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Abstract. RCS, the Rijndael Cipher Stream, is a wide-block authenticated
encryption scheme that combines a 256-bit Rijndael permutation with cSHAKE
derived round keys and a KMAC-based authentication layer. This paper provides a
formal cryptanalysis of the construction, presenting a complete game-based security
treatment and an engineering specification aligned with the reference implementation.
We begin by defining the precise AEAD syntax, key and nonce requirements, and the
operational behavior of RCS, including a pseudo-code description derived directly
from the implementation. Using this model, we establish confidentiality through a
sequence of hybrid games that reduce the security of the key-stream generator to
the PRF security of cSHAKE and the PRP security of the Rijndael-256 permutation
under independently derived subkeys. Integrity is shown to follow from the existential
unforgeability of KMAC, which authenticates associated data, ciphertext, the nonce,
and encoded length information under domain-separated customization parameters.
Combining these results with a standard Encrypt-then-MAC composition theorem
yields IND-CCA security under unique nonce usage. The cryptanalytic evaluation
examines differential, linear, algebraic, and related-key attacks on wide-block Rijndael
variants and demonstrates that the 22-round (RCS-256) and 30-round (RCS-512)
configurations lie well beyond all published attack boundaries.

Independent ¢SHAKE derived round keys eliminate structural weaknesses associ-
ated with classical Rijndael key schedules, while the sponge-based authentication
layer avoids the linearity and nonce-misuse issues inherent to polynomial MAC
constructions. We also analyze post-quantum considerations, showing that RCS
retains its intended security levels under standard quantum query models. Finally,
we document the operational assumptions required for correctness and discuss the
limits of the construction, including the fact that RCS is not misuse-resistant and
relies critically on nonce uniqueness. The resulting analysis provides a rigorous and
implementation-aligned foundation for evaluating RCS as a symmetric primitive
suitable for high-assurance and post-quantum-transition environments.



The Design and Formal Analysis of RCS:
2 A Quantum-Resilient AEAD Scheme

1 Introduction

RCS, the Rijndael Cipher Stream, is a wide-block authenticated encryption construction
that integrates a 256-bit Rijndael permutation with cSHAKE-based subkey generation and
a KMAC authentication layer. The design seeks to provide deterministic and structurally
simple authenticated encryption while maintaining strong resilience to classical and post-
quantum adversaries. Unlike modes that derive both confidentiality and integrity from a
single duplex state, RCS separates its encryption and authentication components, employing
counter-mode encryption over a wide permutation and an independent sponge-based MAC.
This modular layout simplifies analysis, enhances domain separation, and allows each
component to be treated under its respective idealized model.

The RCS construction builds directly on two well-established families of primitives. The
wide-block Rijndael permutation extends the AES design to a 256-bit state, enabling
deeper diffusion and reducing exposure to structural attacks on reduced-round variants.
The cSHAKE and KMAC functions, derived from the Keccak sponge framework, provide
domain-separated key expansion and message authentication without relying on polynomial
structures that are fragile under nonce misuse. Together these yield an authenticated
encryption scheme with clean composition properties and conservative cryptanalytic
margins.

This document refines and strengthens the original RCS analysis by giving a complete,
formally grounded treatment of its security. Earlier drafts presented high-level reasoning
and informal reductions; here we replace those with full game-based proofs of confidentiality,
integrity, and AEAD security, each aligned with standard definitions used in modern
cryptographic literature. In addition, we justify the chosen parameters through a broader
cryptanalytic survey of differential, linear, algebraic, and related-key attacks on wide-block
Rijndael and sponge-based constructions. Finally, we introduce an engineering-level
description of the scheme derived directly from the reference implementation, ensuring
that the formal model and the deployed system are fully aligned.

1.1 Background and Motivation

The motivation for RCS arises from the need for an authenticated encryption primitive
that is simultaneously easy to analyze, domain-separated at all interfaces, and powered
by primitives whose security arguments remain stable in the post-quantum era. Conven-
tional block-cipher-based AEAD schemes, including popular polynomial modes, rely on
key schedules or linear MAC structures that introduce analytical challenges or misuse
vulnerabilities. Sponge-based designs address some of these limitations but often entwine
encryption and authentication within a single state, complicating proofs and side-channel
hardening.

RCS instead adopts a hybrid model: Rijndael-256 is used exclusively for key-stream
generation in counter mode, while a separate KMAC instance authenticates the associated
data and its length, the nonce, the ciphertext, and a final encoded length value derived from
the number of processed bytes. The cSHAKE key schedule removes the linear recurrences
that enable related-key and slide attacks against the classical AES schedule, and the wider
permutation increases the difficulty of reduced-round differential and linear trails. These
design choices make RCS a useful case study in integrating well understood primitives into
a conservative, post-quantum-ready AEAD construction.

1.2 Contributions of this Work

This formal cryptanalysis advances the RCS analysis in four specific ways:

e Engineering-Level Definition. We introduce a precise operational description
of RCS, including a pseudo-code specification derived directly from the reference



implementation. This ensures consistent interpretation across implementations and
proofs.

e Complete Game-Based Reductions. We present full hybrid-game proofs for
confidentiality (IND-CPA), integrity (INT-CTXT), and composed authenticated
encryption security (IND-CCA), reducing these properties to the PRP security of
the wide-block Rijndael permutation and the PRF/EUF-CMA security of cSHAKE
and KMAC.

e Cryptanalytic Justification of Parameters. We analyze the resistance of the
22-round (RCS-256) and 30-round (RCS-512) configurations against published
differential, linear, algebraic, and related-key attacks, demonstrating conservative
margins in each case.

e Clarification of Operational Assumptions and Limits. We document the
required conditions for security, including nonce uniqueness, and provide a clear
explanation of the consequences of misuse, such as confidentiality failure under nonce
reuse.

1.3 Organization of the Paper

Section 2 provides a complete engineering-level description of RCS, including a pseudo-code
specification that aligns with the reference implementation. Section 3 introduces the
notation, primitive assumptions, and adversarial model used throughout the analysis.
Section 4 formalizes the RCS construction within this model. Section 5 presents the
security definitions for confidentiality, integrity, and authenticated encryption. Section 6
contains the full game-based reductions establishing these guarantees. Section 7 evaluates
the cryptanalytic strength of RCS against major attack families and discusses the rationale
behind its parameters. Section 8 describes operational assumptions, limitations, and misuse
considerations. Section 9 analyzes implementation conformance and side-channel aspects.
Section 10 concludes with a summary of results and directions for further refinement.

2 Engineering Description of RCS

This section provides an implementation-aligned description of the RCS authenticated
cipher stream. The presentation follows the behavior of the reference implementation
rcs.c and rcs.h and serves as the canonical definition of the scheme. All notations
introduced here are later used in the formal specification and security proofs.

2.1 Interface and Parameters

RCS is an authenticated encryption with associated data (AEAD) construction with fixed
parameter sets RCS-256 and RCS-512. Each parameter set defines the sizes of the cipher
key and authentication tag, while the block size and nonce size are fixed across variants.

Key Size. RCS-256 uses a 256-bit key (QSC_RCS256_KEY_SIZE = 32 bytes). RCS-512
uses a 512-bit key (QSC_RCS512_KEY_SIZE = 64 bytes).

Block Size. The permutation operates on a fixed 256-bit block
(QSC_RCS_BLOCK_SIZE = 32 bytes).

Nonce. FEach encryption requires a 256-bit nonce of length
QSC_RCS_NONCE_SIZE = 32 bytes. Nonce uniqueness for each key is mandatory.
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Authentication Tag. RCS-256 outputs a 32-byte tag (QSC_RCS256_MAC_SIZE). RCS-
512 outputs a 64-byte tag (QSC_RCS512_MAC_SIZE).

Associated Data. Associated data is an arbitrary byte string that is authenticated but
not encrypted. The caller provides associated data via
gsc_rcs_set_associated before calling the transform routines.

API Surface. The implementation exposes the following public functions:

e gsc_rcs_initialize(state, keyparams, encrypt) initializes the cipher, derives

round keys and the MAC key, loads the nonce, and sets the mode.

gsc_rcs_set_associated(state, data, length) optionally adds AEAD data to
the authentication function after initialization and before the transform.

gsc_rcs_transform(state, out, in, length) encrypts or decrypts a message of
length length bytes and applies or verifies a tag.

gsc_rcs_extended_transform provides identical functionality for multi-part mes-
sages.

