumes only irreducibility and field size. Therefore the universality bounds derived
above hold for any irreducible polynomial of degree 256, and the specific pentanomial used
by QMAC realizes those bounds with an efficient reduction rule.
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7 Security Proofs for QMAC
This section presents the main security theorems for QMAC in the classical chosen message
setting. The proofs are given as explicit reductions to the universal hashing properties of
the polynomial hash and to the pseudo-randomness of the cSHAKE based key derivation.
Quantum security considerations are treated separately in the later cryptanalysis sections.

7.1 Universality Lemma for QMAC Polynomial Hashing
We first restate in game oriented form the universality result derived in the algebraic
analysis. Informally, if the polynomial hash key H is chosen at random from GF (2256),
then an adversary cannot force a collision on hH except with probability proportional to
the message length divided by 2256.
Let M≤ℓ be the set of messages of at most ℓ blocks after parsing and padding, and recall
that for H ∈ GF (2256) the polynomial hash hH is defined by

hH(M) =
ℓ⊕

i=1
Hℓ+1−iXi,

where (X1, . . . , Xℓ) is the encoded block sequence of M and Y0 = 0 in the recurrence form.
Consider an adversary B that outputs a pair of messages (M, M ′) with M ̸= M ′. Define
the collision experiment:

Experiment CollBpoly:

1. Sample H
$←− GF (2256).

2. Run B to obtain (M, M ′) with M ̸= M ′.

3. Output 1 if hH(M) = hH(M ′) and 0 otherwise.

The advantage of B in this experiment is defined as

AdvUH
poly(B) = Pr

[
CollBpoly = 1

]
.

We obtain the following lemma.

Lemma 3 (Universality of QMAC Polynomial Hash). Let ℓ be a positive integer. For
any probabilistic adversary B that outputs distinct messages M, M ′ ∈ M≤ℓ, the QMAC
polynomial hash family satisfies

AdvUH
poly(B) ≤ ℓ · 2−256.

Proof. For fixed distinct M and M ′ of at most ℓ blocks, the difference

hH(M)⊕ hH(M ′) =
ℓ⊕

i=1
Hℓ+1−iDi

defines a nonzero polynomial P (H) in the indeterminate H, of degree at most ℓ, where
Di = Xi ⊕ X ′

i and (X ′
1, . . . , X ′

ℓ) is the block encoding of M ′. The equation hH(M) =
hH(M ′) is equivalent to P (H) = 0.
A nonzero polynomial of degree at most ℓ over a field has at most ℓ roots. Since H is
sampled uniformly from GF (2256), we have

Pr
H

$←−GF (2256)

[hH(M) = hH(M ′)] = Pr[P (H) = 0] ≤ ℓ

2256 .
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The adversary B may randomize its output choice of (M, M ′), but for each fixed output
pair the same bound applies, and the probability is taken over H alone. Therefore

AdvUH
poly(B) ≤ ℓ · 2−256,

as claimed.

This lemma gives the universal hashing term that will appear in the final unforgeability
bound.

7.2 Reduction from EUF-CMA to Universal Hashing
We now show that any adversary that forges QMAC in the EUF-CMA sense induces
an adversary that breaks the almost universal property of the polynomial hash when
the subkeys (H, F ) are uniform and independent. This step isolates the collision finding
component of an attack.
Consider the following modified MAC construction, which we denote by
QMACUH:

• Sample H
$←− GF (2256) and F

$←− GF (2256) independently and uniformly.

• For any message M , define the tag

Tag(M) = F ⊕ hH(M).

This is a Carter Wegman construction with a truly random hash key and mask. Let A
be an EUF-CMA adversary against QMACUH with tagging oracle access and at most q
tagging queries. We construct an adversary B that uses A as a subroutine to break the
universal hashing property.

Construction of B. The adversary B participates in the universal hashing experiment.
It is given a random key H

$←− GF (2256) and must produce a colliding pair (M, M ′).

