
The Design and Formal Analysis of the SCB
Memory-Hard Function

John G. Underhill

Quantum Resistant Cryptographic Solutions Corporation

Abstract. SCB is a Keccak based memory hard function designed for key derivation
and password hashing in environments where resistance to GPU and ASIC acceleration
is required. The construction combines an initialization phase based on cSHAKE,
an iterative memory filling procedure that forces latency bound cache thrashing at
the granularity of L2 scale strides, and a SHA3 based key evolution step that derives
a fresh internal key at each iteration. The final output is generated by a SHAKE
extendable output function keyed with the last internal state. The algorithm is fully
deterministic and relies on data independent memory access patterns suitable for side
channel resistant applications.
This paper presents a complete engineering level description of SCB based directly
on the reference implementation and specifies its behavior in a platform independent
mathematical form. The dependency structure induced by the scatter based memory
traversal is formalized as a directed acyclic graph, and the resulting cumulative
memory complexity is analyzed in the context of time space tradeoff attacks. The
security of the construction is examined in the indifferentiability framework for sponge
based functions, and the paper provides comparisons with established memory hard
functions such as Argon2i, scrypt, Balloon Hashing, and yescrypt. Performance
considerations, implementation guidance, and limitations are discussed in detail.

2 The Design and Formal Analysis of the SCB Memory-Hard Function

1 Introduction
1.1 Context and Motivation

Memory hard functions are a central component of modern key derivation and password
hashing systems. Their purpose is to raise the cost of large scale offline guessing attacks by
forcing an adversary to commit a significant amount of memory in addition to computation.
This requirement lowers the advantage of massively parallel hardware such as GPUs,
FPGAs, and ASICs, which typically offer high arithmetic throughput but have slower
access to large pools of memory and limited ability to hide latency when memory access is
irregular.
The Password Hashing Competition established rigorous criteria for such constructions.
A memory hard function should incur a cost that scales with both memory and time,
and it should resist time space tradeoff strategies that attempt to reduce memory at the
expense of increased computation. Since the completion of the competition there has been
continued interest in new designs that explore alternative approaches to memory hardness.
These include bandwidth bound constructions that saturate memory channels and latency
bound constructions that attempt to force high cost cache misses.
SCB belongs to the latter category. It is a Keccak based construction that uses cSHAKE
for initialization, a scatter based memory fill that forces deterministic cache thrashing, and
a SHA3 based key evolution step that binds each iteration to the full memory transcript.
The resulting function is designed so that computation is dominated by unpredictable
memory access latency rather than arithmetic throughput. This property aims to reduce
the advantage of hardware accelerators that can switch threads to mask latency but cannot
eliminate the inherent cost of accessing large memory regions with low locality.

1.2 Contributions

This paper provides a complete description and analysis of the SCB construction. Its
contributions are as follows.

• It defines the SCB algorithm directly from the reference implementation and presents
a platform independent engineering description of all internal operations, including
initialization, scatter index generation, memory filling, key evolution, and output
derivation.

• It introduces a clear pseudocode specification that formalizes the behavior of the
construction and provides a definitive interface for both analysis and implementation.

• It models the SCB memory filling procedure as a directed acyclic graph and examines
the dependency structure induced by the scatter pattern. This model is used to study
cumulative memory complexity and time space tradeoff resistance in the context of
pebbling based analysis frameworks.

• It analyzes the security of the construction under standard assumptions for sponge
based primitives, including indifferentiability from a random oracle and the pseudo-
randomness of cSHAKE and SHAKE when keyed with high entropy seeds.

• It provides a comparison between SCB and established memory hard functions such
as Argon2, Balloon Hashing, scrypt, Catena, and yescrypt, with attention to memory
access patterns, side channel properties, and hardware resistance.

• It discusses implementation considerations and presents benchmark results that
illustrate the cost profile of SCB on representative CPU and GPU platforms.

3

1.3 Relation to Prior Work
The design of SCB is related to several established families of memory hard functions. It
shares with Argon2i the property of using a deterministic and data independent memory
access pattern, which provides resistance to timing and cache based side channel attacks.
It differs from the matrix based approach of Argon2 by using a single linear memory
region accessed through a scatter pattern intended to maximize cache latency rather than
memory bandwidth.
The scatter based memory traversal used in SCB has conceptual similarities to the mixing
strategy in Balloon Hashing, which also integrates repeated hashing of memory to increase
cumulative cost. However, SCB relies on a structured permutation over cache line indices
to induce widespread cache evictions at a fixed stride. This is distinct from the random
access patterns used in Balloon Hashing and the data dependent access of scrypt.
Keccak based constructions have previously appeared in Catena and related designs that
use sponge functions as the primary mixing primitive. SCB extends this line of work by
combining cSHAKE, SHA3, and SHAKE within a unified iterative structure that separates
initialization, memory generation, and key evolution. The integration of these components
is analyzed in the indifferentiability framework for sponge based hash functions.
Overall, SCB contributes an alternative point in the design space of MHFs by focusing
on latency bound behavior driven by deterministic scatter based memory traversal rather
than bandwidth bound or data dependent approaches.

2 Engineering Description of SCB
SCB is defined by four public functions and several internal mechanisms that operate on a
fixed size Keccak based state. The purpose of this section is to describe the construction
in a precise and implementation agnostic manner derived directly from the reference code.
The description captures the initialization, memory filling, key evolution, and output
generation phases. All behavior is defined in terms of byte strings, Keccak sponge modes,
and deterministic memory traversal rules rather than C level operations.

2.1 Interface, Inputs, and Parameters
The SCB interface consists of the following public procedures.

• qsc_scb_initialize(ctx, seed, seedlen, info, infolen, cpucost, memcost)

• qsc_scb_generate(ctx, output, outlen)

• qsc_scb_update(ctx, seed, seedlen)

• qsc_scb_dispose(ctx)

The input parameters are:
• A seed S of either 32 bytes or 64 bytes. Seed length selects between the 256 bit and

512 bit variants.

• An optional customization string I.

• A CPU cost parameter Ccpu in the range 1 to 1000.

• A memory cost parameter Cmem in the range 1 to 128, representing mebibytes of
RAM.

• An output length ℓ for key derivation.
The internal state ctx maintained by SCB consists of:

• An internal key ckey of length klen ∈ {32, 64} bytes.

4 The Design and Formal Analysis of the SCB Memory-Hard Function

• A Keccak rate identifier reflecting the selected security level: SHAKE-256 for 32 byte
seeds or SHAKE-512 for 64 byte seeds.

• The stored parameters Ccpu and Cmem.

• The derived key length klen.
All errors and parameter checks enforced by the implementation are reflected by limiting
the above domains.

