
QSMP-2024 Rev. 1.3a

1

Quantum Secure Messaging Protocol – QSMP 1.3
Revision 1.3a, December 08, 2024

John G. Underhill – john.underhill@protonmail.com

This document is an engineering level description of the QSMP 1.3 encrypted and authenticated

network messaging protocols. There are two protocols specified in this standard, the SIMPLEX

and DUPLEX forms of QSMP. In its contents, a guide to implementing QSMP, an explanation

of its design, as well as references to its component primitives and supporting documentation.

Contents Page

Foreword 2

Figures 3

Tables 4

1: Introduction 5

2: Scope 8

3: References 11

4: Cryptographic Primitives 12

5: Protocol Components and Structures 14

6: Duplex Operational Overview 20

7: Simplex Operational Overview 31

8: Duplex Formal Description 39

9: Simplex Formal Description 50

10: QSMP API 57

11: Security Analysis 68

12: Design Decisions 71

QSMP-2024 Rev. 1.3a

2

Foreword

This document is intended as the preliminary draft of a new standards proposal, and as a basis

from which that standard can be implemented. We intend that this serves as an explanation of

this new technology, and as a complete description of the protocol.

This document is the third revision of the specification of QSMP, further revisions may become

necessary during the pursuit of a standard model, and revision numbers shall be incremented

with changes to the specification. The reader is asked to consider only the most recent revision of

this draft, as the authoritative implementation of the QSMP specification.

The author of this specification is John G. Underhill, and can be reached at

john.underhill@protonmail.com

QSMP, the algorithm constituting the QSMP messaging protocol is patent pending, and is owned

by John G. Underhill and Quantum Resistant Cryptographic Solutions Corporation. The code

described herein is copyrighted, and owned by John G. Underhill and Quantum Resistant

Cryptographic Solutions Corporation.

QSMP-2024 Rev. 1.3a

3

Figures

Contents Page

Figure 5.7: QSMP packet structure. 18

Figure 6.1: QSMP Duplex connection request. 21

Figure 6.2: QSMP server connection response. 22

Figure 6.3: QSMP client exchange request. 24

Figure 6.4: QSMP server exchange response. 23

Figure 6.5: QSMP client establish request. 24

Figure 6.6: QSMP server establish response. 30

Figure 6.7: QSMP client establish request. 31

Figure 7.1: QSMP Duplex connection request. 33

Figure 7.2: QSMP server connection response. 33

Figure 7.3: QSMP client exchange request. 35

Figure 7.4: QSMP server exchange response. 37

Figure 7.5: QSMP client establish request. 38

QSMP-2024 Rev. 1.3a

4

Tables

Contents Page

Table 5.1: The Protocol string choices in revision 2a. 14

Table 5.2: The client key structure. 14

Table 5.3: The server key structure. 15

Table 5.4: The keep alive state. 15

Table 5.5: The connection state structure. 16

Table 5.6: The Duplex client KEX state structure. 16

Table 5.7: The Duplex server KEX state structure. 17

Table 5.7: The Simplex client KEX state structure. 17

Table 5.8: The Simplex server KEX state structure. 18

Table 5.8: Packet header flag types. 19

Table 5.9: Error type messages. 20

Table 10.1a QSMP error strings. 57

Table 10.1b QSMP configuration string. 57

Table 10.1c QSMP packet structure. 57

Table 10.1d QSMP client key structure. 58

Table 10.1e QSMP keep alive state structure. 58

Table 10.1f QSMP configuration enumeration. 58

Table 10.1g QSMP errors enumeration. 59

Table 10.1h QSMP flags enumeration. 60

Table 10.1i QSMP constants. 62

Table 10.1j QSMP connection state structure. 62

Table 10.2 QSMP key structure. 65

Table 10.3 QSMP client state structure. 65

QSMP-2024 Rev. 1.3a

5

1: Introduction

Key exchange protocols are foundational components in secure networking today, with

prominent examples found in protocols like TLS, PGP, and SSH. These protocols establish

methods for securely exchanging secret keys between devices. Typically, a key exchange

function is part of a more extensive process that includes authentication both during and after the

key exchange, and establishes an encrypted tunnel that uses the shared secret to secure traffic

flows using symmetric ciphers.