1. B samples F
$←− GF (2256) independently.

2. It runs A, simulating the tagging oracle as follows. On each query Mi from A, it
computes hH(Mi) using the known H and responds with

Ti = F ⊕ hH(Mi).

3. Eventually A outputs a candidate forgery (M∗, T ∗).

4. B checks whether M∗ was ever used in a previous query. If not, and if T ∗ =
F ⊕ hH(M∗), then B searches for an index i such that

hH(Mi) = hH(M∗).

If such an index exists, B outputs (Mi, M∗) as a collision pair. Otherwise it outputs
a default pair or aborts.

Analysis. By construction, the view of A in this simulation is identical to its view in a
real attack against QMACUH, since (H, F ) are sampled uniformly and tags are computed
exactly as in the construction. Therefore

Pr[A forges in this simulation] = AdvEUF-CMA
QMACUH (A).
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Condition on the event that A outputs a valid forgery (M∗, T ∗). Validity means that M∗

was never queried, and that
T ∗ = F ⊕ hH(M∗).

Let Q be the set of messages previously queried to the oracle. For each Mi ∈ Q, the
corresponding tag is

Ti = F ⊕ hH(Mi).

Since F is uniformly random and independent of H, and since A has no direct access to
H or F , the only way for A to produce a correct tag for M∗ is for the value T ∗ to satisfy

T ∗ ⊕ Ti = hH(M∗)⊕ hH(Mi)

for all Mi ∈ Q, and in particular to match the unique value F ⊕ hH(M∗). From the
perspective of A, conditioned on its oracle transcript, the unknown F acts as a one time
pad for the polynomial hash values. Hence any successful forgery implies that there exists
at least one index i such that

hH(M∗) = hH(Mi),

unless A guesses F outright, which has probability at most 2−256.
Therefore the success probability of B in outputting a colliding pair is at least

AdvUH
poly(B) ≥ AdvEUF-CMA

QMACUH (A)− 2−256.

Since the term 2−256 is negligible relative to the bounds of interest, we obtain, up to a
negligible additive term, the relationship

AdvEUF-CMA
QMACUH (A) ≤ AdvUH

poly(B).

Combining with Lemma 3, for messages of at most ℓ blocks and at most q oracle queries,
we get

AdvEUF-CMA
QMACUH (A) ≤ q · ℓ · 2−256

for appropriate bookkeeping of the worst case message length across queries.

7.3 Reduction from EUF-CMA to cSHAKE PRF Security
We next relate the security of real QMAC, which derives (H, F ) from cSHAKE, to the
idealized QMACUH variant with uniform independent keys. This is a standard PRF style
game hopping argument.
Define two games for a fixed adversary A.

Game 0 (Real QMAC). This is the EUF-CMA experiment for QMAC as defined in
Section 4, where

(H, F ) = KDF(K, N, info)

are derived from cSHAKE.

Game 1 (Random keys). This is the same experiment, except that H and F are
sampled independently and uniformly from GF (2256):

H
$←− GF (2256), F

$←− GF (2256),

and the oracle uses
Tag(M) = F ⊕ hH(M)

for all queries and for the verification of the forgery.
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By definition,
AdvEUF-CMA

QMAC (A) = Pr[A forges in Game 0],

and
AdvEUF-CMA

QMACUH (A) = Pr[A forges in Game 1].

We define a PRF adversary C against the cSHAKE based key derivation as follows.
The adversary C is given oracle access to a function O. In the real case, O computes
KDF(K, N, info), while in the random case it returns two independent random elements
of GF (2256). The adversary C queries O once to obtain (H, F ), then runs A and answers
all tagging queries using (H, F ) exactly as in Game 0 or Game 1, depending on the oracle.
If A outputs a valid forgery, C outputs 1; otherwise it outputs 0. It follows that

Pr[C outputs 1 | O = KDF] = Pr[A forges in Game 0],

and

Pr[C outputs 1 | O = random] = Pr[A forges in Game 1].