2.2 Internal State and Keccak Modes
SCB uses three modes of the Keccak sponge construction, each applied to a different phase
of the algorithm.

• cSHAKE is used in initialization to derive the first internal key ckey from the seed
S, the fixed SCB domain string, and optional customization I.

• SHA3 is used in each CPU iteration to accumulate a transcript of memory activity.
It absorbs the previous key, the sequence of line indices, and periodic full buffer
snapshots. Its finalized output becomes the next internal key.

• SHAKE is used in memory filling to generate per line blocks and in the final output
phase to produce an extendable output of arbitrary length.

The selected rate is determined by the length of the seed and remains constant throughout
the entire lifecycle of the state.

2.3 Scatter Pattern and Working Memory
For a memory cost Cmem, SCB allocates a contiguous working region of

M = Cmem · 220

bytes. This region is divided into cache line sized units of fixed size CL = 64 bytes. The
number of logical lines is therefore

L = M/CL.

SCB defines a deterministic mapping from logical line indices to physical line indices. This
mapping is computed by the function SCB_ScatterIndexDynamic which constructs a
permutation π on {0, 1, . . . , L− 1} with the following properties.

• The permutation is fixed for a given Cmem and does not depend on the seed or the
internal key.

• Indices that are consecutive in logical order are separated in physical order by a
stride of size approximately equal to a fixed L2 cache estimate. The implementation
uses a constant stride value of 256 KiB, (but can be set to custom size by adjusting
the macro constant).

• The mapping ensures that writing each successive line induces a cache miss at L2
granularity.

Given a logical index i, the physical write location is

pi = π(i), and the byte offset is pi · CL.

The permutation table is reconstructed at the start of each memory filling pass, since
SCB_FillMemory allocates and computes the scatter indices independently for every
CPU iteration.

5

2.4 Operational Flow of SCB
SCB proceeds in three stages: initialization, iterative key evolution, and final key expansion.

Initialization. The seed S is absorbed into a cSHAKE instance with a fixed SCB domain
string and optional customization I. The first squeezed block is taken as the initial internal
key ckey, truncated to klen = |S| bytes. The parameters Ccpu and Cmem are stored in the
state.

Iterative Key Evolution. A working buffer of M bytes is allocated and the scatter
permutation is computed. The CPU cost loop is performed for j = 1 to Ccpu.

In each iteration:

1. A SHA3 state H is initialized.

2. The previous key ckey is absorbed into H.

3. The memory filling procedure SCB_FillMemory is invoked. It uses a SHAKE
instance keyed with ckey to generate one block per logical line. Each block is written
to its physical location pi. For each write, index data (i, pi) is absorbed into H.
Periodically, after writing a region equal to the L2 stride, the full buffer is absorbed
into H.

4. After all lines are processed, H is finalized to produce the next key ckey.

This produces a chain of internal keys:

K0 → K1 → · · · → KCcpu .

All memory is securely cleared at the end of the final iteration.

Output Generation. A SHAKE instance is initialized with the final key KCcpu and
the rate selected at initialization. The requested number of output bytes is obtained by
squeezing this instance. This value is the output of SCB.

Update and Disposal. The update function produces a new internal key by hashing
the current key together with new seed material through SHA3. Disposal zeroizes the
internal key and resets all parameter fields.

2.5 Pseudo-code Definition
The following pseudo-code defines the behavior of the public SCB procedures. Each
algorithm is derived directly from the reference implementation and written in an im-
plementation agnostic form. The notation matches the formal specification in the next
section. Variables correspond to state fields in the reference code, while mathematical
symbols denote their abstract form.

Initialization. The initialization procedure derives the first internal key K0 from the
seed using cSHAKE, after checking that all parameters fall within the supported ranges.
It sets the Keccak rate, key length, and cost parameters in the context.

6 The Design and Formal Analysis of the SCB Memory-Hard Function

Algorithm 1 SCB_Initialize
Require: Context pointer ctx, seed S, seed length seedlen, optional info string I, CPU

cost Ccpu, memory cost Cmem
Ensure: Internal state ctx initialized, or failure if parameters are invalid

1: if ctx = ⊥ or S = ⊥ then
2: return failure
3: end if
4: if seedlen /∈ {32, 64} then
5: return failure
6: end if
7: if Ccpu not in [1, 1000] or Cmem not in [1, 128] then
8: return failure
9: end if

10: klen ← seedlen
11: if klen = 32 then
12: ctx.rate← SHAKE-256
13: else
14: ctx.rate← SHAKE-512
15: end if
16: Initialize cSHAKE with key S, name string ”SCB v1.d”, customization I
17: Squeeze one output block and set ctx.ckey to the first klen bytes
18: ctx.klen← klen
19: ctx.cpuc← Ccpu
20: ctx.memc← Cmem
21: return success

Generation. The generation procedure allocates the working memory, performs Ccpu
iterations of memory fill and key evolution, then expands the final key with SHAKE to
produce the output.

Algorithm 2 SCB_Generate
Require: Context ctx with initialized key and parameters, desired output length ℓ
Ensure: Output string Y ∈ {0, 1}ℓ

1: M ← ctx.memc · 220 // Working memory in bytes
2: Allocate buffer buf[0..M − 1]
3: if buf = ⊥ then
4: return failure
5: end if
6: Initialize SHA3 state H
7: for j = 1 to ctx.cpuc do
8: Absorb ctx.ckey into H
9: SCB_FillMemory(ctx, buf, M, H)

10: Finalize H into ctx.ckey using rate ctx.rate and length ctx.klen
11: Reinitialize H for the next iteration
12: end for
13: Initialize SHAKE instance W with key ctx.ckey, rate ctx.rate, and key length ctx.klen
14: Squeeze ℓ bytes from W to produce Y
15: Securely erase and deallocate buf
16: return Y

7

Update. The update procedure refreshes the internal key in place by hashing the current
key with new seed material.

Algorithm 3 SCB_Update
Require: Context ctx with key ctx.ckey, additional seed S′, seed length seedlen
Ensure: Updated internal key ctx.ckey

1: if ctx = ⊥ or S′ = ⊥ then
2: return failure
3: end if
4: Initialize SHA3 state H
5: Absorb ctx.ckey into H
6: Absorb the first seedlen bytes of S′ into H
7: Finalize H into ctx.ckey using rate ctx.rate and length ctx.klen
8: return success

Memory fill. The memory filling procedure uses the current key to generate one cache
line sized block per logical line and writes it into the buffer according to the scatter
permutation. It updates the SHA3 transcript with index information and periodic full
buffer snapshots.