Table 1: RCS parameters for the two supported variants.

Parameter RCS-256 RCS-512
Key length 32 bytes 64 bytes
Tag length 32 bytes 64 bytes
Rounds (R) 22 30

Round key size 32 bytes x (R+1) 32 bytes x (R+1)
Keccak rate (1) 136 bytes 136 bytes
Keccak capacity (c¢) 512 bits 512 bits
Domain string rcs256 rcsb12

2.2 Internal State Layout

The internal state structure gsc_rcs_state contains all data needed for the permutation,
key schedule, counter generation, and authentication:

Cipher Type (ctype) distinguishing RCS-256 or RCS-512.

Round Key Array An array of 128-bit or 32-bit elements (depending on platform),
containing the expanded subkeys for all rounds. The total number of rounds is:

Rose = 22, Rs12 = 30.

Keccak State (kstate) The internal sponge state used for key expansion and MAC
key extraction.

Nonce Storage A 32-byte buffer containing the initialization nonce.

Byte Counter A 64 bit counter that accumulates the total number of message bytes
processed by the transform routines. It is used only in the final length encoding
absorbed by the MAC and does not drive the counter values used by the Rijndael
256 encryption layer.

Mode Bit (encrypt) Determines whether the transform function performs encryp-
tion or decryption.



The 256-bit Rijndael state is represented internally as two independent 128-bit halves,
each stored as a 4x4 byte array. Round keys are 256-bit values applied to the full state
each round.

2.3 Background on Rijndael-256

Rijndael-256 is a wide—block variant of the Rijndael family, operating on a 256-bit state
arranged as two parallel 128-bit arrays. Each array is organized as a 4 x 4 byte matrix
and processed using the standard Rijndael round functions: nonlinear byte substitution,
row shifting, column mixing over GF(28) and round-key addition. The two state halves
are updated in lockstep, and the round keys span the entire 256—bit block.

The nonlinear layer is identical to AES, and the linear diffusion layer is generalized to
256 bits through extended column mixing. The widened state increases the number of
active S-boxes per round and raises the algebraic degree of the permutation more rapidly
than AES-128 or AES—256. These properties sharply constrain differential and linear trail
construction and increase the minimum data complexity required for distinguishers.

In RCS, this permutation is used exclusively in counter mode. Each key-stream block is
produced by applying the Rijndael-256 permutation to a 256-bit counter value, which
is incremented modulo 22°6 at each block. The master key does not feed an internal key
schedule; instead, independently distributed round keys are derived from a cSHAKE-based
expansion. Under the assumption that the per-round keys behave as independent 256-bit
values, the permutation is modeled as a pseudo-random permutation (PRP) in the security
analysis.

The RCS-256 and RCS-512 variants use 22 and 30 rounds, respectively, providing
significant margin over known reduced-round analyses of Rijndael-256. These round
counts place the construction well outside the range of known differential, linear, algebraic
and structural cryptanalytic techniques.

2.4 Key Expansion via cSHAKE

Key expansion is performed using the cSHAKE extendable-output function. The initial-
ization absorbs:

1. the input cipher key,
2. the optional user-defined information (tweak) string info,
3. a fixed, scheme-specific domain string:
e rcs256_name for RCS-256,
e rcs512_name for RCS-512.
Once initialized, the cSHAKE instance produces a stream of pseudo-random bytes. This
stream is used as follows:

o first, a contiguous block of bytes is squeezed and mapped into the array of (R + 1)
256-bit round keys,

e then, after at least one additional permutation of the sponge state, a further squeeze
yields the MAC key (32 bytes in RCS-256 or 64 bytes in RCS-512).

The domain strings guarantee that RCS key expansion is isolated from other cSHAKE
applications and is resistant to related-key and cross-domain collisions.

2.5 Counter Mode Encryption Layer

Encryption uses the wide-block Rijndael permutation in counter mode.
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Counter Initialization. Counter Initialization. The initial counter block is the 32-byte
nonce interpreted as a 256-bit little-endian integer. For block index i, the counter value
is CTR; = (N + i) mod 22°¢) and this value is used directly as the permutation input for
that block.

key-stream Generation. For each block index ¢:

1. Form the counter block CTR; as

CTR; = (N + i) mod 22°.

2. Apply the Rijndael-256 round function with the expanded round keys:

KS; = Erx (CTR,).

3. Increment the counter.

In the reference implementation the counter blocks are realized by treating the 32 byte
nonce buffer as a 256 bit little endian integer and incrementing it in place after each block
with gsc_intutils_ le8increment; the byte counter ctx.counter is used only by the MAC
layer.

Encryption and Decryption. The key-stream block K.S; is XORed with the plaintext
block P; to form ciphertext C;, and conversely during decryption.

2.6 KMAC Authentication Layer

RCS authenticates ciphertext using a KMAC instance derived from the same cSHAKE
state but extracted from an independent domain-separated portion of its output.
The authenticated input to KMAC consists of a deterministic transcript that includes:

e the associated data AD,

o a fixed-width encoding of |AD|,
o the current 32-byte nonce N,

o the ciphertext C, and

e a final fixed-width encoding of the total number of bytes processed during the
transform stage (which depends on the nonce block size and the accumulated
ciphertext length).

Tag Generation. Upon finalizing encryption:

1. all associated data is absorbed, followed by a fixed-width encoding of its length, via
gsc_rcs_set_associated,

2. immediately before processing a message chunk, the current 32-byte nonce value is
absorbed,

3. each ciphertext chunk is absorbed during the transform, and a running byte counter
is updated,

4. at finalization, a fixed-width encoding of the total number of processed bytes (nonce
block plus ciphertext and the length field itself) is absorbed, and

5. a tag of length 32 bytes in RCS—-256 or 64 bytes in RCS-512 is output.



Tag Verification. During decryption, a tag is recomputed and must match the provided
tag in constant time. If verification fails, decryption returns failure and no plaintext is
released.

Table 2: Components of the authenticated transcript absorbed by KMAC.

Component Description

AD Associated data

encode_len(|AD|) Fixed-width encoding of AD length

N 32-byte nonce absorbed per transform call
C Ciphertext bytes processed so far

encode_len(total_bytes) Encoded count of total bytes absorbed

2.7 Background on Keccak, cSHAKE and KMAC

RCS uses two components from the Keccak family: ¢cSHAKE for key expansion and KMAC
for message authentication. Both are derived from the Keccak sponge construction, which
absorbs input blocks into a large permutation state and later squeezes output blocks from
the same state. The permutation used here is Keccak—f[1600], which updates a 1600-bit
internal state through 24 rounds of nonlinear and linear mixing.

The sponge construction is parameterized by a rate r and capacity ¢, with r 4+ ¢ = 1600.
RCS uses the 256-bit security configuration, giving a rate of r = 1088 bits (136 bytes) and
a capacity of ¢ = 512 bits. Each call to the squeeze function yields up to 136 bytes before
requiring another permutation of the Keccak state.

The cSHAKE variant provides domain separation through a function—name string and
an optional customization string. In RCS, the master key, the optional user—defined info
value and a fixed function-name string (rcs256 or rcs512) are absorbed to initialize the
state. The output stream is interpreted as a sequence of pseudo-random bytes from which
RCS slices (R + 1) independent 256-bit round keys. At least one additional permutation
is applied before squeezing the MAC key to ensure independent derivation relative to the
round—key material.

KMAC is a message authentication code built on ¢SHAKE, using a sponge-based
absorb—then—squeeze interface. In RCS, KMAC authenticates a transcript that includes
the associated data and its length encoding, the 32-byte nonce, the ciphertext, and a final
encoding of the total processed—byte count. Under the standard PRF and EUF-CMA
assumptions for sponge—based MACs with capacity ¢ = 512, this construction provides
strong binding of all inputs to the tag.

2.8 Positioning RCS as a Post-Quantum Successor to AES-GCM
and ChaCha20-Poly1305

Authenticated encryption in current network protocols is dominated by two constructions:
AES-GCM and ChaCha20-Poly1305. Both achieve high performance and broad hardware
support, but their long-term viability in a post-quantum environment is limited by
structural properties of their authentication mechanisms and by security bounds tied
to classical number-theoretic assumptions.