Hence the PRF advantage of C is

AdvPRF
cSHAKE(C) = |Pr[A forges in Game 0]− Pr[A forges in Game 1]|

=
∣∣∣AdvEUF-CMA

QMAC (A)−AdvEUF-CMA
QMACUH (A)

∣∣∣ .

Rearranging gives:

AdvEUF-CMA
QMAC (A) ≤ AdvPRF

cSHAKE(C) + AdvEUF-CMA
QMACUH (A).

7.4 Combined Security Bound
We now combine the results from the previous subsections to obtain an explicit bound on
the EUF-CMA advantage for QMAC.
Let A be any adversary that makes at most q tagging oracle queries, each of at most ℓ
blocks. Using the reduction to universal hashing and Lemma 3 we have

AdvEUF-CMA
QMACUH (A) ≤ q · ℓ · 2−256.

Using the reduction to cSHAKE PRF security, we obtain

AdvEUF-CMA
QMAC (A) ≤ AdvPRF

cSHAKE(C) + q · ℓ · 2−256,

for a suitable adversary C whose running time is essentially that of A plus the overhead of
simulating the tagging oracle.
This is the main security theorem for QMAC in the classical chosen message setting.

7.5 Discussion of Tightness and Parameter Choices
The bound obtained above is of the standard Carter Wegman form. It consists of a term
that reflects the pseudo-randomness of the key derivation and a term that reflects the
universality of the hash family. The universal hashing term grows linearly in the maximal
number of blocks processed per key and is inversely proportional to the field size.
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In practice, with a 256 bit field, the term q · ℓ · 2−256 remains negligible for any realistic
number of queries. For example, for q · ℓ ≤ 264, the universal hashing term is at most
2−192. The dominant factor in the security level is therefore the PRF security of cSHAKE
and the effective resistance of the construction to quantum attacks, both of which are
discussed in later sections.

The reduction is essentially tight with respect to the universal hashing component: generic
attacks that search for collisions in polynomial hashing over GF (2256) can achieve advantage
comparable to the bound when the number of queries approaches the square root of the
field size. The PRF reduction to cSHAKE is also tight in the sense that an adversary that
can distinguish (H, F ) from uniform can be directly used to break QMAC.

These considerations guide parameter choices and usage limits. The 256 bit tag length
provides ample margin for both classical and quantum adversaries, provided that keys and
nonces are managed correctly and that the total amount of authenticated data per key
remains well below the regime where the universal hashing term becomes non negligible.
The subsequent cryptanalytic sections refine these conclusions in the Q2 model and in
comparison with related constructions such as GMAC and KMAC.

8 Quantum Security Considerations
We now analyze the security of QMAC in the presence of quantum adversaries. The
discussion is informal in the sense that we do not give full quantum reductions, but we
align the construction with known results on polynomial MACs and hash based primitives
in quantum oracle models. The main goals are to clarify which quantum models are
considered, how they affect the security terms in the classical bound, and why known
Simon style attacks do not apply to QMAC.

8.1 Quantum Adversaries and Oracle Models
In the quantum setting we distinguish between two modes of oracle access.

• In the Q1 model, the adversary has only classical access to the MAC oracle, but
may use internal quantum computation to process the information it receives.

• In the Q2 model, the adversary is allowed to query the MAC oracle in quantum
superposition. The oracle is modeled as a unitary that maps∑

M

αM |M⟩|0⟩ 7−→
∑
M

αM |M⟩|T (M)⟩,

where T (M) is the QMAC tag for message M .

The Q1 model captures settings where the MAC interface is classical but the adversary
can use quantum resources internally. The Q2 model is stronger; it assumes that the
tagging functionality itself is accessible to quantum queries, which is more conservative
but appropriate for theoretical analysis.

For cSHAKE and the underlying Keccak permutation, we adopt a quantum oracle
perspective similar to the quantum random oracle model. The cSHAKE based key
derivation is treated as a pseudo-random function that remains hard to distinguish from a
random function even when the adversary can issue quantum queries. This quantum PRF
assumption is stronger than the classical one, but is consistent with prevailing analyses of
Keccak based constructions.
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8.2 Quantum Bounds for Polynomial MACs
The classical security proofs for QMAC rely on the almost universal and almost xor
universal properties of the polynomial hash family. Quantum adversaries can in principle
obtain more information from oracle queries, so the effective collision and forgery bounds
may degrade compared to the classical case.