QSMP provides a comprehensive framework that encompasses key exchange, authentication

mechanisms, and encrypted tunnel creation. While existing protocols can be modified to

incorporate quantum-resistant cryptographic primitives, QSMP takes a different approach by

designing an entirely new set of mechanisms tailored for performance and security in a post-

quantum environment. Recognizing the inevitable transition to post-quantum cryptography,

QSMP was built from the ground up, avoiding the constraints of backward compatibility and the

complexity associated with older protocol artifacts, versioning, and legacy APIs.

As a quantum-secure messaging protocol, QSMP leverages state-of-the-art asymmetric

encryption and signature schemes alongside a post-quantum strength symmetric cipher. The

current version supports Kyber or McEliece as asymmetric ciphers, with Dilithium or Sphincs+

as signature schemes.

For symmetric encryption, QSMP employs the RCS authenticated stream cipher, which is based

on the wide-block (256-bit state size) version of the Rijndael cipher. This cipher features

increased rounds, a cryptographically secure key schedule, and AEAD (Authenticated

Encryption with Associated Data) authentication using KMAC. Designed to be both flexible and

post-quantum secure, QSMP was designed to surpass the protocols it intends to replace and is

suitable for any application that demands strong post-quantum security in an encrypted

messaging scheme.

QSMP includes two protocol variants: SIMPLEX and DUPLEX.

SIMPLEX Protocol: The SIMPLEX protocol is a streamlined one-way-trust authenticated key

exchange designed for client-server communications. In this unidirectional trust model, the client

trusts the server. The server authenticates by signing its public asymmetric cipher key, which the

client then verifies using the server’s public signature-verification key. This protocol creates a

256-bit secure, duplexed encrypted tunnel between the server and client in just two round trips,

making it ideal for applications requiring efficient, post-quantum secure encrypted channels

between a client and server.

DUPLEX Protocol: The DUPLEX protocol supports a bidirectional trust model, where two

hosts mutually authenticate and exchange shared secrets. Each host possesses the other's public

signature-verification key. They exchange signed public asymmetric cipher keys, signed

ciphertext, create individual shared secrets, and combine these secrets to create a 512-bit secure

encrypted communication stream. The QSMP DUPLEX protocol is designed for high-security,

post-quantum communication between remote hosts. It can also work in conjunction with

QSMP-2024 Rev. 1.3a

6

SIMPLEX to facilitate host registration, distribute public signature keys, and establish secure

communications within high-security environments.

The protocols within QSMP are versatile and adaptable to various use cases, offering modern

alternatives to aging cryptographic protocols that are merely being retrofitted with quantum-

resistant algorithms.

1.1 Purpose

Ephemeral Asymmetric Cipher Keys: The protocol ensures that asymmetric cipher keys are

used for just a single transfer of shared secrets, encapsulating shared secrets unique to each

session. This approach provides strong forward secrecy, guaranteeing that the compromise of

current asymmetric cipher keys does not affect the security of previous sessions.

Predictive Resistance: The capture of any shared keys within a session reveals no information

about future sessions, preventing adversaries from predicting or deriving future keys based on

past communications.

One-Way or Two-Way Authentication: QSMP supports both one-way and two-way

authenticated trust models, utilizing robust asymmetric and symmetric authentication methods to

establish secure and verifiable communication channels between parties.

Post-Quantum Security: The protocol is designed to be resistant to quantum attacks by using

quantum-safe cryptographic primitives such as Kyber and McEliece for key exchanges, and

Dilithium or Sphincs+ for digital signatures, ensuring long-term data security.

Scalable Encryption: QSMP utilizes the RCS stream cipher with AEAD authentication using

KMAC, which is based on the wide-block Rijndael cipher with increased rounds and a

cryptographically strong key schedule (cSHAKE). This ensures scalability and adaptability for

high-throughput environments, leveraging embedded CPU level AES-NI instructions, and

maintaining robust encryption with superior quantum-level security.