AES-GCM combines AES in counter mode with the GHASH polynomial authenticator.
GHASH is linear over GF(2'?®) and its security reduces to the hardness of forging evalua-
tions of a fixed polynomial. This structure inherits quantum speedups via multi-evaluation
and parallel quantum queries, reducing the effective tag security to the 64-bit range.
In addition, the polynomial authentication layer is fundamentally tied to finite-field
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multiplication, which is known to be susceptible to further algebraic and quantum-assisted
attacks.

ChaCha20-Poly1305 inherits similar limitations because Poly1305 is also a polynomial
MAC evaluated modulo a large integer, and its post-quantum strength is bounded by the
algebraic degree and collision properties of the underlying polynomial evaluation. In both
cases, the tags are 16 bytes, limiting the birthday-bound security of the MAC even in fully
classical settings.

RCS avoids these structural weaknesses. The authentication layer is KMAC, constructed
from the Keccak sponge with a 512-bit capacity, providing strong post-quantum collision
and forgery resistance under generic attacks. The tag size (32 or 64 bytes, depending on the
variant) raises the classical and post-quantum forgery bounds far above those achievable
by 16-byte GCM or Poly1305 tags. The use of cSHAKE for domain-separated key
expansion produces independent round keys and a MAC key without relying on algebraic
key schedules or operations with number-theoretic structure. The encryption layer is a
wide-block Rijndael permutation used in pure counter mode, eliminating dependence on
finite-field multiplication and removing the structural assumptions that both GCM and
Poly1305 rely on.

Operationally, RCS also preserves existing hardware acceleration investment. Systems
equipped with AES-NI benefit from the Rijndael structure underlying RCS, as the S-box
and linear layer align with the operations accelerated by AES-NI, allowing hardware-
supported implementations without requiring new instructions. Deployments can therefore
transition to post-quantum authenticated encryption without discarding existing hardware
optimizations.

Taken together, these properties position RCS as a viable post-quantum successor to the
mainstream AEAD constructions in current protocols. It maintains the operational profile
of AES-CTR-based encryption while replacing polynomial MACs with a sponge-based
authenticator that preserves security margins in both classical and quantum models.
Importantly, the RCS 512-bit key option restores the effective post-quantum security
level that 256-bit keys lose under Grover’s algorithm, ensuring that the scheme retains its
intended security strength even in the presence of quantum adversaries.

2.9 pseudo-code Specification

The following pseudo-code mirrors the behavior of gsc_rcs_initialize and
gsc_rcs_transform.



Algorithm 1 RCS__INITIALIZE

Require: Context structure ctx, key parameters params, flag encrypt
Ensure: Initialized RCS state in ctx

// Load key parameters

K < params.key

info < params.info

N ¢+ params.nonce

// Initialize context

ctx.encrypt <— encrypt

ctx.nonce <+ N

ctx.counter < 0

ctx.ctype < params.ctype

// Initialize cSHAKE with key, domain string, and optional info
: S+ CSHAKE_INIT(K, rcs_name, info)

: // Derive round keys as a single squeezed byte stream
: rk_bytes + SPONGE_ SQUEEZE(S, (R + 1) - 32)

: for i =0to R do

ctx.RK[i] < SLICE(rk_bytes, 32 -1, 32)

: end for

: // Derive MAC key

: ctx.mac_key < SPONGE_ SQUEEZE(S, MAC_LEN)

: // Initialize KMAC state

: KMAC__INIT(ctx.mac, ctx.mac_key)

I e e e e e e
S © W N U A WN = O

SpongeSqueeze(S, rlen) denotes a contiguous squeeze of rlen bytes from the cSHAKE
sponge, implemented internally by repeated calls to the rate-sized block function as in the
reference code.
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Algorithm 2 RCS__ TRANSFORM

Require: Context structure ctx, output buffer output, input buffer input, length length,
flag finalize

Ensure: On success, output contains ciphertext or plaintext and the function returns
true

1: // Update processed byte counter

2: ctx.counter < ctx.counter + length

3: if ctx.encrypt = true then

4: // Encryption branch

5: KMAC__UPDATE(ctx.mac, ctx.nonce)

6: RCS__CTR__ TRANSFORM(ctx, output, input, length)

7: KMAC__UPDATE(ctx.mac, output [0. .length-1])

8: if finalize = true then

9: KMAC__UPDATE(ctx.mac, ENCODE_LEN(ctx.counter))
10: tag < KMAC__FINAL(ctx.mac)

11: copy tag into output [length..length+MAC_LEN-1]

12: end if

13: return true

14: else

15: // Decryption branch

16: KMAC__UPDATE(ctx.mac, ctx.nonce)

17: KMAC__UPDATE(ctx.mac, input[0..length-1])

18: if finalize = true then

19: KMAC__UPDATE(ctx.mac, ENCODE_LEN(ctx.counter))
20: code + KMAC_ FINAL(ctx.mac)
21: // Select expected tag length from cipher type
22: tagpos < length
23: if ctx.ctype = RCS256 then
24: tagpos < length
25: ok « VerifyEqual(code, input[tagpos...tagpos + 32 — 1])
26: else
27: tagpos < length
28: ok «+ VerifyEqual(code, input[tagpos...tagpos + 64 — 1))
29: end if
30: if ok = 0 then
31: // MAC check failed, skip decryption
32: return false
33: end if

34: end if
35: // Only reached if MAC check passed or finalize is false

36: RCS_ CTR__ TRANSFORM(ctx, output, input, length)
37: return true
38: end if

3 Preliminaries

This section introduces the notation, idealized models, and adversarial framework used
throughout the security analysis. All definitions follow standard conventions in symmetric
cryptography and AEAD security proofs.
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3.1 Notation

A bit string X of length n is written X € {0,1}”, and |X| denotes its length in bits.
Concatenation is written X || Y. The bitwise exclusive-or operator is denoted X @Y. For
a positive integer ¢, we write [¢] = {1,2,...,q}.

Random Sampling. The notation z & S denotes sampling a value z uniformly at

random from a finite set S. The notation z <- {0,1}™ denotes choosing a uniform n-bit
string.

Probability. For a probabilistic experiment Exp and event E, the probability that F
occurs is written Pr[Exp = E]. All probabilities are taken over the randomness of the
experiment and the adversary.

Negligible Functions. A function u(\) is negligible in the security parameter A if for
every polynomial p(-) there exists N such that u(X) < 1/p(A) for all A > N.

Encoding. Encoding. The MAC input uses fixed width little endian encodings. The
associated data length is encoded as a 32 bit value, and the final byte count is encoded as a
64 bit value. We write encode_len(-) for this fixed width encoding, with the understanding
that the width depends on the field (32 bits for associated data length, 64 bits for the final
processed byte count).

3.2 Underlying Primitives

The RCS construction relies on three cryptographic components: a wide-block Rijndael
permutation, a ¢cSHAKE-based key expansion function, and a KMAC-based message
authentication function. Each is analyzed under a standard idealized model.

Rijndael-256 as a PRP. The wide-block Rijndael permutation is modeled as a pseudo-
random permutation (PRP) over 256-bit blocks under independent round keys. Formally,
for a key K and input X € {0,1}?°, the function Ex (X) is assumed to be indistinguishable
from a uniformly chosen permutation over {0,1}?°¢ when keyed with independently
distributed subkeys. This idealization is used in the confidentiality proof.

cSHAKE as a PRF. The key expansion function is modeled as a pseudo random function
(PRF) from the master key, an optional info string, and a domain separated customization
string to an unbounded pseudo-random output stream. Given the indifferentiability of the
Keccak sponge from a random oracle, and the domain separation of the RCS customization
strings, this model captures the claimed behavior of cSHAKE for key derivation and
round-key expansion.

KMAC as a PRF and EUF-CMA MAC. The KMAC instance used by RCS is
modeled both as:

1. a PRF keyed by a ¢SHAKE-derived MAC key for the purposes of confidentiality
proofs involving hybrid transitions, and
2. an existentially unforgeable MAC (EUF-CMA) for the integrity and AEAD proofs.

The inputs to KMAC include domain-separated customization strings, ensuring that the
MAC key is never correlated with the round keys generated during key expansion.