There are two main generic quantum effects to consider.

• Grover style search reduces the complexity of exhaustive key search or tag guessing
from 2n to roughly 2n/2 operations.

• Quantum collision finding algorithms can reduce the complexity of finding collisions
in random functions from 2n/2 to roughly 2n/3 queries in certain settings.

For polynomial MACs of Carter Wegman type, prior work shows that quantum adversaries
do not obtain arbitrary structural shortcuts simply from the linearity of the hash. The
universal hashing term in the unforgeability bound can degrade by at most a polynomial
factor in the number of queries, and the overall picture remains that a field of size 2n

provides roughly n bits of security in the classical setting and somewhat less in the quantum
setting, depending on the exact oracle model and attack.
A key point is that the polynomial hash used in QMAC does not define a function with a
global xor period. For a fixed key H, the map M 7→ hH(M) does not satisfy a Simon type
promise of the form

∃s ̸= 0 such that hH(M) = hH(M ⊕ s) for all M,

nor does the full tag function M 7→ T (M) = hH(M)⊕F exhibit a two to one xor periodic
structure. Any such global period would contradict the almost universal properties
established in the algebraic analysis. Consequently, Simon style quantum period finding
attacks do not apply directly to QMAC in the Q2 model.
In summary, QMAC inherits the known quantum bounds of polynomial MACs where
the effective advantage of an adversary that makes q quantum queries to the MAC oracle
grows faster than in the classical case, but without any known structural attack that would
invalidate the construction.

8.3 Quantum Security of cSHAKE Key Derivation
The cSHAKE based key derivation in QMAC is used only once per key, to derive the
pair (H, F ) from (K, N, info). An adversary that has oracle access to QMAC does not
obtain direct oracle access to the internal cSHAKE computation. As a result, the effective
exposure of cSHAKE in QMAC is weaker than in constructions where cSHAKE is used as
a direct MAC or PRF on full messages.
The PRF term in the classical unforgeability bound,

AdvPRF
cSHAKE(C),

must be interpreted in a quantum setting as the advantage of a quantum adversary in
distinguishing the derived subkeys (H, F ) from independent uniform field elements. Since
QMAC uses a single KDF call per master key, and does not reveal outputs of cSHAKE
beyond (H, F ), the adversary cannot mount the full range of quantum PRF attacks against
cSHAKE; it only sees the effect of (H, F ) through the QMAC oracle.
We assume that cSHAKE instantiated with appropriate parameters satisfies a quantum
PRF security notion, so that even in the presence of quantum computations and Q2
style access to the MAC oracle, the distribution of (H, F ) remains computationally
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indistinguishable from uniform to any efficient adversary. Under this assumption, the PRF
term in the QMAC bound continues to behave like a negligible term comparable to the
classical setting.

8.4 Resulting Quantum Security Levels
Combining these observations with the classical reduction in Section 6, we obtain the
following qualitative picture for quantum security.

• The universal hashing term q·ℓ·2−256 remains the baseline collision related component.
In the presence of quantum queries, one expects effective bounds of comparable form
but with q interpreted as the number of quantum oracle queries and with potential
polynomial losses arising from quantum collision finding algorithms. Since 2256 is
large, the resulting bounds remain extremely small for realistic parameter choices.

• The PRF term for cSHAKE remains the dominant concern for long term quantum
security. Under standard quantum PRF assumptions for Keccak based constructions,
the effective security level against key recovery and forgery remains close to 128 bits
in a conservative interpretation, due to generic Grover style search against the 256
bit key space.

• There is no known Simon based Q2 attack on QMAC. The tag oracle does not
implement a two to one xor periodic function with a hidden shift, and the algebraic
structure of the polynomial hash is incompatible with a global period without
contradicting the proven almost universality properties.