Flexible Protocol Variants: QSMP provides two protocol variants, SIMPLEX and DUPLEX, to

cater to different communication needs. SIMPLEX supports a streamlined one-way authenticated

key exchange ideal for client-server exchanges, while DUPLEX offers a bidirectional trust

model suitable for high-security communication between hosts.

Efficient Key Exchange: The SIMPLEX protocol is optimized to establish secure

communication channels with minimal round trips, reducing latency and computational overhead

in the key exchange process. SIMPLEX achieves a two-way encrypted tunnel in just two round

trips.

Comprehensive Anti-Attack Strategy: The key exchange incorporates many different defenses

against packet and message tampering, impersonation, replay, memory overflow, authentication,

and cryptographic attacks against the key exchange and encrypted tunnel.

QSMP-2024 Rev. 1.3a

7

Interoperability: QSMP can be seamlessly integrated into existing network architectures and

communication systems, offering an upgrade path to quantum-resistant security without the need

to overhaul legacy infrastructure.

Multi-Layered Cryptographic Security: The protocol combines multiple layers of

cryptographic techniques, including digital signatures, asymmetric encryption, and authenticated

symmetric encryption, to provide comprehensive protection against a wide range of threats,

including CCA, CPA, man-in-the-middle (MITM) attacks, and replay attacks.

Robust Error Handling: QSMP includes well-defined error detection and correction

mechanisms to ensure communication integrity, with clear error messages and automated session

tear-down procedures in the event of protocol violations or security issues.

Future-Proof Design: The protocol is designed with the modular flexibility to adopt new

cryptographic algorithms and techniques as they emerge, ensuring that it remains secure against

evolving threats and advancements in cryptographic research for many years to come.

These features make QSMP a highly secure, efficient, and future-ready protocol for establishing

encrypted communication channels in environments that require strong post-quantum security.

QSMP-2024 Rev. 1.3a

8

2: Scope

This document provides a comprehensive description of the QSMP secure messaging protocols,

focusing on establishing encrypted and authenticated communication channels between two

hosts. It outlines the complete processes involved in key exchange, message authentication, and

the establishment of secure communication tunnels using both the QSMP SIMPLEX and

DUPLEX protocols.

2.1 Application

QSMP is designed primarily for institutions and organizations that require secure communication

channels to handle sensitive information exchanged between remote devices. It is ideally suited

for sectors where data confidentiality, integrity, and authenticity are paramount, including

financial institutions, government agencies, defense contractors, and enterprises managing

critical infrastructure.

The protocol is versatile enough to be applied in various settings, such as secure messaging,

VPNs, and other network communication systems where robust encryption and authentication

are essential. QSMP's design ensures that even if the cryptographic landscape changes due to

advancements in quantum computing, its security framework remains resilient and flexible.

Mandatory Protocol Components:

The key exchange, message authentication, and encryption functions defined in this document

are integral to the construction of a QSMP communication stream. These components MUST be

implemented to ensure secure operations and protocol compliance.

Use of Keywords for Compliance:

• SHOULD: Indicates best practices or recommended settings that are not compulsory but

are strongly advised for optimal performance and security.

• SHALL: Denotes mandatory requirements that must be followed to ensure full

compliance with the QSMP protocol. Deviations from these guidelines result in non-

conformity and may compromise the protocol's effectiveness.

2.2 Protocol Flexibility and Use Cases

QSMP is engineered to be highly adaptable, supporting various deployment scenarios ranging

from simple client-server architectures to more complex multi-party distributed systems. This

flexibility makes it ideal for cloud-based infrastructures, secure messaging applications, VPNs,

and IoT networks that demand high-performance encryption and authentication.

Key use cases for QSMP include:

• Institutional Communications: Securely encrypting and authenticating sensitive data

exchanges between financial institutions, government agencies, and corporate networks.

QSMP-2024 Rev. 1.3a

9

• Internet of Things (IoT): Enabling secure communication for connected devices that

require lightweight, efficient, and scalable encryption protocols to protect data integrity.

• Secure Messaging Platforms: Providing end-to-end encryption for messaging services

that need to resist both classical and quantum attacks.