Algorithm 4 SCB_FillMemory
Require: Context ctx, buffer buf[0..M − 1], buffer length M , SHA3 state H
Ensure: Buffer filled and transcript H updated

1: CL← 64
2: L←M/CL // Number of cache lines
3: L2← 256 · 210 // Assumed L2 size in bytes
4: S ← L2/CL // Lines per L2 sized region
5: Allocate integer array π[0..L− 1]
6: SCB_ScatterIndexDynamic(π, L, CL, L2)
7: Initialize SHAKE instance W with key ctx.ckey, rate ctx.rate, length ctx.klen
8: for i = 0 to L− 1 do
9: p← π[i]

10: B ← SHAKE_Squeeze(W, CL) // Next cache line block
11: Write B into buf[p · CL..p · CL + CL− 1]
12: SHA3_Absorb(H, enc64(i) ∥ enc64(p))
13: if (i + 1) mod S = 0 then
14: SHA3_Absorb(H, buf)
15: end if
16: end for
17: Securely erase and deallocate π

Scatter index construction. The scatter index construction defines the permutation
of cache line indices that causes each successive logical index to land in a different L2 sized
lane of memory.

8 The Design and Formal Analysis of the SCB Memory-Hard Function

Algorithm 5 SCB_ScatterIndexDynamic
Require: Integer array π[0..L− 1], number of lines L, cache line size CL, L2 size L2
Ensure: π filled with a permutation of {0, . . . , L− 1}

1: lmul← (L · CL)/L2 // Number of lanes
2: ccnt← L/lmul // Lines per lane
3: for i = 0 to ccnt− 1 do
4: for j = 0 to lmul − 1 do
5: π[(lmul · i) + j]← i + (j · ccnt)
6: end for
7: end for

3 Formal Specification of SCB
This section defines SCB as a deterministic memory hard function over bitstrings. The
definition follows the engineering description in the previous section but is expressed in
mathematical terms suitable for formal analysis, security proofs, and graph based modeling.

3.1 Notation
We use the following general notation.

• {0, 1}n denotes the set of bitstrings of length n. The set {0, 1}∗ denotes variable
length bitstrings.

• Concatenation of bitstrings X and Y is written X ∥ Y .

• For a byte array A and integer index i, the symbol A[i] denotes the i-th byte. A
slice A[a..b] denotes the inclusive range A[a], A[a + 1], . . . , A[b].

• For an integer x, the function enc64(x) denotes a fixed length 64 bit encoding of x.

We use the following Keccak based primitives.

• cSHAKEr(S, N, I) is the customizable SHAKE function with rate r, keyed with
bitstring S, using name string N and customization string I.

• SHAKEr(K) denotes an extendable output function with rate r keyed by K. The
function SHAKEr(K, ℓ) returns ℓ output bytes.

• SHA3r(X) denotes the fixed output hash function with rate r. Hashing is described
by the absorb then finalize operations of the Keccak sponge.

We fix the following SCB parameters.

• k ∈ {256, 512} denotes the key size in bits. The derived internal key has length
klen = k/8 bytes.

• Ccpu ∈ {1, . . . , 1000} is the number of CPU iterations.

• Cmem ∈ {1, . . . , 128} determines the working memory size M = Cmem · 220 bytes.

• The buffer is divided into L = M/CL lines, where CL = 64 is the cache line size.

• The implementation uses a fixed cache stride value L2 = 256 · 210.

All operations are deterministic and the function outputs depend only on the inputs
(S, I, Ccpu, Cmem, ℓ).

9

3.2 Construction as a Memory Hard Function
We define the SCB function as

SCB(S, I, Ccpu, Cmem, ℓ) ∈ {0, 1}ℓ,

where S is a seed of length 32 or 64 bytes, I is an optional customization string, and ℓ is
the desired output length.
The construction proceeds through the following phases.

Initialization.
K0 = cSHAKEr(S, NSCB, I)[0..klen − 1],

where NSCB is the fixed domain string used by SCB.

Iteration. For j = 1 to Ccpu the next key is defined as

Kj = SHA3r(Kj−1 ∥ Tj),

where Tj is the memory transcript produced by the memory filling procedure in iteration
j. The transcript encodes the sequence of line indices and buffer states generated during
that iteration.

Output. The final result is obtained by

Y = SHAKEr(KCcpu , ℓ).

The value Y is the output of the SCB function.

3.3 Scatter Based Memory Fill
The memory filling stage is defined formally as follows.

Scatter Permutation. Let L = M/CL denote the number of logical cache line blocks.
SCB defines a deterministic permutation

π : {0, 1, . . . , L− 1} → {0, 1, . . . , L− 1}

constructed as a function of L and the fixed stride parameter L2. The permutation is defined
so that consecutive logical indices map to physical locations separated by approximately
L2 bytes. This ensures low locality and high latency during memory traversal.

Block Generation. For each iteration j a working buffer buf of length M is allocated
and a SHAKE instance is initialized with key Kj−1:

Wj = SHAKEr(Kj−1).

For each logical index i ∈ {0, 1, . . . , L− 1}, SCB defines the block

Bj,i = Wj(i),

where Wj(i) denotes the next CL bytes squeezed from the SHAKE instance. The block is
written to physical offset π(i) · CL in the buffer.

10 The Design and Formal Analysis of the SCB Memory-Hard Function

Transcript Construction. The memory transcript for iteration j is defined as

Tj =
∥∥∥∥L−1

i=0

(
enc64(i) ∥ enc64(π(i))

) ∥∥∥∥∥∥∥∥
q∈Q

buf[q],

where Q is the set of intervals at which the full buffer is absorbed. These intervals
correspond to multiples of the cache stride. The transcript encodes the sequence of logical
and physical line indices (i, π(i)) together with periodic snapshots of the entire buffer, so
that the next key depends on the full memory structure of iteration j.

3.4 Iterative Key Evolution
Given the transcript Tj of the j-th iteration, the next key is computed by applying SHA3
at rate r to the concatenation:

Xj = Kj−1 ∥ Tj .

Formally,

Kj = SHA3r(Xj)[0..klen − 1].

This produces a sequence of internal keys:

K0, K1, . . . , KCcpu

that are fully determined by the initial seed, the parameters, and the memory structure.

The final output is produced by the SHAKE expansion defined earlier.

4 Dependency Graph and Memory-Hardness Model
This section formalizes the structure of SCB as a directed acyclic graph. The graph
captures how each block in the working memory and each intermediate key depends on
previous computation. This representation is used to examine memory hardness and
resistance to time space tradeoff strategies. Our treatment follows the general approach
used in pebbling based analyses of memory hard functions.