In practice, treating QMAC as providing roughly 128 bits of security against quantum
adversaries is conservative and aligns with standard interpretations of 256 bit symmetric
primitives in the Q2 model. This level is sufficient for long term confidentiality and integrity
in many applications. The absence of known structure specific quantum attacks, combined
with the Carter Wegman form of the construction and the strong field size, suggests that
QMAC remains robust in a quantum setting, provided that keys and nonces are managed
correctly and that the total volume of authenticated data per key stays within conservative
bounds.

9 Cryptanalytic Analysis and Comparative Evaluation
This section provides a qualitative cryptanalytic assessment of QMAC and compares it
with related polynomial and sponge based MAC constructions. The focus is on diffusion,
linear mixing, structural vulnerabilities, and work factor estimates in both classical and
quantum settings.

9.1 Diffusion and Linear Mixing Properties
QMAC uses multiplication in GF (2256) defined by the irreducible pentanomial

m(x) = x256 + x10 + x5 + x2 + 1.

Each message block update applies the transformation

Y ← H · (Y ⊕Xi),

where H is the fixed secret hash key, Y is the current accumulator, and Xi is the encoded
block. This is an affine map over GF (2256) of the form

Y 7→ H · Y ⊕H ·Xi.
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For a fixed nonzero H, multiplication by H in GF (2256) is a linear permutation on the
256 dimensional vector space over GF (2). The associated linear map has no nontrivial
kernel, so no component of Y can be fixed or annihilated by the update. The choice
of a low weight irreducible polynomial ensures that the reduction step after polynomial
multiplication distributes individual bit contributions across many output coordinates. In
terms of diffusion, a single input bit of Y or Xi influences multiple output bits after one
multiplication, and the number of affected bits grows quickly with successive rounds.

Compared with GMAC, which operates in GF (2128), QMAC doubles the field dimension.
This yields two benefits. First, the linear map induced by multiplication by H acts on a
larger state space, which raises the cost of any linear algebra based attack that attempts
to recover H from observed tags and chosen messages. Second, the collision probability of
the polynomial hash decreases from an order of magnitude of 2−128 per block to 2−256 per
block, as formalized in the algebraic analysis.

From a structural perspective, the linearity of the polynomial hash is intentional and well
understood. It does not introduce a global period or an easily exploitable invariant. For a
fixed key H, the map M 7→ hH(M) is injective except with the small probability quantified
in Lemma 3. In particular, there is no nonzero mask ∆ such that

hH(M) = hH(M ⊕∆) for all M,

and hence the full tag function M 7→ T (M) = hH(M) ⊕ F does not satisfy a Simon
type promise of the form required by quantum period finding attacks. Any such global
xor period would contradict the almost universal and almost xor universal properties
established earlier. This absence of a structural period is relevant in the Q2 model and is
revisited in the quantum security discussion.

9.2 Comparison with GMAC and KMAC
QMAC is structurally closest to GMAC. Both use a polynomial hash over a binary field
with a secret hash key and apply a final xor with a key derived from a block cipher or
hash based primitive.

Tag length and collision bounds. GMAC typically uses a 128 bit tag and operates
in GF (2128). Its universal hashing term is of order ℓ · 2−128 for messages of at most ℓ
blocks. QMAC uses a 256 bit tag and GF (2256), which yields a universal hashing term of
order ℓ · 2−256. This squares the security margin for a given message length and number of
queries. In practical terms, the risk of a collision induced forgery from universal hashing
effects is negligible for QMAC for any realistic data volume.

KMAC, in contrast, derives its security primarily from the pseudo-randomness of the
cSHAKE sponge rather than from explicit universal hashing. It provides tag lengths
and security levels that can be tuned by the choice of output length, but its analysis is
expressed directly in terms of PRF style bounds rather than Carter Wegman type split
into a universal hash and mask.