The protocol's ability to integrate with existing network infrastructure without requiring

extensive modifications ensures that organizations can transition to post-quantum security

seamlessly while maintaining high levels of operational efficiency.

2.3 Compliance and Interoperability

The QSMP protocol is designed to maintain strict compliance with its core cryptographic

principles and industry standards while ensuring interoperability with other secure

communication frameworks. To guarantee that different QSMP implementations can interact

securely, adherence to the standards outlined in this document is crucial.

To facilitate future upgrades and adaptations, QSMP is structured to support modular

cryptographic components. This approach allows for the addition of new cryptographic

primitives or the enhancement of existing ones without disrupting the overall architecture. As

new advancements in cryptographic techniques emerge, QSMP can be easily updated to include

these innovations, maintaining its position as a state-of-the-art security protocol.

Key elements of compliance:

• Interoperability Standards: QSMP is developed to work seamlessly with other post-

quantum cryptographic standards, ensuring that its communication channels can operate

in diverse network environments.

• Modular Design: The protocol's flexible design allows for straightforward upgrades,

facilitating the incorporation of future cryptographic advancements with minimal impact

on existing deployments.

• Powerful Building Block: QSMP is an ideal choice as the core encrypted tunneling and

networking components when constructing new protocols. It uses a simple interface that

wraps the complex interactions governing a key exchange, authentication, and an

encrypted tunnel. A sophisticated multi-threaded networked server can be implemented

with just a few function calls, and a client implementation is similarly simple to employ,

with a simple intuitive API, that makes the complex operations beneath them transparent

to the implementor. New protocols can easily be built on top of QSMP. The two variants

lend to the client-server model and peer-to-peer models of network communications,

providing a ‘black box’ interface for constructing more complex protocols on top of

QSMP.

2.4 Recommendations for Secure Implementation

QSMP-2024 Rev. 1.3a

10

In addition to outlining the core requirements for QSMP's secure communications model, this

document provides best practice recommendations to enhance implementation security,

performance, and reliability:

• Regular Cryptographic Updates: Institutions are advised to keep updated on

developments in post-quantum cryptography and to update their cryptographic algorithms

to maintain compliance with industry standards.

• Security Audits and Assessments: Routine security assessments should be conducted to

identify potential vulnerabilities in the protocol implementation and to apply necessary

mitigations.

• Infrastructure Optimization: It is recommended to configure network infrastructure in

a way that supports QSMP's low-latency, high-throughput capabilities, ensuring that

performance remains consistent even under heavy loads.

These guidelines aim to help organizations maximize QSMP's security potential, ensuring that

their communication channels remain secure against both current and future threats.

2.5 Document Organization

This document is structured to provide a detailed, logical flow of information about the QSMP

protocol's operation and implementation. It includes the following key sections:

• Cryptographic Primitives: Detailed explanations of the mathematical algorithms that

form the foundation of QSMP's encryption and authentication processes.

• Key Exchange Mechanisms: Comprehensive breakdowns of how session keys are

established securely through QSMP's SIMPLEX and DUPLEX protocols.

• Message Authentication: Detailed descriptions of the techniques used to verify the

authenticity and integrity of messages exchanged within QSMP communications.

• Protocol Flows: Visual diagrams and cryptographic pseudocode outlining the message

flows for both SIMPLEX and DUPLEX, illustrating the secure handshake processes and

key exchanges.

• Error Handling and Fault Tolerance: Guidelines on how to manage protocol errors and

disruptions while maintaining secure and stable communication channels.

• Implementation Examples: Practical examples, code snippets, and detailed use cases

demonstrating the integration of QSMP in various application contexts.

QSMP-2024 Rev. 1.3a

11

3.Terms and Definitions

3.1 Cryptographic Primitives

3.1.1 Kyber

The Kyber asymmetric cipher and NIST Post Quantum Competition winner.

3.1.2 McEliece

The McEliece asymmetric cipher and NIST Round 3 Post Quantum Competition candidate.

3.1.3 Dilithium

The Dilithium asymmetric signature scheme and NIST Post Quantum Competition winner.