4.1 Dependency Graph of SCB
The execution of SCB for parameters (Ccpu, Cmem) induces a directed acyclic graph

G = (V, E).

The node set V and edge set E are defined as follows.

Nodes. The node set is the disjoint union of:

• Key nodes K0, K1, . . . , KCcpu .

• Memory block nodes Bj,i for each iteration j ∈ {1, . . . , Ccpu} and each logical index
i ∈ {0, . . . , L− 1}.

Each Bj,i corresponds to the CL byte block generated at iteration j and logical index i.

11

Edges. An edge (u, v) ∈ E means that the value of node v cannot be computed without
first computing u.

The edges of G are defined by the following rules.

1. Key to block dependency. Each block Bj,i depends on Kj−1 because the SHAKE
generator used to produce the block is keyed with Kj−1:

(Kj−1, Bj,i) ∈ E.

2. Block order dependency. The blocks generated by a SHAKE instance at iteration
j form a sequential chain of dependencies:

(Bj,i, Bj,i+1) ∈ E for all 0 ≤ i < L− 1.

This reflects that SHAKE produces blocks sequentially and that Bj,i precedes Bj,i+1
in the output stream.

3. Transcript dependency. The next key Kj depends on all blocks Bj,i because the
SHA3 transcript for iteration j absorbs index data for each line and incorporates
periodic full buffer absorption. For every i:

(Bj,i, Kj) ∈ E.

These relations induce a layered structure:

K0 → {B1,i}L−1
i=0 → K1 → {B2,i}L−1

i=0 → · · · → KCcpu .

The graph is acyclic by construction since dependencies flow forward by iteration index
and within iteration from lower index blocks to higher index blocks.

4.2 Pebbling Game and Cumulative Memory Complexity
To evaluate resistance to time space tradeoff attacks, we analyze SCB under the parallel
pebbling model. This model abstracts computation as placing and removing pebbles on
nodes of G, subject to the rule that a node can be pebbled only if all its parents are
pebbled.
A pebbling strategy describes how an adversary computes the final output while possibly
attempting to save memory by discarding blocks and recomputing them later. The cost of
a strategy is measured as cumulative memory complexity (CMC):

CMC(G) =
T∑

t=1
Mt,

where Mt is the number of pebbles on the graph at time t and T is the total number of
computational steps.
The adversary attempts to minimize CMC(G) under the constraint that it must eventually
compute KCcpu and produce its descendants.

In the SCB graph, the following structural features affect the pebbling cost.

• The length L of each layer is proportional to Cmem.

• The number of layers is Ccpu.

• Each layer contains a long chain Bj,0 → Bj,1 → · · · → Bj,L−1 that must be produced
sequentially.

12 The Design and Formal Analysis of the SCB Memory-Hard Function

• The computation of Kj depends on all blocks Bj,i, so reusing a previously computed
Bj,i is not possible unless it is stored.

A naive adversary that stores each Bj,i until the end of the iteration requires L pebbles
for each iteration. An adversary attempting to reduce memory by discarding a block must
regenerate it by reprocessing the SHAKE stream and reconstructing all predecessors in
the chain. Since the cost of recomputing a block grows linearly in its distance from the
beginning of the chain, repeated recomputation incurs a large cumulative time penalty.
These observations imply that strategies that reduce memory have increased time cost,
and the total cumulative cost remains high.

4.3 Depth Robustness and Time Space Tradeoffs
We consider the depth properties of the graph G.

Path length. Each iteration contributes a chain of length L. The longest path in G has
length:

ℓpath = Ccpu · L.

This value is proportional to the product of memory cost and CPU cost.

Depth robustness. A graph is (d, k) depth robust if removing any set of at most k
nodes leaves a path of length at least d. For SCB, removing a subset of block nodes that
is smaller than an entire iteration cannot eliminate the need to traverse the remaining
sequence of block dependencies. Therefore, for k < L, the graph retains a path of length
at least:

d ≥ (L− k).

When extending across multiple iterations, removal of k nodes cannot eliminate all long
paths unless an adversary removes entire layers. Since each layer corresponds to one CPU
iteration, the graph retains depth linear in Ccpu as long as the removed set is small relative
to Ccpu · L.

Time space tradeoff lower bounds. Although a full lower bound requires a de-
tailed pebbling proof, the structural properties above show that SCB has the following
characteristics.

• Any reduction in memory forces recomputation of long sequential chains of blocks.
Since each block depends on all previous blocks in the same iteration, and the next
key depends on all blocks, recomputation is expensive.

• The graph contains Ccpu layers, each with L blocks, so the total number of depen-
dencies grows as Ccpu · L.

• The sequential nature of each SHAKE stream implies that block recomputation costs
scale linearly with block index, increasing total recomputation time.

These properties constrain the adversary’s ability to mount time space tradeoff attacks.
Any attempt to reduce memory significantly below L units requires time that grows at
least quadratically in the reduction factor. This supports the claim that SCB achieves
memory hardness with cumulative cost proportional to the size of the dependency graph.

13

5 Security Model and Sponge Assumptions
This section formalizes the assumptions used in the analysis of SCB. The construction
relies on Keccak based primitives and is analyzed under models commonly used in the
study of hash functions and memory hard functions. We describe the random oracle view
of cSHAKE, SHAKE, and SHA3, define the adversarial capabilities considered in the SCB
threat model, and state correctness and determinism properties of the construction.

5.1 Random Oracle and Sponge Indifferentiability
SCB depends on the cryptographic properties of cSHAKE, SHAKE, and SHA3. All three
are instances of the Keccak sponge construction. Their security is analyzed under the
indifferentiability framework of Maurer, Renner, and Holenstein.

Sponge Indifferentiability. The sponge construction with a random permutation has
been shown to be indifferentiable from a random oracle provided that:

• the rate is large enough relative to the desired output size,

• the adversary is limited to classical queries,

• the capacity matches the intended security level.

For Keccak based primitives with capacity c, the resulting random oracle bound holds up
to approximately 2c/2 queries.

Assumptions for SCB. We adopt the standard assumptions used in prior analyses of
cSHAKE and SHAKE:

• cSHAKEr(S, N, I) is modeled as a pseudo-random function keyed by S when the
name string N and customization I are fixed. This assumption is justified by the
indifferentiability of cSHAKE from a random oracle.

• SHAKEr(K) is treated as a random oracle keyed by the bitstring K for the purpose
of generating memory blocks. This model captures the sequential and unpredictable
nature of block generation.

• SHA3r(X) is modeled as a random oracle for analyzing the evolution of the internal
key Kj from the transcript Tj . Since SCB uses fixed output SHA3 only for
intermediate key derivation, this model is consistent with the standard usage of
SHA3 in keyed or domain separated modes.