The Design and Formal Analysis of RCS:
12 A Quantum-Resilient AEAD Scheme

Sponge and Random-Oracle Idealization. Where appropriate, we use the indifferen-
tiability of Keccak’s sponge construction from a random oracle to justify the PRF behavior
of both cSHAKE and KMAC, following the standard security arguments for Keccak-family
XOFs.

3.3 Adversarial Model

We consider probabilistic polynomial-time (PPT) adversaries interacting with the RCS
construction through oracle interfaces defined by the standard AEAD security experiments.
Unless stated otherwise, all adversaries operate in the classical query model. Quantum-
query considerations are addressed separately in the post-quantum subsection of the
security analysis.

Adversary Classes. Throughout this work, we consider:

o IND-CPA adversaries with access to an encryption oracle,

e IND-CCA adversaries with access to both encryption and decryption oracles, where
decryption returns L on invalid tags,

e INT-CTXT adversaries attempting to forge a ciphertext—tag pair,

o adversaries attempting to exploit related-key or structural properties, modeled under
the PRF idealization of cSHAKE.

Query Bounds. Let gg and gp denote the number of encryption and decryption
queries, respectively, and let ¢ denote the maximum total message length across all queries.
Advantage bounds throughout the proofs are expressed as functions of (¢g, ¢p,¢) and the
security parameter A € {256,512}.

Oracle Semantics. The encryption oracle returns ciphertext and tag pairs produced
by the real algorithm, while the decryption oracle outputs the decrypted plaintext if and
only if the supplied tag is correct. Outputs are suppressed on tag failure, preventing
side-channel oracles that could bias the adversary.

Nonce Conditions. All security definitions assume that nonces are never repeated for
a given key. The security model does not provide guarantees under nonce reuse in counter
mode, and this limitation is explicitly documented in the misuse analysis.

Post-Quantum Considerations. We adopt the standard square-root degradation model
for symmetric primitives under quantum adversaries; reductions in the post-quantum
analysis quantify the expected security loss in terms of v2* generic search bounds.

4 Formal Specification of RCS

This section defines the RCS authenticated encryption scheme in mathematical terms.
The description abstracts the engineering-level construction of Section 2 into a concise
formal model suitable for security analysis.

Let A € {256,512} denote the security parameter corresponding to the key size. All bit
strings and operations follow the notation established in the Preliminaries.
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4.1 Syntax of the Scheme

RCS is an authenticated encryption with associated data (AEAD) scheme consisting of
three algorithms:
RCS = (KeyGen, Enc, Dec).

Key Generation. A key K is a uniform bit string of length A. Nonces are 256-bit
strings and are supplied externally by the caller. RCS does not generate nonces internally.

K& {01y, Ne{0,11%5.

Encryption. Given a key K, nonce N, associated data A € {0,1}*, and plaintext
P € {0,1}*, the encryption algorithm outputs a ciphertext C and tag T

(C,T) < Enc(K,N, A, P).

Decryption. Given (K, N, A, C,T), the decryption algorithm outputs either the plaintext
P or the failure symbol 1:
P < Dec(K,N,A,C,T).

Decryption returns P if and only if the tag verifies correctly.

4.2 Encryption and Decryption Algorithms

We describe the algorithms using compact mathematical definitions that correspond to
the pseudo-code in Section 2.6.

Round-Key and MAC-Key Derivation. Let:

(RK(), RK;q,... ,RKR) — CSHAKE(K, info, dRCS)

denote the cSHAKE output stream, domain separated by drcs, partitioned into (R + 1)
independent 256-bit round keys followed by a MAC key, where the MAC key is obtained
only after at least one additional permutation step on the sponge state. The number of
rounds is:
22 for RCS-256,
~ 130 for RCS-512.

Counter-Mode Encryption. Counter-Mode Encryption. Define the initial counter
block CTRy = N, and for each i > 0 let CTR; = (N + i) mod 22°°, where the addition is
on the 256-bit little-endian representation of N. For each block P; of the plaintext,

KS; = Erx(CTR;), C;=P,®KS,,

where Erg is the Rijndael-256 round function using round keys (RKj,..., RKR).
The ciphertext C' is the concatenation of all C;.

Tag Generation. Let ¢ = |P| denote the plaintext length in bytes. The authentication
tag is generated via KMAC as a function of a transcript that includes A, its encoded
length, the nonce N, the ciphertext C, and a final encoded length value derived from the
total processed bytes. In particular, we write this abstractly as

T = KMAC(mkey, 7(A, N, C)),

where 7(A,N,C) is the deterministic transcript corresponding to the sequence of
rcs_mac_update and rcs_mac_finalize calls in the implementation.
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Full Encryption Algorithm. In summary,
Enc(K,N,A,P)=(C,T)

where C' and T are computed as above.

Decryption Algorithm. To decrypt (C,T):
1. Recompute the MAC key mkey and round keys via the same ¢cSHAKE call.

2. Compute
T" = KMAC(mkey, 7(A, N, C)),

where 7(A, N, C) is the deterministic transcript consisting of the associated data
and its fixed width length encoding, the current 32 byte nonce, the ciphertext blocks
processed by the transform, and the final encoded total byte count, exactly as realized
by the sequence of

gsc_rcs_set_associated, rcs_mac_update, and rcs_mac_finalize calls in the
implementation.

3. T #£T, return L.
4. Otherwise, derive KS; = Eri(CTR;) and recover P; = C; @ K S; for each block.

Correctness follows from the fact that both encryption and decryption use identical counter
values and identical key-stream blocks.

4.3 Key and Nonce Requirements

RCS imposes the following requirements on its inputs:

« Key Length. Keys must be uniformly sampled from {0, 1}%°¢ or {0, 1}512.

e Nonce Length and Uniqueness. The nonce must be a 256-bit string and must
not repeat for a given key. RCS provides no security guarantees under nonce reuse.

o Tag Length. The tag length is fixed by the parameter set:

32 bytes (RCS-256),
taglen =
64 bytes (RCS-512).

e Associated Data. Any string supplied as A is authenticated but not encrypted
and must be provided in full before encryption or decryption proceeds.

These conditions reflect the operational requirements of the reference implementation and
define the scope in which the security proofs apply.

5 Security Definitions

This section defines the confidentiality and integrity notions used in the analysis of
RCS. All definitions follow standard AEAD security frameworks, including the IND-CPA,
IND-CCA, and INT-CTXT notions. These definitions form the basis for the game-based
proofs developed in Section 6.

Let A € {256,512} denote the security parameter corresponding to the key size. All
adversaries are probabilistic polynomial-time (PPT) algorithms unless otherwise stated.
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5.1 IND-CPA and IND-CCA Experiments
Confidentiality is expressed through chosen-plaintext (IND-CPA) and chosen-ciphertext
(IND-CCA) indistinguishability experiments. Each experiment allows the adversary to
interact with oracles that implement the AEAD interface of RCS.
IND-CPA Experiment. The IND-CPA experiment Expigggpa (A) proceeds:

1. Akey K & {0,1}* is sampled.

2. The adversary A may adaptively query an encryption oracle:

Oenc(A, Po, P1,N)
where Py, P; are equal-length plaintexts and N is a nonce chosen by A.
3. A hidden bit b < {0,1} is sampled.

4. The oracle returns
(C,T) + Enc(K, N, Asssoc, Bp),

where A,ssoc denotes the associated data supplied by A.
5. A outputs a bit b'.

The adversary’s advantage is:

AdVipe e (A) = |Prt = b] — 4.

IND-CCA Experiment. The IND-CCA experiment extends the IND-CPA experiment
by allowing access to a decryption oracle, with tag-verification failures suppressed:

1. A key K is generated as above.
2. The encryption oracle is identical to the IND-CPA experiment.

3. The adversary may also query a decryption oracle:
Odec(A7 N7 AaSSOC7 Cv T),

which returns Dec(K, N, Asssoc, C,T) unless (C,T) was previously returned by the
encryption oracle.

4. Adversary outputs a guess b'.
The IND-CCA advantage is:
AdviREs? (A) = [Prlt = b] — 1.

These definitions assume that nonces never repeat under the same key, since counter-mode
encryption does not provide confidentiality under nonce reuse.