3.1.5 SPHINCS+

The SPHINCS+ asymmetric signature scheme and NIST Post Quantum Competition winner.

3.1.6 RCS

The wide-block Rijndael hybrid authenticated symmetric stream cipher.

3.1.7 SHA-3

The SHA3 hash function NIST standard, as defined in the NIST standards document FIPS-202;

SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

3.1.8 SHAKE

The NIST standard Extended Output Function (XOF) defined in the SHA-3 standard publication

FIPS-202; SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

3.1.9 KMAC

The SHA3 derived Message Authentication Code generator (MAC) function defined in NIST

special publication SP800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and

ParallelHash.

3.2 Network References

3.2.1 Bandwidth

The maximum rate of data transfer across a given path, measured in bits per second (bps).

3.2.2 Byte

Eight bits of data, represented as an unsigned integer ranged 0-255.

3.2.3 Certificate

QSMP-2024 Rev. 1.3a

12

A digital certificate, a structure that contains a signature verification key, expiration time, and

serial number and other identifying information. A certificate is used to verify the authenticity of

a message signed with an asymmetric signature scheme.

3.2.4 Domain

A virtual grouping of devices under the same authoritative control that shares resources between

members. Domains are not constrained to an IP subnet or physical location but are a virtual

group of devices, with server resources typically under the control of a network administrator,

and clients accessing those resources from different networks or locations.

3.2.5 Duplex

The ability of a communication system to transmit and receive data; half-duplex allows one

direction at a time, while full-duplex allows simultaneous two-way communication.

3.2.6 Gateway: A network point that acts as an entrance to another network, often connecting a

local network to the internet.

3.2.7 IP Address

A unique numerical label assigned to each device connected to a network that uses the Internet

Protocol for communication.

3.2.8 IPv4 (Internet Protocol version 4): The fourth version of the Internet Protocol, using 32-

bit addresses to identify devices on a network.

3.2.9 IPv6 (Internet Protocol version 6): The most recent version of the Internet Protocol,

using 128-bit addresses to overcome IPv4 address exhaustion.

3.2.10 LAN (Local Area Network)

A network that connects computers within a limited area such as a residence, school, or office

building.

3.2.11 Latency

The time it takes for a data packet to move from source to destination, affecting the speed and

performance of a network.

3.2.12 Network Topology

The arrangement of different elements (links, nodes) of a computer network, including physical

and logical aspects.

3.2.13 Packet

A unit of data transmitted over a network, containing both control information and user data.

3.2.14 Protocol

A set of rules governing the exchange or transmission of data between devices.

QSMP-2024 Rev. 1.3a

13

3.2.15 TCP/IP (Transmission Control Protocol/Internet Protocol)

A suite of communication protocols used to interconnect network devices on the internet.

3.2.16 Throughput: The actual rate at which data is successfully transferred over a

communication channel.

3.2.17 UDP (User Datagram Protocol)

A communication protocol that offers a limited amount of service when messages are exchanged

between computers in a network that uses the Internet Protocol.

3.2.18 VLAN (Virtual Local Area Network)

A logical grouping of network devices that appear to be on the same LAN regardless of their

physical location.

3.2.19 VPN (Virtual Private Network)

Creates a secure network connection over a public network such as the internet.

3.3 Normative References

The following documents serve as references for cryptographic components used by QSTP:

3.3.1 FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable Output

Functions: This standard specifies the SHA-3 family of hash functions, including SHAKE

extendable-output functions. https://doi.org/10.6028/NIST.FIPS.202

3.3.2 FIPS 203: Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM): This

standard specifies ML-KEM, a key encapsulation mechanism designed to be secure against

quantum computer attacks. https://doi.org/10.6028/NIST.FIPS.203

3.3.3 FIPS 204: Module-Lattice-Based Digital Signature Standard (ML-DSA): This standard

specifies ML-DSA, a set of algorithms for generating and verifying digital signatures, believed

to be secure even against adversaries with quantum computing capabilities.

https://doi.org/10.6028/NIST.FIPS.204

3.3.4 NIST SP 800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and

ParallelHash: This publication specifies four SHA-3-derived functions: cSHAKE, KMAC,