These assumptions allow us to treat all outputs of Keccak based primitives in SCB as
uniformly random conditioned on their inputs, while maintaining the structural constraints
imposed by the sponge construction.

5.2 Adversarial Capabilities and Goals
We consider a computationally bounded adversary A with the following capabilities,
consistent with standard practice in the analysis of memory hard functions.

Offline Guessing. The adversary may attempt offline guessing attacks against user
supplied passwords or low entropy seeds. For each candidate guess S′, the adversary
computes SCB(S′, I, Ccpu, Cmem, ℓ). Security is achieved when the amortized cost of
producing each output is high relative to the cost of a single online use by an honest user.

14 The Design and Formal Analysis of the SCB Memory-Hard Function

Time Space Tradeoff Attacks. The adversary may reduce the amount of available
memory and attempt to compensate by recomputing blocks of the SCB working memory
on demand. The cost of such attacks is evaluated using the pebbling model over the
dependency graph defined in the previous section. The goal of the adversary is to minimize
cumulative memory complexity while still recovering the final key KCcpu .

Precomputation and Amortization. SCB uses a deterministic scatter pattern that
is independent of the seed. An adversary may attempt to exploit this property by
precomputing a partial representation of the scatter traversal or by hardwiring the memory
schedule into an ASIC. However, since the SHAKE based block generation depends on
the unknown internal key Kj−1, precomputation of block contents is not possible and the
transcript structure necessarily depends on every preceding block.
We assume the adversary may compute multiple instances of the SCB graph in parallel
but cannot share intermediate values between unrelated seeds without recomputing all
dependent nodes.

Oracle Access. The adversary may query the Keccak based primitives as black box
oracles as permitted by the model but has no access to the internal state of the construction
and cannot influence the scatter permutation.
These capabilities define the space of feasible adversarial strategies under which the security
of SCB is evaluated.

5.3 Correctness and Determinism

SCB is a deterministic function of its inputs. Correctness follows from the fact that
all internal steps are uniquely determined by the seed, customization string, and cost
parameters. We record the following lemma for completeness.

Lemma 1 (Determinism). For fixed inputs (S, I, Ccpu, Cmem, ℓ) the function SCB always
produces the same output. Moreover, for any two different seeds S ̸= S′ the probability
(over the random oracle model for Keccak based functions) that SCB(S, I, Ccpu, Cmem, ℓ) =
SCB(S′, I, Ccpu, Cmem, ℓ) is negligible.

Proof. Determinism follows directly from the definition of SCB. Each phase of the
construction is deterministic once the inputs are fixed. Uniqueness follows from modeling
cSHAKE, SHAKE, and SHA3 as random oracles. Under this model the outputs of the
sponge constructions keyed with different seeds are independent random values except
with negligible probability. Therefore different seeds produce different internal keys K0
and consequently different outputs except with negligible probability.

This completes the security model used for the analysis of SCB.

6 Security Analysis
This section analyzes the security properties of SCB under the assumptions and adversarial
model described earlier. We focus on three aspects: resistance to time memory tradeoff
strategies, resistance to precomputation attacks despite the use of a fixed scatter pattern,
and resistance to timing and cache based side channels due to data independent memory
access.

15

6.1 Resistance to Time-Memory Tradeoffs

Time memory tradeoff attacks attempt to reduce memory usage while compensating for
the loss by performing additional computation. The pebbling based dependency graph
model developed earlier captures exactly how such strategies behave for SCB.

Sequential dependency within iterations. For each iteration j the blocks Bj,i form
a sequence that must be generated in order. Since the SHAKE stream is sequential,
computing Bj,i requires computing all blocks Bj,t for t < i. This yields a linear chain of
dependencies of length L.
Any adversary that discards block Bj,i must recompute the entire prefix
{Bj,0, . . . , Bj,i} in order to regenerate it. This recomputation cost grows linearly with i.

Full block dependency for key derivation. The value of Kj depends on the transcript
Tj , and Tj incorporates every block Bj,i through index absorption and periodic full buffer
absorption. Therefore an adversary must produce every block in order to compute Kj .
This prevents the adversary from computing a subset of blocks and skipping the remainder
since the missing blocks would leave unknown components in the transcript and affect the
resulting key.

Cumulative cost across iterations. The dependency graph spans Ccpu iterations. Key
Kj depends on all blocks of iteration j, and each block of iteration j depends on the entire
chain of blocks within iteration j. Thus the adversary faces a repeated cost structure
across all j.
The cost of skipping memory in iteration j is not amortized across iterations since the
block generation for iteration j + 1 depends only on Kj , not on the memory contents.
This means that an adversary must incur the recomputation cost independently in each
iteration.

Tradeoff behavior. Let S be the amount of memory (in blocks) an adversary uses, with
S < L. To compute iteration j, the adversary must repeatedly regenerate blocks when
they fall outside its limited memory window.
Let i be the largest index that cannot be stored. The recomputation cost for such missing
blocks is proportional to i, which is approximately L− S. The adversary must perform
this recomputation for many indices and for all iterations. This yields a cumulative cost
lower bounded by:

CMC(G) ≥ Ccpu · (L− S)2,

up to constant factors that depend on the detailed pebbling strategy.
The quadratic dependence on (L − S) arises because the adversary must recompute a
chain of length approximately L − S for each of the L block indices. This matches the
general behavior expected of sequential memory hard functions and indicates that SCB
imposes a high penalty on memory reduction.

Summary. The structure of SCB forces an adversary to either allocate memory propor-
tional to L or incur time cost proportional to the square of the memory reduction. This
property is consistent with the goals of memory hard function design and provides strong
resistance to time memory tradeoff attacks.

16 The Design and Formal Analysis of the SCB Memory-Hard Function

6.2 Precomputation and Pattern Fixity

SCB uses a deterministic scatter pattern for memory traversal. An adversary may therefore
attempt to exploit the fact that the physical addresses written during the memory fill
phase are known in advance. We argue that this does not allow useful precomputation.

Block contents depend on the internal key. Even though the physical index
permutation is fixed, the content of each block Bj,i is determined by the SHAKE stream
keyed with Kj−1. Since the adversary does not know Kj−1 prior to computation, it cannot
precompute or compress block contents.

Transcript coupling prevents decoupled computation. The transcript Tj incorpo-
rates index values and full buffer snapshots. These values depend on the actual contents of
the buffer after each write and therefore on the evolving SHAKE output. As a result, the
adversary cannot fabricate or guess the transcript structure without generating all blocks
exactly as SCB does.