5.2 Ciphertext Integrity (INT-CTXT)

Ciphertext integrity captures the adversary’s inability to produce a valid ciphertext—tag pair
not previously output by the encryption oracle. The INT-CTXT experiment Exp'pis(A)
is defined:

1. A key K is chosen uniformly at random.

2. A may query an encryption oracle Ognc(A, P, N), receiving (C,T) for chosen (P, N).
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3. Eventually A outputs a tuple (N*, A*, C*,T*).
4. A wins if:
(a) (C*,T*) was not the output of any encryption query,
(b) Dec(K,N* A*,C*,T*) # L.
The integrity advantage is:
AdVIESE (4) = Pr [Bxpllec(4) = 1].

This definition captures forgeries, truncation attempts, block reordering, and bit-flip
attacks, since any modification of C' results in tag failure with all but negligible probability
under the EUF-CMA security of KMAC.

5.3 Related-Key and Misuse Notions

RCS uses cSHAKE to derive independently distributed round keys from the master key,
nonce, and domain-separated customization strings. This prevents the algebraic and linear
relations exploited by classical related-key attacks on AES-like key schedules.

Related-Key Security. For completeness, we consider adversaries whose queries may
involve keys drawn from a related-key oracle:

K/ = f(K)’

where f is an efficiently computable key-derivation function chosen by the adversary.

In the RCS model, all round keys and MAC keys are derived from ¢SHAKE under
independent domain-separated inputs; under the PRF assumption for cSHAKE, related-key
attacks reduce to distinguishing cSHAKE from a random oracle, and are therefore out of
scope for the permutation-based part of the cipher.

Misuse Considerations. This work does not analyze RCS under nonce reuse or nonce-
misuse scenarios. In counter mode, reuse of a nonce immediately leads to key-stream reuse,
enabling trivial disclosure of plaintext relations:

Cl@CQZPlEBPQ.

Thus, RCS is not an MRAE (misuse-resistant authenticated encryption) scheme. Nonce
uniqueness is mandatory for confidentiality guarantees.

5.4 Adversarial Advantages and Parameters

Security bounds in the proofs are expressed using standard advantage notation:

AQVRES(A),  AAVEES(A),  AdVREE(4).

These depend on the following parameters:

e ¢p: number of encryption queries,
e gp: number of decryption queries (IND-CCA only),
e (: total length of all encrypted messages,
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o \: security parameter (256 or 512),
e R: number of rounds (22 or 30),
o taglen: tag length (32 or 64 bytes).

All advantages are functions of (¢g, gp, £, \) and are negligible in A for the intended usage
of RCS.

6 Provable Security Analysis

In this section we relate the security of RCS to the assumed security of its underlying
components: the Rijndael 256 permutation, the cSHAKE based key expansion, and the
KMAC based authentication layer. All adversaries are probabilistic polynomial time unless
otherwise specified, and all advantages are defined as in Section 5.

6.1 Confidentiality Reduction (IND-CPA)

We prove that RCS achieves IND CPA confidentiality under unique nonce usage, assuming
that cSHAKE behaves as a PRF and Rijndael 256 behaves as a PRP under independent
round keys. The proof is given as a sequence of hybrid games.

Theorem 6.1 (IND CPA security of RCS). Let A be any IND CPA adversary against
RCS that makes at most qg encryption queries of total length at most ¢ bits. Then there
exist adversaries By¢ and By such that

AdVEEP? (A) < AdVES ke (Bors) + AdVED 1. (Borp) + ectr(q, £),

where e, is negligible in the key size and accounts for the probability of counter collisions
under unique nonces.

Proof. We consider a sequence of hybrids Hy,..., Hs and bound the distinguishing
advantage between successive games.

Game H; (Real RCS). This is the real IND CPA experiment for RCS. The key K is
sampled uniformly. For each encryption query (N, A, Py, P1) of equal-length messages, the
challenger samples a hidden bit b, derives the MAC key and round keys from ¢cSHAKE,
derives key-stream blocks by applying the Rijndael 256 permutation in counter mode, and
returns the ciphertext and tag for P.
By definition, _

AdVEGE?(A) = [Pr{Ho(4) = 1] - §].
Game H; (Replace cSHAKE by a PRF). In Hy, the challenger replaces the cSHAKE
based key expansion by a family of independent uniformly random functions. Concretely,

for each key K and nonce N the challenger programs an oracle that, when first queried on
(K, N,info), samples:

mkey, RKo, ..., RKR < {0,1}* x ({0,1}2%6)B+1,

and stores them in a table. Future queries with the same (K, N, info) return the same
tuple.

The view of A in H; is identical to its view in Hj unless A can distinguish cSHAKE from
a random function. Thus there exists an adversary By such that

|Pr[Ho(A) = 1] = Pr[Hy(A) = 1]| < AdvZiaxe (Bore).
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Game H; (Replace Rijndael by a random permutation). In Hs, the challenger
replaces the Rijndael 256 permutation Erx by an ideal random permutation 7 over
{0,1}?5% keyed implicitly by the table of round keys. For each block encryption, the
challenger evaluates 7 on the current counter value and uses the result as the key-stream
block.

By the PRP assumption on Rijndael 256 there exists an adversary By such that

[Pr[Hy (A) = 1] — Pr[Ha(A) = 1]| < AdVE?, 4o (Borp).

Game H; (Replace the PRP based key-stream by a random function). In
counter mode with unique nonces, each query to the encryption oracle uses a fresh
sequence of counter blocks that never repeats across the experiment. When the block
cipher is replaced by a random permutation, the map

(K, N,i) — m(CTR;)

is indistinguishable from a random function from the domain of counters to {0,1}2°¢,
except with probability bounded by the chance that two counters collide. Under unique
nonces and bounded message lengths, this collision probability is at most e« (¢g, £) and is
negligible for the intended parameters.
In H3 we therefore model the key-stream as sampled uniformly and independently for
each distinct counter value. As a result, for any fixed choice of b, the ciphertexts in Hs are
one time pad encryptions of P, under fresh random key-stream blocks. Hence A has no
information about b beyond random guessing, and
Pr{Hy(A) = 1] =

1
5.
Bounding the overall advantage. By a telescoping sum over the four hybrids,

|[Pr(Hy(A) =1] = 3| < [Pr[Ho(A) = 1] — Pr[H,(A) = 1]]

+ [Pr[H,(A) = 1] — Pr{H;(A) = 1]|
+ [Pr[H3(A) = 1] — Pr[Hs(A) = 1]|
Substituting the bounds for each transition yields the stated inequality. O

6.2 Integrity Reduction (INT-CTXT)

We now show that any successful ciphertext forgery against RCS can be converted into a
forgery against the underlying KMAC instance. The reduction relies on the fact that the
tag input is fully determined by the associated data and its encoded length, the nonce, the
ciphertext, and the final encoded length value produced by the MAC finalization.

Theorem 6.2 (INT CTXT security of RCS). Let A be any INT CTXT adversary
against RCS making at most gp encryption queries. Then there exists an adversary Biac
such that

AdVECE " (A) < AdViGIAE" (Bmsc),
where AdvE4T€™ denotes the standard existential unforgeability advantage for KMAC.

Proof sketch. We construct Bnac that uses A as a subroutine and interacts with a KMAC
oracle. The goal of By, is to output a fresh input string X* together with a valid tag T
such that (X*,T*) was not previously returned by the oracle.
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Simulation of RCS for A. The challenger for the MAC game provides Bmac with
oracle access to either a real KMAC under a hidden key mkey or a random function. The
adversary Bmnac simulates the RCS encryption oracle for A as follows:

1. For each encryption query (N, A, P) from A, Bmac samples a fresh key-stream
deterministically using the public Rijndael permutation and the counter construction,
which does not require knowledge of mkey.

2. Tt computes C' = P & KS blockwise and forms the MAC input X = A | C ||
encodegy (| P]).

3. It queries its KMAC oracle on X to obtain 7" and returns (C,T') to A.

Since the simulation uses the real RCS key-stream generation and delegates tag computation
to the KMAC oracle, the view of A is identical to that in the real INT CTXT experiment
when the oracle is real KMAC.

Extracting a forgery. Eventually A outputs a candidate forgery (N*, A*, C*,T*) that
satisfies the INT CTXT winning conditions: it was not obtained from the encryption
oracle and it verifies under RCS. Verification computes

X* = A" | C* || encodess(|P*|),
for the implied plaintext length, and accepts if and only if
KMAC(mkey, X*) = T".