TupleHash, and ParallelHash. https://doi.org/10.6028/NIST.SP.800-185

3.3.5 NIST SP 800-90A Rev. 1: Recommendation for Random Number Generation Using

Deterministic Random Bit Generators: This publication provides recommendations for the

generation of random numbers using deterministic random bit generators.

https://doi.org/10.6028/NIST.SP.800-90Ar1

3.3.6 NIST SP 800-108: Recommendation for Key Derivation Using Pseudorandom

Functions: This publication offers recommendations for key derivation using pseudorandom

functions. https://doi.org/10.6028/NIST.SP.800-108

QSMP-2024 Rev. 1.3a

14

3.3.7 FIPS 197: The Advanced Encryption Standard (AES): This standard specifies the

Advanced Encryption Standard (AES), a symmetric block cipher used widely across the globe.

https://doi.org/10.6028/NIST.FIPS.197

QSMP-2024 Rev. 1.3a

15

4: Cryptographic Primitives

QSMP relies on a set of cryptographic primitives designed to provide resilience against both

classical and quantum-based attacks. The following sections detail the specific cryptographic

algorithms and mechanisms that form the foundation of QSMP's encryption, key exchange, and

authentication processes.

4.1 Asymmetric Cryptographic Primitives

QSMP employs post-quantum secure asymmetric algorithms to ensure the integrity and

confidentiality of key exchanges, as well as to facilitate digital signatures and asymmetric key

exchanges. The primary asymmetric primitives used are:

• Kyber: An IND-CCA secure lattice-based key encapsulation mechanism that provides

secure and efficient key exchange resistant to quantum attacks. Kyber is valued for its

balance between computational speed and cryptographic strength, making it suitable for

scenarios requiring rapid key generation and exchange.

• McEliece: A code-based cryptosystem that remains one of the most established and

trusted post-quantum algorithms. It leverages the difficulty of decoding general linear

codes, offering a high level of security even against advanced quantum decryption

techniques.

• Dilithium: A lattice-based digital signature scheme based on that of the underlying

MLWE and MSIS problems, that offers fast signing and verification while maintaining

strong security guarantees against quantum attacks.

• Sphincs+: A stateless hash-based signature scheme, which provides long-term security

without reliance on specific problem structures, making it robust against future

advancements in cryptographic research.

These asymmetric primitives are selected for their proven resilience against quantum

cryptanalysis, ensuring that QSMP's key exchange and signature operations remain secure in the

face of evolving computational threats.

4.2 Symmetric Cryptographic Primitives

QSMP's symmetric encryption employs the Rijndael Cryptographic Stream (RCS), a stream

cipher adapted from the Rijndael (AES) symmetric cipher to meet post-quantum security needs.

Key features of the RCS cipher include:

• Wide-Block Cipher Design: RCS extends the original AES design with a focus on

increasing the block size (from 128 to 256 bits) and number of transformation rounds

(from 14 to 21 for a 256-bit key, and 30 rounds for a 512-bit key), thereby enhancing its

resistance to differential and linear cryptanalysis.

• Enhanced Key Schedule: The key schedule in RCS is cryptographically strong using

Keccak (cSHAKE), ensuring that derived keys are resistant to known attacks, including

algebraic-based and differential attacks. RCS replaces Rijndael’s cryptographically-weak

key schedule, with a tweakable post-quantum secure key expansion function.

QSMP-2024 Rev. 1.3a

16

• Authenticated Encryption with Associated Data (AEAD): RCS integrates with KMAC

(Keccak-based Message Authentication Code) to provide both encryption and message

authentication in a single operation. This approach ensures that data integrity is

maintained alongside confidentiality. Additional data can be added to the MAC function,

to ensure the integrity of non-encrypted messaging components such as packet headers.

The RCS stream cipher's design is optimized for high-performance environments, making it

suitable for low-latency applications that require secure and efficient data encryption. It

leverages AVX/AVX2/AVX512 intrinsic functions, and AES-NI instructions embedded in

modern CPUs.