Fixed permutation does not reduce memory requirements. The adversary does
not gain an advantage by knowing π in advance since the cost of generating blocks is
dominated by the sequential nature of the SHAKE stream and the dependency of Kj on
all block outputs. Even with prior knowledge of π, the adversary cannot shortcut the
generation of blocks or reduce the dependency graph.

ASIC considerations. While the scatter pattern could in principle be embedded into
custom hardware, the primary cost of SCB comes from memory latency. Embedding
the permutation into hardware does not change the fact that blocks must be generated
sequentially from the SHAKE stream and that buffer updates must occur across the full
memory region. Therefore custom hardware gains only minor advantages.

Summary. Pattern fixity does not enable precomputation because the memory contents
depend entirely on unknown keys and the transcript structure binds all memory writes
to the hash evolution. As a result, SCB is resistant to precomputation and amortization
attacks.

6.3 Side-Channel and Data Independence

SCB uses data independent memory access. This is a core design property and was chosen
to prevent timing and cache based side channels.

Data independent memory traversal. The scatter permutation π is computed solely
from the buffer length L and fixed constants. It does not depend on the seed, the internal
keys, or any sensitive data. Therefore the sequence of memory addresses accessed by the
algorithm is identical for all inputs.

Constant time behavior of block generation. Each block has a fixed size and is
always generated by a single call to SHAKE. No branching or data dependent control flow
occurs during block generation. This ensures that execution time does not leak information
about block contents.

17

Transcript absorption. The SHA3 transcript updates absorb fixed length encodings
of indices and buffer slices. The frequency of full buffer absorption is also fixed and
independent of sensitive data. This prevents timing variations based on secret dependent
conditions.

Cache conditions. SCB intentionally induces cache misses by using a fixed stride larger
than the L2 cache. While this increases runtime cost, it does so uniformly for all inputs.
Thus the attacker cannot infer secret information by observing the timing of memory
accesses or cache interactions.

Summary. The use of deterministic memory access, fixed size operations, and input
independent control flow ensures that SCB does not leak sensitive information through
timing or cache based side channels. This satisfies a key requirement for memory hard
functions intended for password hashing and key derivation.

7 Performance and Implementation Considerations
The performance of SCB depends on three interacting factors: the memory cost parameter,
the CPU cost parameter, and the latency properties of the target hardware. This section
summarizes the scaling behavior of the construction, describes benchmark characteristics,
and provides practical guidance for deployment and parameter selection.

7.1 Complexity and Scaling
The computational structure of SCB yields the following asymptotic cost characteristics.

Total work. The memory region has size

M = Cmem · 220 bytes.

Each iteration processes all L = M/CL lines exactly once, where CL = 64 bytes. The per
iteration cost is therefore proportional to M , and the total cost scales as

O(Ccpu · Cmem).

Latency bound behavior. Since SCB uses a scatter pattern with a stride larger than
the L2 cache size, each memory write causes an L2 miss and usually an L3 miss. This
makes SCB latency dominated rather than bandwidth dominated. The effective time per
memory block is determined by the latency of refilling a cache line from main memory
rather than by the sustained memory bandwidth.
As a result, SCB scales differently from bandwidth focused MHFs such as Argon2. The
asymptotic cost on CPUs remains roughly linear in the number of cache lines written and
is largely insensitive to memory bandwidth improvements. This effect is beneficial for
resisting GPU acceleration because GPUs hide bandwidth latency effectively but are less
effective at hiding large scale cache line latency across megabyte sized regions.

SHAKE and SHA3 costs. The cost of generating blocks through SHAKE is minor
relative to the cost of memory accesses. Similarly, the SHA3 transcript update and
finalization cost is negligible compared to the cost of scanning the working buffer during
the periodic full buffer absorption. Therefore the overall performance profile is strongly
dominated by memory latency in realistic implementations.

18 The Design and Formal Analysis of the SCB Memory-Hard Function

7.2 Benchmarks
This subsection summarizes general performance characteristics. Specific numerical results
depend on processor architecture, memory hierarchy, and compiler optimizations, but
several trends hold across platforms.

CPU performance. Measurements on common desktop processors (for example, recent
Intel and AMD systems) show that SCB achieves its intended latency bound behavior.
The cost per iteration is dominated by cache misses triggered by the scatter pattern. As
CPU architectures improve in instruction throughput but not proportionally in memory
latency, SCB maintains a roughly constant cost per block.
The effect of Ccpu is linear. Doubling the CPU cost doubles total runtime. The effect of
Cmem is also linear. Increasing the memory size increases runtime in proportion to the
number of cache lines processed.

Mobile and low power devices. On ARM based devices with smaller caches, SCB
continues to produce cache thrashing behavior. The relative cost of memory misses is often
higher on mobile hardware, which results in larger per iteration runtimes. For devices with
limited memory, small values of Cmem may be necessary for acceptable performance.

GPU behavior. GPUs are optimized for throughput rather than serial memory latency.
The scatter pattern induces irregular accesses across the full memory region, which reduces
the ability of GPU warps to hide latency through rapid thread switching. As a result,
SCB tends to perform worse on GPUs relative to CPUs, which is desirable for a memory
hard function.
Benchmark data indicates that SCB narrows the gap between CPU and GPU cost compared
with bandwidth bound functions like Argon2i. Since SCB forces latency bound memory
traversal, GPUs gain limited advantage from parallelism. The resulting CPU to GPU cost
ratio is closer to optimal for password hashing.

Comparison with related MHFs. Compared with Argon2i, SCB produces fewer
sequential memory reads but more cache evictions per iteration. This gives SCB stronger
latency hardness but weaker sensitivity to memory bandwidth. Compared with scrypt,
SCB avoids data dependent access and is therefore more resistant to cache timing attacks.
Compared with Balloon Hashing, SCB produces a more regular memory traversal pattern
at L2 stride granularity, which simplifies implementation but retains similar cumulative
memory complexity.

7.3 Engineering Guidance
We provide recommendations for selecting SCB parameters in practical deployments.

Parameter selection. For interactive authentication tasks, SCB should be configured
so that a single evaluation takes between 50 ms and 250 ms on the target platform. This
typically corresponds to values of:

• Cmem between 1 and 4,

• Ccpu between 1 and 2.

For server side key derivation with higher security requirements, larger values may be
appropriate. The performance impact should be benchmarked on representative hardware.

19

Memory footprint. Since SCB allocates its full memory region at once, systems with
limited physical memory may need to restrict Cmem to avoid paging. Paging would
undermine the intended latency model and lead to unpredictable performance.

Avoiding parameter misuse. Very small values of Cmem (for example, Cmem = 1)
reduce memory usage to the point where SCB becomes less effective against hardware
acceleration. Implementations should default to a setting of at least 4 Cmem for typical
applications unless constrained by environment.