If A succeeds, then Bpac outputs (X*,T*) as its MAC forgery. By construction, (X*,T%)
was never returned by the MAC oracle during the simulation of encryption, because any
such pair would correspond to an earlier ciphertext returned to A. Thus any successful
INT CTXT forgery yields a valid MAC forgery.

The probability that Bpac wins in the MAC game is at least the probability that A wins
in the INT CTXT game, up to negligible differences due to failure events of the key-stream
simulation. This gives the claimed bound. O

6.3 AEAD Security (IND-CCA)

We now argue that the combination of IND CPA confidentiality and INT CTXT integrity
yields IND CCA authenticated encryption for RCS, provided that the decryption oracle
never returns plaintext on invalid tags. This follows the standard Encrypt then MAC
composition paradigm.

Theorem 6.3 (IND CCA security of RCS). Suppose RCS is IND CPA secure and
INT CTXT secure as established above. Then for any IND CCA adversary A against RCS
there exist adversaries Bep, and Bi,: such that

AdViIr%dc:(gw (4) < Advilgcéfspa(BCPa) + AdViEtc_'c§Xt(Bint)~

Proof sketch. The result is an application of the generic theorem that IND CPA security
combined with ciphertext integrity yields IND CCA security for Encrypt then MAC
schemes, under the condition that decryption rejects before revealing any plaintext when
tag verification fails.

We outline the reduction. Let A be an IND CCA adversary for RCS. We construct Bepa
that runs A and simulates the IND CCA environment using only access to an IND CPA
encryption oracle and an internal INT CTXT adversary Bijnt.
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e The encryption oracle in the IND CCA game is simulated directly by the IND CPA
oracle, since both return real ciphertexts and tags.

e The decryption oracle must reject any query whose tag does not verify. Any decryption
query that would be accepted corresponds to a valid ciphertext tag pair. If such a
pair did not come from the encryption oracle, it would constitute an INT CTXT
forgery.

Thus either A distinguishes the IND CCA game from IND CPA, which yields a distin-
guishing advantage for Bcp,, or A manages to exploit the decryption oracle in a way that
implies an INT CTXT forgery, yielding advantage to Bj,.. Combining these cases gives
the inequality above. O

6.4 Post-Quantum Considerations

We briefly summarize how the above bounds degrade in the presence of a quantum
adversary endowed with superposition access to the underlying primitives. The high level
impact follows the standard square root rule for generic quantum search.

Symmetric Key Length. For a block cipher or PRF with key size A, the best known
generic quantum attack achieves complexity approximately 2*/2. In the context of RCS,
this affects both Rijndael 256 and the cSHAKE based key expansion. Thus:

o RCS 256, with A = 256, offers roughly 2'2® post quantum security against exhaustive
key search.

o RCS 512, with A = 512, offers roughly 22°6 post quantum security under the same
model.

Sponge Based Components. The security of cSHAKE and KMAC depends on the
capacity of the underlying Keccak sponge. Quantum attacks can reduce the effective
collision and preimage security exponents by a factor of two, but for the capacity
choices used by RCS the resulting bounds remain above the target key strengths. The
indifferentiability based arguments for sponge constructions carry over to the quantum
setting with similar square root losses.

Resulting Bounds. The classical bounds from Theorems 6.1 and 6.2 can therefore be
interpreted in the quantum setting by replacing each term of size approximately 2~ with
a term of size approximately 27*/2, plus the usual factors in ¢z, ¢p, and £. For both
parameter sets this yields margins that remain well within the intended security levels,
provided the underlying primitives retain their expected post quantum properties.

7 Cryptanalytic Evaluation of RCS

This section surveys the resistance of RCS to classical cryptanalytic techniques applied
to the underlying wide-block Rijndael permutation and to the sponge-based components
used for key expansion and authentication. The goal is not to provide new attacks but to
situate the chosen parameters within the landscape of known results, and to justify that
the 22-round (RCS-256) and 30-round (RCS-512) configurations sit comfortably beyond

current analytical frontiers.
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7.1 Wide-Block Rijndael Structure

The core permutation of RCS is a 256-bit Rijndael instance operating on two independent
128-bit halves. Each half is arranged as a 4 x 4 byte array, and each round applies the
standard sequence of Rijndael operations: byte-wise S-box substitution, row rotations,
column mixing over GF(2%), and addition of a 256-bit round key derived from cSHAKE.
The two halves are processed in lockstep, and the round keys span the full 256-bit state.
Relative to AES, which fixes a 128-bit state and uses 10, 12, or 14 rounds, Rijndael-256
increases the diffusion radius and the size of the permutation space. The wider state raises
the birthday bound for generic attacks and alters the structure of possible differential
and linear trails. In particular, each application of the linear mixing layer affects a larger
number of bytes per round, increasing the minimum number of active S-boxes over any
multi-round trajectory.

In RCS, the 256-bit permutation is used exclusively in counter mode: the state input
for each block is a counter derived from the 32-byte nonce and an internal block index,
and the output is treated as key-stream. This usage pattern eliminates complex feedback
paths that appear in certain block-cipher modes and simplifies the analysis to that of a
key-stream generator built from a wide-block PRP.

7.2 Differential and Linear Cryptanalysis

Differential and linear cryptanalysis measure how input differences and linear approxima-
tions propagate across the S-box and linear layers of the permutation. The security of
Rijndael-256 under these techniques is governed by the number of active S-boxes and the
probability of the best differential or linear trails.

Existing analyses of Rijndael-type ciphers show that:

o nontrivial differentials and linear approximations are confined to significantly reduced
round counts,

e the minimum number of active S-boxes grows rapidly with the number of rounds,
leading to exponential decay in trail probabilities,

e the transition from reduced-round distinguishers to full-round attacks requires a
substantial increase in complexity that quickly exceeds practical limits.

RCS sets the round counts to
Ras6 = 22, Rs12 = 30,

which are substantially higher than the reduced-round regimes targeted by published
attacks on Rijndael-256 and AES-like instances. The design rationale is to keep the
best known differential and linear distinguishers at a distance of several rounds from the
operational configurations, and to ensure that any extension of existing trails would require
work factors comparable to or greater than exhaustive key search.

From the perspective of the stream cipher usage, the relevant question is whether an
adversary can distinguish the key-stream from random by exploiting correlations in the
underlying permutation. With 22 and 30 rounds and the widened state, the probability
of mounting such a distinguisher with complexity below 2* is negligible for the intended
parameters.

7.3 Algebraic and Structural Attacks

Algebraic cryptanalysis aims to represent the cipher as a system of Boolean or multivariate
equations and to solve or approximate this system more efficiently than brute force. For



The Design and Formal Analysis of RCS:
22 A Quantum-Resilient AEAD Scheme

SPN ciphers like Rijndael, two aspects are especially relevant: the algebraic degree of the
round functions and the growth of that degree as rounds are iterated.

For Rijndael-256, the nonlinear S-box and linear mixing layer cause the algebraic degree
of the overall permutation to grow quickly with each round. After a modest number
of rounds the algebraic degree approaches its maximum, and the resulting systems for
full-round instances become too complex for current equation-solving techniques to exploit
in practice.

Structural attacks such as slide attacks, meet-in-the-middle techniques, and invariant
subspace attacks typically require regularities in the round structure or key schedule. In
RCS, each round key is derived independently from the cSHAKE-based key schedule,
which breaks the kind of linear recurrences and self-similar patterns that underlie many
structural cryptanalytic constructions.

The choice of 22 and 30 rounds ensures that any algebraic representation of the full
permutation would involve a very high degree and a large number of variables, placing
known algebraic methods well beyond feasible bounds for both parameter sets.

7.4 Related-Key and Key-Schedule Attacks

Classical Rijndael key schedules are known to admit related-key patterns and structures
that enable certain attacks on reduced-round variants. These attacks rely on linear
recurrences in the key expansion, which create predictable relations between round keys
derived from related master keys.

RCS replaces the classical key schedule with a cSHAKE-based expansion that treats the
master key, optional information string, and a fixed domain-separation string as input to a
Keccak sponge. The resulting output stream is then sliced into a MAC key and a sequence
of independent 256-bit round keys. Under the PRF assumption for cSHAKE, the round
keys are indistinguishable from independently uniform random values, even when master
keys are related by efficiently computable transformations.