4.3 Hash Functions and Key Derivation

Hash functions and key derivation functions (KDFs) are essential to QSMP's ability to transform

raw cryptographic data into secure keys and hashes. The following primitives are used:

• SHA-3: SHA-3 serves as QSMP's primary hash function, providing secure, collision-

resistant hashing capabilities.

• SHAKE: QSMP employs the Keccak SHAKE XOF function for deriving symmetric

keys from shared secrets. This ensures that each session key is uniquely generated and

unpredictable, enhancing the protocol's security against key reuse attacks.

• KMAC: The SHA-3 keyed hashing function (MAC), part of the SHA-3 family of post-

quantum resistant hashing functions.

These cryptographic primitives ensure that QSMP's key management processes remain secure,

even in scenarios involving high-risk adversaries and quantum-capable threats.

QSMP-2024 Rev. 1.3a

17

5. Protocol Components and State Structures

5.1 Protocol String

The protocol string in QSMP is composed of four key components, each representing a specific

cryptographic element used in the secure communication process:

1. Asymmetric Signature Scheme: Specifies the signature scheme along with its security

strength (e.g., s1, s3, s5) from low to high. Example: dilithium-s3 correlates to the NIST

level 3 security designation (192 bits of post-quantum security).

2. Asymmetric Encapsulation Cipher: Defines the asymmetric encryption algorithm and

its security strength. Example: mceliece-s5.

3. Hash Function Family: The designated hash function used within the protocol, which is

set as SHA3.

4. Symmetric Cipher: The symmetric cipher used for data encryption, set as the

authenticated stream cipher RCS.

The protocol string plays a crucial role during the initial negotiation phase to ensure that both the

client and server agree on a common set of cryptographic parameters. If the client and server do

not support the same protocol settings, a secure connection cannot be established.

Signature Scheme Asymmetric Cipher HASH Function Symmetric Cipher

Dilithium Kyber SHA3 RCS

Dilithium McEliece SHA3 RCS

Sphincs+ McEliece SHA3 RCS

Table 5.1: The Protocol string choices in revision QSMP 1.3a.

5.2 Client Key Structure

The client key is a publicly exportable structure that contains the signature verification key and

associated metadata. It includes parameters such as the key expiration time, protocol string,

public signature verification key, and key identity array.

Parameter Data Type Bit Length Function

Expiration Uint64 64 Validity check

Configuration Uint8 array 320 Protocol check

Key ID Uint8 array 128 Identification

Verification Key Uint8 array Variable Authentication

Table 5.2: The client key structure.

• Expiration: A 64-bit unsigned integer indicating the number of seconds since the epoch

(01/01/1900) until the UTC time when the key remains valid. If the key has expired, the

client must request a new public key from the server.

QSMP-2024 Rev. 1.3a

18

• Configuration: Contains the protocol string that defines the cryptographic parameters. If

the protocol string on both hosts does not match, the connection is aborted.

• Key ID: A unique identifier for the public verification key, facilitating quick reference on

the server.

• Verification Key: The public asymmetric signature verification key used for

authenticating asymmetric encapsulation keys and data during the key exchange.

The client key can be distributed openly or could be enveloped and signed using X.509

certificates to create a chain of trust, enhancing its security in diverse environments.

5.3 Server Key Structure

The server key is a private (secret) key retained by the server. It contains all elements of the

client key plus an additional parameter, the asymmetric signing key.

Data Name Data Type Bit Length Function

Expiration Uint64 64 Validity check

Configuration Uint8 array 320 Protocol check

Key ID Uint8 array 128 Identification

Verification Key Uint8 array Variable Authentication

Signing Key Uint8 array Variable Signing

Table 5.3: The server key structure.

The inclusion of the signing key in the server key structure allows the server to sign messages

during the key exchange, ensuring that data exchanges are authenticated and trusted.

5.4 Keep Alive State

QSMP SIMPLEX uses an internal keep-alive mechanism to maintain active connections. The

server periodically sends a keep-alive packet to the client, which the client must acknowledge

within the defined interval.

Parameter Data Type Bit Length Function

Expiration Time Uint64 64 Validity check

Packet Sequence Uint64 64 Protocol check

Received Status Bool 8 Status

Table 5.4: The keep alive state.