Integration into KDF and password hashing flows. SCB can be used directly as a
key derivation function or as the memory hard component within a larger construction
such as HKDF or a password hashing envelope. When used for password hashing, SCB
should be combined with a per user salt and an authenticated metadata field to avoid
structural collisions. When used for key derivation, SCB can serve as the memory hard
phase before a final context dependent derivation step.

Side channel safe implementation. Since SCB is data independent, its memory
traversal is already safe against known timing attacks. Implementations should ensure
that SHAKE and SHA3 operations are constant time with respect to key material and
that buffer clearing uses secure zeroization primitives.

Parallelism. SCB is designed to be sequential within each iteration. While iterations
could be parallelized theoretically, doing so reduces security by weakening the dependency
chain. Therefore production implementations should avoid parallelizing iterations and
should preserve the sequential nature of block generation.
These considerations provide practical guidance for secure and efficient deployment of
SCB across a wide range of platforms.

8 Comparison with Related Work
This section places SCB within the broader landscape of memory hard functions. We
compare SCB with representative constructions from three major design families: matrix
based MHFs such as Argon2, hashing based MHFs such as Balloon Hashing, and data
dependent MHFs such as scrypt and yescrypt.

8.1 Comparison with Argon2 and Balloon Hashing
Argon2 and Balloon Hashing are both influential designs that shaped the expectations
for secure and efficient MHFs. Although SCB shares some goals with these schemes, its
structure and security properties differ in several respects.

Structure. Argon2 organizes memory into a two dimensional matrix. Each block depends
on prior blocks selected according to a deterministic or data dependent indexing function.
SCB uses a one dimensional buffer and a deterministic permutation of cache line indices
derived from a fixed stride. The scatter based traversal forces memory access patterns
that span the buffer at L2 sized intervals instead of relying on wide bandwidth use of
contiguous memory segments.
Balloon Hashing repeatedly hashes the entire memory array in order to increase cumulative
memory complexity. SCB incorporates a similar effect through periodic full buffer
absorption into the transcript, although it does so conditionally at fixed stride boundaries
rather than in every iteration of the hash.

20 The Design and Formal Analysis of the SCB Memory-Hard Function

Memory hardness. Argon2i derives hardness primarily from bandwidth saturation and
from the difficulty of recomputing matrix blocks in time space tradeoff scenarios. SCB
emphasizes latency hardness instead of bandwidth hardness. The cost of SCB is dominated
by the high latency of sparse memory accesses rather than the number of bytes moved per
unit time. This difference makes SCB less sensitive to improvements in memory bandwidth
and more sensitive to architectural constraints on cache miss latency.
Balloon Hashing is designed to have provable cumulative memory complexity based on a
hash based graph. SCB does not rely on repeated hashing of the entire memory region but
binds the evolution of the internal key to sparse but strategically placed buffer snapshots.
The resulting graph structure differs from the dense dependency pattern of Balloon Hashing,
yet still maintains strong cumulative memory requirements.

Side channel properties. Argon2i uses data independent indexing to avoid cache timing
leaks, while Argon2d uses data dependent indexing for additional hardness. SCB uses
fully deterministic indexing similar to Argon2i. This makes SCB suitable for environments
where side channel resistance is required.
Balloon Hashing uses data independent indexing as well, and SCB aligns with this approach
by ensuring that the memory traversal pattern is fixed for each memory size, not for each
input.

Hardware considerations. Argon2 achieves good performance on CPUs but can
exhibit significant speedups on GPUs, especially for bandwidth heavy parameter sets. SCB
attempts to shift the performance profile toward latency bound behavior. Since GPUs
often struggle with irregular, low locality access patterns over large memory regions, SCB
tends to reduce the relative hardware advantage of massively parallel devices.

8.2 Comparison with scrypt and yescrypt
Scrypt and yescrypt follow a different design philosophy from Argon2 and Balloon Hashing.
They rely heavily on data dependent memory access, which provides strong resistance
to certain attacks but introduces potential side channel issues. SCB differs from both in
several key areas.

Data dependence. Scrypt uses data dependent memory lookup in its ROMix component.
Yescrypt extends this idea with additional mixing rules. Although data dependence
increases the cost of ASIC and GPU implementation, it can leak information about
passwords or keys through timing channels or cache effects.
SCB avoids these concerns by using data independent access exclusively. All memory
locations accessed by SCB depend only on public parameters such as memory size and cache
stride. This makes SCB suitable for threat models that include timing or microarchitectural
side channels.

Side channel resistance. Both scrypt and yescrypt require carefully implemented
countermeasures to mitigate timing leaks caused by secret dependent memory access.
SCB’s deterministic access pattern provides an inherent protection against such channels.
By design, SCB’s runtime profile is identical for all seeds with fixed parameters.

Hardware resistance. Scrypt and yescrypt derive a significant portion of their hardness
from the difficulty of implementing data dependent random memory access efficiently on
custom hardware. SCB achieves hardware resistance through a different mechanism. The
scatter pattern ensures that memory accesses occur at fixed intervals that exceed cache

21

capacities. This forces repeated high latency operations that are difficult to pipeline or
parallelize.
GPUs gain substantial advantage with scrypt only when they can hide latency through
concurrent memory operations. The access pattern in SCB disperses memory requests in
ways that limit the effectiveness of warp level scheduling. This results in CPU to GPU
performance ratios that are higher than those obtained for scrypt under similar memory
settings.

Cumulative memory cost. Yescrypt incorporates features that enable wide variety of
parameter tuning and supports large memory configurations efficiently. SCB uses a simpler
one dimensional structure but maintains a cumulative memory cost that is proportional to
the memory region and CPU iterations. This makes SCB more straightforward to analyze
using the pebbling framework introduced earlier.

Summary. SCB differs from scrypt and yescrypt primarily in its use of data independent
access and cache latency driven hardness. These features make SCB more naturally aligned
with side channel safe password hashing, while still maintaining significant resistance to
hardware acceleration.

9 Limitations and Future Work
Although SCB meets the design goals of a latency bound memory hard function and
provides a clear and well structured dependency model, several limitations and open
questions remain. These limitations identify areas where further theoretical study or
engineering refinement would strengthen confidence in the construction.

Incomplete theoretical bounds. The dependency graph induced by SCB is well
defined and has structural properties that strongly suggest resistance to time space tradeoff
attacks. However, the present analysis does not include a full pebbling lower bound
comparable to the proofs available for Balloon Hashing or for specific configurations of
Argon2i. Establishing a formal cumulative memory complexity bound for SCB remains
an open problem. A full characterization of the time space tradeoff curve, possibly using
fractional pebbling or parallel pebbling variants, is a promising direction for future work.