Performance and message size regimes. In GMAC, authentication cost is dominated
by repeated applications of a block cipher in a mode that effectively implements field
multiplication. In QMAC, polynomial multiplication and reduction over GF (2256) are
implemented directly through carryless multiplication and xor based reduction. For typical
message sizes, QMAC behaves like a fixed number of field multiplications per block,
which is amenable to vectorization and may outperform GMAC on platforms where AES
acceleration is absent or where carryless multiplication instructions are efficient.
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KMAC evaluates over the entire message. Its performance depends on the properties of
the sponge function and is usually favorable for long messages. For short messages or for
systems that already need an efficient polynomial field multiplication routine for other
purposes, QMAC can be competitive or superior, because the key derivation is performed
once per session and each block update requires only polynomial multiplication and xor
operations.

Implementation complexity and code footprint. GMAC requires a full block cipher
implementation, key schedule, and a field embedding consistent with the block cipher.
QMAC avoids the block cipher and instead requires Keccak based cSHAKE plus a relatively
small amount of code for polynomial multiplication and reduction in GF (2256). This can
be advantageous in constrained environments where code size matters and where a Keccak
implementation is already present for other purposes.

KMAC uses only the Keccak functions and does not need explicit field arithmetic, which
keeps its implementation conceptually simple. QMAC introduces additional algebraic
structure through GF (2256), but this structure is highly regular and well suited for low
level optimization. The code footprint for QMAC is modest and is dominated by the
cSHAKE and Keccak components that are shared with KMAC.

9.3 Work Factor Estimates and Usage Guidelines
The classical unforgeability bound for QMAC has the form

AdvEUF-CMA
QMAC (A) ≤ AdvPRF

cSHAKE(C) + q · ℓ · 2−256,

where q is the number of tagging queries and ℓ is an upper bound on the number of blocks
per query. The first term reflects the difficulty of distinguishing (H, F ) from uniform. The
second term reflects the universal hashing contribution.
From a work factor perspective, an adversary that simply guesses tags has success
probability of 2−256 per attempt. Even large scale brute force forgery attempts remain
infeasible at this level. The universal hashing term becomes significant only when q · ℓ
approaches the order of 2256, which is far beyond plausible usage levels.

In the presence of quantum adversaries, Grover style search suggests that exhaustive search
against a 256 bit key space costs on the order of 2128 quantum operations. Quantum
collision or forgery strategies against polynomial MACs may see a similar reduction
in effective security, but there is no indication of a structural attack that would push
the complexity below this range. Treating QMAC as providing approximately 128 bits
of security against quantum adversaries is conservative and consistent with standard
symmetric cryptography assessments for 256 bit fields and tags.

These considerations lead to practical usage guidelines:

• Keys and nonces should never be reused across independent cryptographic domains.
Domain separation in the cSHAKE invocation must be maintained.

• The total number of authenticated blocks per key should remain well below the
regime where q · ℓ approaches 2128, which already provides a very generous margin
in both classical and quantum models.

• Implementations should ensure that the polynomial arithmetic and cSHAKE invoca-
tions are constant time with respect to secret data to avoid side channel leaks that
are outside the formal model.
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Within these constraints, QMAC provides strong integrity guarantees. Its field size and tag
length give a larger safety margin than GMAC, and its structure is transparent enough to
admit detailed algebraic analysis, while remaining competitive with KMAC in environments
where Keccak based primitives are already deployed.

10 Implementation Conformance and Side Channel Con-
siderations

This section assesses how the reference implementation conforms to the formal QMAC
construction and examines the side channel properties of the code. The objective is to
verify that the implementation matches the mathematical model, operates without data
dependent control flow, and satisfies the assumptions required for secure deployment.

10.1 Mapping Between Model and Reference Implementation
The reference C code implements QMAC in direct accordance with the formal construction.
Each component of the mathematical specification has a corresponding concrete operation.

Key derivation. The formal key derivation step

(H, F ) = Split256,256(cSHAKE(K, N, info))

is realized in the function qsc_qmac_initialize. The implementation performs a single
cSHAKE absorption using the master key, nonce, and information string, then squeezes 64
bytes of output and splits them into the two 256 bit subkeys. No additional processing of
the cSHAKE output occurs, which matches the formal model exactly.

