QSC - High-Security Cryptographic Library for Critical Domains

A brief summary of the security architecture and standards compliance with industry-recognized
coding and module-validation standards.

Revision 1a, May 23, 2025

John G. Underhill — contact@grcscorp.ca

Abstract

This paper presents the design goals, compliance requirements, and defensive-security focus of
the QSC (Quantum Secure Cryptographic) library project. QSC targets applications in medical,
military, financial, automotive, and avionics systems; industries where failure is not an option
and undefined behavior is outlawed. We describe the dual-build approach (QSC and QCM),
enumerate the standards and coding rules to which QSC must conform, and explain how we
balance strict compliance with real-world performance needs.

1. Introduction

Security-critical systems demand cryptographic components that are not only functionally
correct, but also immune to subtle implementation flaws, timing channels, and undefined-
behavior vulnerabilities. QSC is a portable, standards-driven C library providing post-quantum
and classical primitives designed for deployment in environments governed by the most stringent
safety and security regulations.

Our objectives are:

e Portability: One codebase, four major platforms (macOS, Linux, BSD, Windows).

e Defensive Security: Eliminate undefined and implementation-dependent behavior;
enforce constant-time operations; detect and prevent logic errors.

o Standards Compliance: Align with industry-recognized coding and module-validation
standards.

e Real-World Performance: Support high-throughput use cases (e.g. GB-scale buffer
operations, SIMD acceleration) without sacrificing compliance.

2. Compliance and Portability Requirements

QSC’s quality-assurance regimen includes the following mandatory checks. Each rule set is
linked to its authoritative home page:

mailto:contact@qrcscorp.ca

Portability (POSIX):

Adhere to the Portable Operating System Interface (POSIX) specification to ensure
consistent behavior across UNIX-like systems and Windows subsystems.
https://pubs.opengroup.org/onlinepubs/9699919799/

MISRA C:2023 Compliance

Enforce guidelines to eliminate undefined and critical-unspecified behavior in safety-
critical C code.

https://www.misra.org.uk/

CERT C Secure Coding Standard

Detect and prevent logic errors, buffer overflows, and misuse of the C language that lead
to vulnerabilities.
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard

FIPS 140-3 Cryptographic Module Validation

Validate module design, operational environment, and self-tests under FIPS 140-3 for
U.S. government and regulated industries.

Cryptographic Module Validation Program | CSRC

Common Criteria (ISO/IEC 15408)

Achieve assurance levels (EAL) through standardized evaluation of security functionality
and design.

https://www.commoncriteriaportal.org/

ISO 26262 Functional Safety

Satisfy automotive safety integrity levels (ASIL) for software within electrical/electronic
systems.

https://www.iso.org/standard/68383.html

DO-178C Software Considerations in Avionics

Comply with airborne software assurance levels (DAL) for certification in avionics
systems.

Your Complete DO-178C Guide to Aerospace Software Compliance - LDRA
Common Criteria EAL Levels

Specify the required Evaluation Assurance Level (EAL) per deployment; from EAL1
(functionally tested) up to EAL7 (formally verified design).
https://www.commoncriteriaportal.org/

Logic-Error and Coding-Mistake Detection

Apply static analysis, peer code review, and unit-testing to uncover logic flaws and
implementation mistakes early in the development cycle.
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
Constant-Time Operation Enforcement

Ensure that all cryptographic primitives execute in time independent of secret-data
values, preventing timing side-channels.

Guidelines for Mitigating Timing Side Channels Against Cryptographic...

3. Dual-Build Strategy: QSC and QCM

QSC (Full-Feature Library):

https://pubs.opengroup.org/onlinepubs/9699919799/
https://www.misra.org.uk/
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://csrc.nist.gov/Projects/Cryptographic-Module-Validation-Program/Validated-Modules
https://www.commoncriteriaportal.org/
https://www.iso.org/standard/68383.html
https://ldra.com/do-178/
https://www.commoncriteriaportal.org/
https://wiki.sei.cmu.edu/confluence/display/c/SEI+CERT+C+Coding+Standard
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/secure-coding/mitigate-timing-side-channel-crypto-implementation.html

o Includes platform APIs for file I/O, console I/O, OS threading, dynamic memory,
and SIMD intrinsics (where available).
o Enables high-performance servers and applications that allocate large buffers (e.g.
several GB) without page-fault storms.
o Nearly MISRA-compliant: impeachable features (dynamic allocation, OS calls,
intrinsics) are isolated in well-documented modules.
e QCM (Quantum Cryptographic Modules):
o A strictly MISRA-certifiable static library containing only primitives drawn from
NIST and ISO standards:
= AES: GCM, CBC, CTR, ECB
= SHA-2: HMAC, HKDF
= SHA-3 Family: SHAKE, cSHAKE, KMAC
= ECC: ECDSA, ECDH
= Post-Quantum Primitives: Dilithium, Kyber, SPHINCS+, Falcon,
McEliece
= ISO-Standardized: ChaCha, Poly1305
o No reliance on dynamic memory, file/console 1/O, or platform-specific intrinsics.

QCM can undergo full MISRA certification and satisfy FIPS 140-3, Common Criteria, ISO
26262, and DO-178C assessments without waivers.

4. Defensive-Security Emphasis

Cryptographic libraries used in web servers and general-purpose applications prioritize
throughput and feature breadth, often tolerating:

e Undefined or implementation-defined behavior.
e Occasional use of dynamic memory or OS APIs without rigorous bounds checking.
o Potential timing and cache side-channels under adversarial conditions.

By contrast, QSC enforces:

1. Zero Undefined Behavior: Every C construct is vetted against the standard; file and OS
API calls are encapsulated and validated before use.

2. Rigorous Static Analysis: Automated tools for MISRA, CERT C, and bespoke logic
checks run on every commit.

3. Constant-Time Guarantees: Secrets never influence control flow or memory access
patterns.

4. Comprehensive Self-Tests: Each module includes power-up and runtime tests to detect
tampering, hardware faults, or configuration errors.

5. Assessed Integration Points: OS-specific code is confined to thin, peer-reviewed layers,
facilitating system-level certification without re-auditing core cryptographic routines.

5. Design Considerations and Performance

e SIMD Intrinsics: Enabled in QSC for entropy-expensive or high-throughput routines
(e.g. hashing large datasets), with fallbacks to portable C.

e Dynamic Memory: Permitted only in QSC’s performance critical sections; QCM
bypasses all heap usage.

o Stack Allocation Limits: Avoid multi-MB stack frames to prevent page thrashing; large
buffers are heap-backed or mapped via OS APIs under strict bounds.

e Threading and Concurrency: Use only POSIX or Windows threading APIs; all shared
mutable state is protected by MISRA-approved synchronization primitives.

These choices allow QSC to deliver industrial-strength performance while maintaining a
verifiable compliance pedigree.

6. Conclusion

The QSC project delivers a new generation of cryptographic software tailored for the most
demanding safety and security-critical domains. By adopting a dual-build strategy (QSC and
QCM), we reconcile the need for high performance with the imperative of uncompromising
standards compliance, meeting MISRA C:2023, CERT C, FIPS 140-3, Common Criteria/EAL,
ISO 26262, and DO-178C. Defensive engineering practices, constant-time guarantees, and
exhaustive static analysis ensure that undefined behavior and implementation flaws are
eradicated, providing a foundation upon which medical devices, military systems, financial
services, and avionics can build their security architectures with confidence.