From the point of view of related-key security, any adversary that exploits relations
between round keys across different master keys would induce a distinguishing attack
on cSHAKE. The formal model in Section 5 therefore treats related-key attacks on the
permutation as subsumed by the PRF security of the key-expansion function. Within this
model, standard related-key and slide attacks against Rijndael do not apply to RCS.

7.5 Summary of Cryptanalytic Margins

The cryptanalytic evaluation can be summarized as follows:

o Differential and linear attacks. Known distinguishers and key-recovery attacks
on Rijndael-type ciphers reach only significantly reduced round counts and do not
extend to the 22- and 30-round configurations used by RCS. The widened 256-bit
state further increases the diffusion per round and the number of active S-boxes.

e Algebraic and structural attacks. Algebraic degree growth and the absence of
exploitable structure at the chosen round counts place RCS beyond the reach of
current equation-based and structural techniques, given realistic resource bounds.

« Related-key attacks. The cSHAKE-based key schedule yields round keys that
behave as independent random values under standard assumptions, eliminating the
linear relations exploited by classical related-key attacks on Rijndael.

e Overall margin. For both RCS—-256 and RCS-512, the best known attacks against
the underlying permutation remain well below the configured round counts and do
not offer any advantage over generic key search at the intended security levels. Within
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the adopted models for Rijndael, cSHAKE, and KMAC, RCS therefore maintains
conservative cryptanalytic margins for its intended deployment scenarios.

These conclusions are consistent with the reductionist view developed in Section 6: the
security of RCS reduces to the PRP behavior of the wide-block Rijndael permutation
under independent keys and the PRF and EUF-CMA properties of the Keccak-based
components, all of which enjoy substantial analytical support in the existing literature.

Table 3 summarizes the effective security margins of RCS against the primary attack
families considered in the cryptanalytic evaluation. The margins are expressed in rounds
and represent the gap between the best published reduced-round analyses of Rijndael-256
and the full-round configurations used in RCS-256 (22 rounds) and RCS-512 (30 rounds).

Table 3: Cryptanalytic margins for RCS.

Attack Best 256 512
Known Margin Margin
Differential < 12-13 rounds 9-10 17-18
Linear < 11-12 rounds 10-11 18-19
Algebraic ~10 rounds 12 20
Related-key n/a n/a n/a
Structural/slide n/a n/a n/a

8 Misuse Resistance and Operational Limits

This section addresses the operational assumptions under which the security guarantees of
RCS hold, with particular emphasis on nonce handling in counter mode and limitations
that arise when these assumptions are violated. These considerations define the boundary
between the provable guarantees established in previous sections and practical misuse
scenarios that fall outside the formal model.

8.1 Nonce Reuse and its Consequences

RCS is not misuse resistant with respect to nonce reuse. As a counter mode construction,
RCS requires that the 256-bit nonce N be unique for each encryption under a fized key. If
a nonce is ever reused with the same key, the confidentiality of both messages encrypted
under that nonce collapses immediately.

Let P; and P, be two plaintexts encrypted under the same key—nonce pair, and let KS;
denote the key-stream blocks derived from the fixed counter sequence associated with that
nonce. The ciphertexts satisfy

Clipl@KS, CQZPQ@KS,

implying
Ci1aCr=P &P,

Thus an adversary observing both ciphertexts learns the XOR of the plaintexts, which

generally suffices to recover both messages whenever either plaintext possesses known
structure or redundancy. This attack is independent of the number of rounds of the
permutation and does not rely on any weakness in Rijndael or cSHAKE.

Nonce reuse therefore constitutes a catastrophic confidentiality failure. RCS must be
deployed with strict nonce management, ensuring that no nonce—key pair is ever repeated.
This requirement is explicitly assumed in all security definitions and reductions.
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8.2 Modeling Assumptions and Out-of-Scope Attacks

The formal analysis of RCS relies on a number of explicit modeling assumptions that
bound the adversarial capabilities considered. The following scenarios fall outside the
guarantees provided by the proofs:

Incorrect or Predictable Nonce Generation. If nonces are generated determin-
istically without safeguarding uniqueness, or if an adversary can predict or influence
nonce values, then the confidentiality guarantees do not hold. RCS does not provide
nonce-misuse-resistant encryption, forward secrecy under reuse, or synthetic IV behavior.

Weak or Compromised Keys. The analysis assumes that keys are sampled uniformly
from {0,1}* and remain secret for the duration of their use. If the master key is poorly
generated, predictable, or exposed to the adversary, the security guarantees are void.

Side-Channel Leakage. The proofs treat all underlying primitives as black-box ide-
alizations and do not cover timing, power, cache, electromagnetic, or fault-injection side
channels. Although the reference implementation is written to avoid obvious timing leaks,
formal side-channel resistance is out of scope.

State Rollback or Incomplete Zeroization. The model assumes correct implementa-
tion behavior in which the internal Keccak state, round keys, counters, and MAC keys are
destroyed at the end of an operation. If an implementation fails to erase state or allows
state rollback (e.g., via persistence or virtualization artifacts), confidentiality or integrity
may be compromised.

Associated-Data Misuse. Associated data is authenticated but not encrypted. The
model assumes that the caller supplies all associated data before encryption or decryption,
and that the associated data is treated consistently across both operations. Misuse of
associated data invariants is outside the formal guarantees.

8.3 Reduced-Rounds Configuration

The reference implementation of RCS supports an optional compile-time reduced-rounds
configuration, enabled via the macro QSC_RCS_REDUCED_ROUNDS. When this option is
selected, the wide-block Rijndael permutation is instantiated with 14 rounds for the
RCS-256 parameter set and 21 rounds for RCS-512, instead of the standard 22 and 30
rounds, respectively. In addition, the KMAC authentication component is configured to
use a reduced-round Keccak-f[1600] permutation with 12 rounds per permutation call,
rather than the full 24-round instance.

The motivation for this configuration is performance optimization in constrained or
latency-sensitive environments, while preserving a cryptographically sound structure
relative to the design properties of RCS. In particular, RCS does not employ the classical
Rijndael key schedule. All round keys are derived independently via a cSHAKE-based
expansion, eliminating the linear recurrences and related-key structures that underpin
many reduced-round attacks against AES-style constructions, including boomerang-type,
rectangle, and differential switching attacks that rely on key schedule regularity. Under
the PRF assumption for cSHAKE, the reduced-round Rijndael permutation is therefore
analyzed as a wide-block substitution-permutation network with independent round keys,
significantly altering the applicability of known reduced-round cryptanalytic techniques.

For the authentication layer, the reduced-round KMAC configuration leverages the
substantial security margin of the Keccak-f[1600] permutation. No known cryptanalytic
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results substantially weaken the security of Keccak when the number of rounds is reduced
from 24 to 12 in the context of message authentication, particularly for usage models in
which tags are verified immediately after transmission and are not relied upon for long-term
cryptanalytic exposure. The authenticated transcript in RCS is unchanged under this
option, and full domain separation is preserved.

This reduced-rounds configuration is not intended to replace the standard parameter sets
analyzed elsewhere in this paper. Rather, it represents an explicit performance and security
tradeoff made available to implementers who understand their operational threat model.
Deployments requiring maximal conservatism or long-term security guarantees should use
the full-round configurations analyzed in Sections 6 and 7. The formal security reductions
in this work apply directly to the standard configuration, while the reduced-round variant
rests on the same structural assumptions with reduced quantitative margins.

Out-of-Scope Cryptanalytic Models. The analysis does not address:

o attacks assuming related-message structures across multiple keys,
o multi-user or multi-target amplification attacks beyond standard bounds,
o attacks exploiting physical co-location or shared hardware behavior,

« deliberate weakening of cSHAKE customization parameters.
Within the formal scope defined by the AEAD syntax, unique nonce usage, correct
implementation of cSHAKE and KMAC domain separation, and the PRP/PRF properties
of the underlying primitives, the RCS construction achieves the confidentiality and integrity

guarantees established in the preceding sections. The conditions listed here specify the
assumptions that must be upheld by any correct implementation or deployment of RCS.

9 Implementation Conformance and Side Channels

This section relates the formal RCS model to the reference implementation and records
the assumptions required for side channel resistance and randomness quality. The intent is
to ensure that the deployed code actually realizes the scheme analyzed in the previous
sections.