Block encoding and padding. Messages are divided into 32 byte blocks and the final
block is padded with zeros on the right. The function qsc_qmac_update copies exactly
32 bytes into a temporary 256 bit array. The encoding coincides with the big endian
interpretation defined in the formal description.

Accumulator update. The accumulator update

Y ← H · (Y ⊕Xi)

matches the exact sequence in qmac_block_update. The xor with the message block
is performed first, followed by a field multiplication using qmac_gfmul256_poly, which
implements multiplication modulo the specified pentanomial. This matches the defined
recurrence exactly.

Finalization. The formal finalization step

T = Y ⊕ F

is implemented in qmac_compute_final. The accumulator is xor combined with the
finalization key and copied to the output buffer. No additional hashing or mixing occurs
after the combination with F .
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Field arithmetic. The reference multiplication routine implements polynomial multipli-
cation over GF (2)[x] and performs modular reduction using the relation

x256 ≡ x10 ⊕ x5 ⊕ x2 ⊕ 1.

This matches the reduction rule derived from the irreducible polynomial used in the
formal model. The mapping between the polynomial representation and the bit string
representation is consistent with the formal encoding.
Together, these correspondences confirm that the implementation is a faithful realization
of the formal QMAC construction.

10.2 Constant Time Behavior and Microarchitectural Issues
The implementation is structured to avoid data dependent branches and memory accesses,
which is essential for preventing timing leakage and side channel vulnerabilities.

Constant time field multiplication. The core operation qmac_gfmul256_poly per-
forms carryless multiplication and modular reduction using loops that operate over fixed
index ranges. The decisions made during reduction depend only on arithmetic on public
bit positions, not on secret dependent control flow. All bit tests, shifts, and xors are
unconditional.

Fixed memory access patterns. All loads and stores during block processing operate
on fixed sized buffers, and there are no secret indexed table lookups. Each message block is
copied into a fixed array of four 64 bit words, and all subsequent arithmetic uses registers
or contiguous memory operations.

Vectorized operations. The implementation uses vectorized xor and copy operations
when available. These operate on fixed width lanes and do not introduce data dependent
branching. Scalar fallbacks exist and behave deterministically with respect to secret data.

Code paths independent of secret values. The implementation does not vary control
flow based on the values of H, F , Y , or block contents. All high level code paths are
determined solely by message length and not by secret information.

These properties ensure that the implementation conforms to the constant time assumptions
required by the security model. The lack of table lookups or branch dependent arithmetic
protects against timing side channels, cache attacks, and microarchitectural leakage.

10.3 Randomness and Nonce Handling
The formal model requires that each QMAC computation use a nonce that is unique for
each master key. The implementation treats the nonce as caller supplied. This design
requires the surrounding system to enforce the following conditions.

• The nonce must be unique for each initialization under a fixed master key. Reuse
of (K, N) pairs causes the same (H, F ) pair to be generated, which weakens the
intended session separation.

• The nonce must be exactly 32 bytes and must not be truncated or padded inconsis-
tently.
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• The implementation does not verify the quality of randomness in the nonce. Therefore
the system must ensure either uniformly random or at minimum unique nonce
generation.

• The master key K is not reused across domains with different cSHAKE customizations.
Domain separation must be applied externally if QMAC is used in multiple protocol
components.

These requirements match the assumptions in the security model, where the nonce N is
treated as an adversarially observable but externally controlled value.

10.4 Key and State Erasure
The formal security model assumes that ephemeral state and secret keys are erased after
use. The implementation includes explicit clearing of all sensitive material.

Internal state clearing. The function qsc_qmac_dispose clears H, F , and Y using
secure clearing primitives that overwrite memory before releasing control. This satisfies
the erasure requirement for the hash subkey, finalization key, and accumulator.

Temporary buffers and Keccak state. The cSHAKE initialization routine uses
temporary buffers to hold intermediate data. These buffers and the Keccak state are
cleared immediately after (H, F ) are extracted. No residues of the internal sponge state
remain in memory after initialization.