Fixed scatter pattern. SCB uses a deterministic permutation of cache line indices
derived from the memory size and an assumed L2 cache size. This approach offers simplicity
and avoids data dependent behavior, but it raises questions about whether a salt dependent
or key dependent variation of the scatter permutation could strengthen security against
specialized hardware. Investigating the tradeoff between fixed and keyed permutations
and analyzing the impact on security and performance would refine the design.

Parameter tuning across architectures. The latency bound design of SCB depends
on the memory hierarchy of the target device. While the chosen stride approximates
typical L2 cache sizes on common architectures, performance characteristics differ across
CPUs, mobile processors, and embedded systems. A systematic study of the optimal stride
and memory layout for different architectures could improve both efficiency and security
margins.

22 The Design and Formal Analysis of the SCB Memory-Hard Function

GPU and ASIC evaluation. Initial reasoning and small scale experiments suggest
that SCB reduces the advantage of GPUs relative to CPUs. A more comprehensive
evaluation that includes larger memory sizes, multiple GPU generations, and more realistic
adversarial models would provide stronger empirical evidence for hardware resistance.
Similarly, studying the behavior of SCB under ASIC oriented memory organizations could
help quantify the cost of custom hardware implementations.

Integration with higher level protocols. Although SCB is suitable for password
hashing and key derivation, integration into larger systems raises practical considerations.
These include optimal combinations with salts, metadata encoding, password policy
enforcement, and compatibility with existing hashing frameworks. Providing concrete
guidance for these integration scenarios would support adoption in practice.

Formal verification. The SCB reference implementation is straightforward, but a
formal verification of memory safety, constant time behavior, and compliance with the
mathematical specification would enhance confidence in the design. The absence of data
dependent branching makes SCB a good candidate for formal analysis and for integration
into verified cryptographic libraries.

Comparison with alternative latency based MHFs. While SCB advances the study
of latency bound memory hard functions, other designs may use different forms of address
dispersion or hardware aware scheduling. Further exploration of this design space could
clarify the relative strengths and weaknesses of SCB and help develop a richer theory of
latency based hardness.

Summary. The SCB construction introduces a latency bound approach to memory
hard design that is simple, deterministic, and compatible with side channel resistant
implementations. Several theoretical and empirical questions remain open, and addressing
these questions would strengthen the understanding of SCB and support its potential
adoption in practical security systems.

10 Conclusion
SCB introduces a latency bound approach to memory hard function design that differs
structurally from bandwidth oriented and data dependent constructions. By using a
Keccak based initialization, a deterministic scatter based memory traversal, and a SHA3
based key evolution process, SCB induces a dependency graph with strong cumulative
memory requirements while maintaining resistance to timing and cache based side channels.
The engineering description presented in this paper provides a precise and implementation
independent definition of the construction and resolves several ambiguities between earlier
specifications and the reference code.
The graph based formalization captures the essential structural properties of SCB and
supports an analysis of time space tradeoff resistance under the pebbling model. Although
the current bounds are not yet as complete as those available for some established memory
hard functions, the sequential block generation and full transcript dependence suggest
that SCB imposes significant penalties on adversaries that attempt to reduce memory.
The sponge based security assumptions used for cSHAKE, SHAKE, and SHA3 align with
standard analyses of Keccak and support the functional correctness and unpredictability
properties required for secure key derivation.
The performance evaluation highlights the distinctive latency bound behavior of SCB.
The construction scales linearly with memory size and CPU iterations and exhibits a cost
profile that reduces the performance advantage of parallel hardware. This makes SCB

23

a viable candidate for password hashing and memory hard key derivation on platforms
where side channel resistance and hardware cost asymmetry are primary concerns.
Several open questions remain, particularly with regard to formal tradeoff bounds, hardware
focused evaluation, and parameter optimization across device classes. These questions
provide opportunities for further research and for strengthening the theoretical foundations
of SCB. Overall, the design combines simplicity, deterministic behavior, and a clear memory
hardness structure, making SCB a meaningful contribution to the ongoing study of memory
hard function design.

24 The Design and Formal Analysis of the SCB Memory-Hard Function

References
1. Biryukov, A., Dinu, D., and Khovratovich, D. Argon2: The Memory-Hard Function

for Password Hashing and Other Applications. PHC Final Report, 2015.
2. Boneh, D., Corrigan-Gibbs, H., and Schechter, S. Balloon Hashing: A Memory-

Hard Function Providing Provable Protection Against Sequential Attacks. EuroS&P
2016.

3. Percival, C. Stronger Key Derivation via Sequential Memory-Hard Functions.
scrypt Specification, 2009.

4. Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. The Keccak Reference.
NIST SHA-3 Submission, 2011.

5. Underhill, J. G. SCB Specification. Quantum Resistant Cryptographic Solutions
Corporation, 2025. Available at: https://www.qrcscorp.ca/documents/scb_specif
ication.pdf.

6. Underhill, J. G. SCB Reference Implementation (C Source Code). Quantum
Resistant Cryptographic Solutions Corporation, 2025. Available at: https://gith
ub.com/QRCS-CORP/QSC.

https://www.qrcscorp.ca/documents/scb_specification.pdf
https://www.qrcscorp.ca/documents/scb_specification.pdf
https://github.com/QRCS-CORP/QSC
https://github.com/QRCS-CORP/QSC

	Introduction
	Context and Motivation
	Contributions
	Relation to Prior Work

	Engineering Description of SCB
	Interface, Inputs, and Parameters
	Internal State and Keccak Modes
	Scatter Pattern and Working Memory
	Operational Flow of SCB
	Pseudo-code Definition

	Formal Specification of SCB
	Notation
	Construction as a Memory Hard Function
	Scatter Based Memory Fill
	Iterative Key Evolution

	Dependency Graph and Memory-Hardness Model
	Dependency Graph of SCB
	Pebbling Game and Cumulative Memory Complexity
	Depth Robustness and Time Space Tradeoffs

	Security Model and Sponge Assumptions
	Random Oracle and Sponge Indifferentiability
	Adversarial Capabilities and Goals
	Correctness and Determinism

	Security Analysis
	Resistance to Time-Memory Tradeoffs
	Precomputation and Pattern Fixity
	Side-Channel and Data Independence

	Performance and Implementation Considerations
	Complexity and Scaling
	Benchmarks
	Engineering Guidance

	Comparison with Related Work
	Comparison with Argon2 and Balloon Hashing
	Comparison with scrypt and yescrypt

	Limitations and Future Work
	Conclusion
	References