9.1 Mapping Between Model and Reference Code

The public interface in rcs.h corresponds directly to the AEAD syntax
(K,N,A,P)— (C,T)

formalized in Sections 3 and 4. The main structures and functions align with the model as
follows.

State and Parameters. The structure qsc_rcs_state contains:

e the cipher type flag, which selects RCS-256 or RCS-512 and fixes the key size, tag
size and round count,

« the round key array, which stores (R + 1) 256-bit round keys used by the Rijndael
permutation,

o the Keccak sponge state used for cSHAKE and KMAC operations,
e the stored nonce, a 32 byte buffer that represents N,
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» an internal byte counter used to derive successive counter blocks,

« mode flags that indicate encryption or decryption.

These fields implement the abstract state variables specified in the formal definition of

RCS.

Initialization and Key Expansion. The function qsc_rcs_initialize instantiates
the scheme for a given key, nonce and optional information string. It performs the following
steps:

1. chooses the correct parameter set (RCS-256 or RCS-512) based on the provided key
size,

2. initializes the cSHAKE instance with the master key, the optional info tweak string,
and the fixed RCS domain string,

3. squeezes the MAC key and then the sequence of round keys from the cSHAKE output
stream,

4. copies the nonce into the state and initializes the internal counter.
This implements the key expansion procedure of Section 4.2, in which
(mkey, RKQ, ey RKR)

are derived from ¢cSHAKE under a fixed domain string.

Transform Functions. The functions gsc_rcs_transform and
gsc_rcs_extended_transform implement the encryption and decryption algorithms de-
scribed in Section 4.

They:

e construct counter blocks from the stored nonce and internal counter,
« apply the Rijndael 256 round function to obtain key-stream blocks,

¢ XOR key-stream blocks with input blocks to produce output blocks,
« absorb associated data, ciphertext and length into the KMAC state,

e output or verify the authentication tag.

When the mode flag selects encryption, the function produces (C,T') from P. When the
mode flag selects decryption, the function recomputes the tag, compares it in constant
time, and only then releases the recovered plaintext. This behavior matches the Encrypt
then MAC model required by the IND-CCA reduction.

9.2 Constant Time Behavior and Leakage

The security proofs treat RCS as an idealized black box. To approach this model in
practice, the implementation must avoid control flow and memory access patterns that
depend on secret data.

At a minimum, the following conditions should hold:

e Key schedule. The cSHAKE based key expansion runs on fixed length inputs and
uses only public loop bounds. The number of calls to the Keccak permutation and
the memory access pattern within the sponge do not depend on the key bits.
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e Permutation rounds. The Rijndael 256 permutation applies a fixed sequence of
S-box lookups, row shifts and column mixes for each round. The round count and
order of operations are independent of key and data values.

e Counter mode. Counter increment operations act on public counters and do not
branch based on secret bits. The mapping from block index to counter value is
deterministic and public.

e Tag comparison. Tag verification uses a constant time comparison that scans every
byte and aggregates differences without early exit. No timing variation should reveal
whether a prefix of the tag matches.

e Error handling. On tag failure, the implementation should avoid emitting partial
plaintext or performing data dependent cleanup. The time to reject invalid tags
should depend only on public parameters such as message length.

These properties do not guarantee resistance to all microarchitectural attacks, but they
are necessary preconditions for any realistic constant time implementation. Deployment
in high assurance environments may require additional hardening against cache, branch
predictor and speculative execution side channels.

9.3 Random Number Generation Requirements

The formal model assumes that both keys and nonces are generated in a way that prevents
adversarial prediction and reuse. This implies the following operational requirements.

Key Generation. Master keys must be generated from a cryptographically secure
random number generator that provides at least A bits of entropy. Keys must not be
derived from passwords or other low entropy sources unless they are first processed by a
suitable key derivation function whose security matches or exceeds that of RCS.

Nonce Generation and Management. Nonces must be unique for each encryption
under a given key. Acceptable strategies include:

e a strictly increasing counter per key, stored in non-volatile memory and updated
atomically for each encryption,

e a random nonce generator with collision probability bounded well below the security
level, combined with rejection or retry on detected reuse,

e a hybrid scheme that combines a per-device identifier and a local counter.

Reusing a nonce under the same key causes key-stream reuse, which breaks confidentiality
as discussed in Section 7. Implementations must therefore treat nonce uniqueness as a
hard requirement, not as a best effort property.

Associated Randomness. If RCS is composed with higher level protocols that derive
keys or nonces from other primitives (such as KDFs or key exchange mechanisms), those
components must provide security at least comparable to the RCS parameter set in use.
The formal results in this paper do not cover failures in upstream randomness sources.
Under these conditions, the behavior of the deployed implementation conforms to the
assumptions made in the provable security analysis.
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10 Conclusion

The analysis presented in this paper establishes a rigorous and implementation aligned
security foundation for the RCS authenticated cipher stream. By connecting the engineering
specification directly to a formal model and by applying standard game based reasoning,
we obtain confidentiality and integrity guarantees that reduce cleanly to the well studied
properties of the underlying Rijndael and Keccak primitives.

10.1 Summary of Results

We summarize the principal contributions and findings:

e Formalization of the Scheme. The RCS construction was defined precisely
through an engineering level specification and a mathematical abstraction that
captures the behavior of the reference implementation. This provides a single
authoritative model for analysis and future standardization.

o Confidentiality Proof. Through a four step hybrid argument, we reduced IND
CPA security of RCS to the PRF security of cSHAKE and the PRP security of the
256 bit Rijndael permutation under independently derived round keys. Under unique
nonce usage, the resulting key-stream is indistinguishable from uniformly random
strings.

o Integrity Proof. Ciphertext integrity was shown to reduce directly to the
EUF-CMA security of the KMAC function applied to the associated data and its
length, the nonce, the ciphertext and the final encoded length value that summarizes
the processed bytes. Any successful forgery against RCS yields a forgery against
KMAC.

e AEAD Composition. By combining confidentiality and integrity, and using the fact
that RCS rejects invalid tags before releasing plaintext, we proved IND CCA security
for the overall AEAD construction following the Encrypt then MAC paradigm.

e Cryptanalytic Margins. We reviewed differential, linear, algebraic and related
key attacks on Rijndael type ciphers, and concluded that the 22 round (RCS 256)
and 30 round (RCS 512) configurations remain well beyond the reach of published
techniques. The use of cSHAKE derived independent round keys eliminates key
schedule based attacks.

¢ Post Quantum Considerations. We argued that the classical bounds degrade
gracefully under quantum query models, preserving roughly 2'2% and 226 security
for RCS 256 and RCS 512, respectively, in line with the usual square root attack
heuristics.

Together, these results show that RCS is a conservative, transparent and well structured
AEAD primitive whose security reduces to well understood assumptions on widely analyzed
cryptographic components.

10.2 Limitations and Future Work

Although the analysis covers the core security claims of the RCS design, certain limitations
remain and motivate possible refinement:

e Nonce Misuse. RCS does not provide misuse resistance under nonce reuse. While
this is inherent to counter mode designs, formalizing RCS variants with synthetic IV
or deterministic nonce generation could mitigate operational risks.
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e Side Channel Resistance. The proofs treat the permutation and sponge compo-
nents as idealized black boxes. Further work could include formal leakage models,
masked implementations, or provable bounds under bounded leakage assumptions.

¢ Reduced Round Analysis. Although the chosen round counts lie well above
known cryptanalytic thresholds, exploring higher fidelity bounds, automated trail
search, and algebraic degree analyses specific to the 256 bit Rijndael variant could
provide quantitative insight into long term safety margins.

e Quantum Adversary Models. A more complete treatment of cSHAKE and
Rijndael under quantum superposition queries, or the implications of quantum
chosen ciphertext attacks, may refine the understanding of post quantum behavior
beyond the square root heuristic.

e Multi User and Compositional Security. Extending the proofs to multi user
settings, key rotation processes, or compositional frameworks for large scale systems
may support integration of RCS into complex protocols.

RCS demonstrates that combining a wide block Rijndael permutation with Keccak based
key derivation and authentication yields a simple and analyzable AEAD primitive with
conservative margins and clean provable guarantees. Further refinement of the model and
deeper cryptanalytic investigation may strengthen its suitability for standardization and
high assurance deployment.
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