No persistent state. QMAC does not store any state between calls other than what
is explicitly passed in the state structure. This supports the assumption that the MAC
computation leaves no covert state for the adversary to exploit across sessions.

The erasure behavior of the implementation satisfies the assumptions of the formal model
and contributes to side channel resilience by preventing leakage of stale secret data.

11 Conclusion
11.1 Summary of Results
This paper presented a complete formal cryptanalysis of QMAC, a Carter Wegman style
message authentication code that combines a polynomial hash over GF (2256) with subkeys
derived through cSHAKE. We established a clean mathematical model for the construction,
provided a rigorous engineering level description grounded in the reference implementation,
and derived explicit unforgeability bounds in the chosen message setting.

The algebraic analysis demonstrated that the polynomial hash satisfies strong almost
universal and almost xor universal properties, with collision probability bounded by ℓ·2−256

for messages of at most ℓ blocks. Based on these results, we proved that any EUF-CMA
adversary against QMAC induces either a collision adversary against the hash family or a
pseudo-randomness adversary against the cSHAKE based key derivation. The combined
bound takes the classical Carter Wegman form and yields a negligible forgery probability
for any realistic number of queries.

The quantum analysis showed that QMAC does not expose structural periodicity that
could be exploited by Simon style quantum attacks. Quantum adversaries primarily gain
generic advantages such as Grover style search speedup, and the effective quantum security
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level is comparable to that of other 256-bit symmetric constructions. The cSHAKE based
key derivation remains the dominant factor in quantum settings, and the polynomial hash
inherits known quantum bounds for universal hash based MACs.

The cryptanalytic comparison placed QMAC alongside GMAC and KMAC in terms of
diffusion, field size, implementation complexity, performance characteristics, and work
factors. The larger field and tag size give QMAC a significantly larger safety margin for
collision resistance than GMAC, while its structure remains simple and transparent relative
to KMAC. The implementation conformance review confirmed that the reference code
aligns with the formal model, operates without data dependent branching, and incorporates
secure key erasure.

11.2 Limitations and Future Work
The analysis presented here follows the standard Carter Wegman framework and assumes
that cSHAKE behaves as a pseudo-random function in both classical and quantum oracle
models. While this assumption is consistent with existing studies of Keccak based primitives,
further work on tighter quantum reductions for sponge based KDFs would strengthen the
theoretical foundations of QMAC in the Q2 setting.

Another area for future study is the exploration of alternative irreducible polynomials or
field dimensions. The present construction uses a degree 256 pentanomial for its balance
of efficiency and algebraic clarity. Other choices may offer alternative tradeoffs between
performance and hardware acceleration opportunities. Formal analysis of such variants
would follow similar lines but may require adjustments to implementation strategies.

It may also be valuable to investigate bounded misuse resistance in scenarios where nonce
uniqueness cannot be strictly guaranteed. Although QMAC relies on domain separated
key derivation, exploring the limits of safe operation under small degrees of nonce reuse
would help characterize its robustness in practical systems.

11.3 Implications for Deployment
QMAC is well suited for deployment in systems that require a symmetric integrity
mechanism with strong long term security guarantees and compatibility with post quantum
design goals. Its reliance on cSHAKE for key derivation fits naturally into protocol
stacks that already include Keccak based components. The implementation is compact,
predictable, and straightforward to verify, which supports use in constrained environments.

The security margin provided by the 256 bit field and tag length is substantial. Even
in the presence of quantum adversaries, the expected work factor for successful forgery
remains on the order of 2128 operations. When combined with careful nonce management,
constant time implementation practices, and proper key erasure, QMAC provides a robust
and analytically grounded MAC suitable for modern cryptographic deployments.

Overall, QMAC offers a blend of simplicity, strong theoretical guarantees, and implementa-
tion friendliness that make it a viable choice for symmetric authentication in a broad range
of systems. Future refinements in quantum analysis and implementation optimization will
further enhance its suitability for long term secure applications.
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