If the server does not receive a response within the timeout period, it logs a keep-alive error and

terminates the connection to prevent stale sessions.

5.5 Connection State

QSMP-2024 Rev. 1.3a

19

The internal connection state structure stores the critical data required by QSMP operations,

including cipher states, sequence counters, and the ratchet key.

Data Name Data Type Bit Length Function

Target Socket struct 664 Validity check

Cipher Send State Structure Variable Symmetric Encryption

Cipher Receive State Structure Variable Symmetric Decryption

Receive Sequence Uint64 64 Packet Verification

Send Sequence Uint64 64 Packet Verification

Connection Instance Uint32 32 Identification

KEX Flag Uint8 8 KEX State Flag

Ratchet Key Uint8 array 512 Symmetric Ratchet

PkHash Uint8 array 256 Authentication

Session Token Uint8 array 256 Authentication

ExFlag Uint8 8 Protocol Check

Table 5.5: The connection state structure.

This data structure ensures secure handling of connection parameters, packet sequencing, and

cryptographic states during active communication sessions.

5.6 Duplex Client KEX State

The Duplex client key exchange (KEX) state holds information about asymmetric and symmetric

keys during the key exchange process.

Data Name Data Type Bit Length Function

Key ID Uint8 array 128 Key Identification

Session Token Uint8 array 512 Verification

Private Cipher Key Uint8 array Variable Asymmetric Encryption

Public Cipher Key Uint8 array Variable Asymmetric Encryption

Remote Verification Key Uint8 array Variable Asymmetric Authentication

Signature Key Uint8 array Variable Asymmetric Authentication

Shared Secret Uint8 array 256 Symmetric Key

Verification Key Uint8 array Variable Asymmetric Authentication

Expiration Uint64 64 Verification

Table 5.6: The Duplex client KEX state structure.

This state ensures that all required keys and tokens are securely managed throughout the key

exchange process.

5.7 Duplex Server KEX State

QSMP-2024 Rev. 1.3a

20

The Duplex server KEX state structure mirrors the client state, with additional functionality for

handling server-specific key queries.

Data Name Data Type Bit Length Function

Key ID Uint8 array 128 Key Identification

Session Token Uint8 array 512 Verification

Private Cipher Key Uint8 array Variable Asymmetric Encryption

Public Cipher Key Uint8 array Variable Asymmetric Encryption

Remote Verification Key Uint8 array Variable Asymmetric Authentication

Signature Key Uint8 array Variable Asymmetric Authentication

Shared Secret Uint8 array 256 Symmetric Key

Verification Key Uint8 array Variable Asymmetric Authentication

Expiration Uint64 64 Verification

Key Query Callback Uint64 64 Function Pointer

Table 5.7: The Duplex server KEX state structure.

5.8 Simplex Client KEX State

The Simplex protocol's client and server state structures focus on one-way authentication, storing

essential key exchange data:

Data Name Data Type Bit Length Function

Key ID Uint8 array 128 Key Identification

Session Token Uint8 array 512 Verification

Remote Verification Key Uint8 array Variable Asymmetric Authentication

Signature Key Uint8 array Variable Asymmetric Authentication

Shared Secret Uint8 array 256 Symmetric Key

Verification Key Uint8 array Variable Asymmetric Authentication

Expiration Uint64 64 Verification

Table 5.7: The Simplex client KEX state structure.

5.9 Simplex Server KEX State

The Simplex server state structure stores the asymmetric cipher and signature keys used during

the key exchange execution.

Data Name Data Type Bit Length Function

Key ID Uint8 array 128 Key Identification

Session Token Uint8 array 512 Verification

Private Cipher Key Uint8 array Variable Asymmetric Encryption

Public Cipher Key Uint8 array Variable Asymmetric Encryption

QSMP-2024 Rev. 1.3a

21

Signature Key Uint8 array Variable Asymmetric Authentication

Shared Secret Uint8 array 256 Symmetric Key

Verification Key Uint8 array Variable Asymmetric Authentication

Expiration Uint64 64 Verification

Table 5.8: The Simplex server KEX state structure.

5.10 QSMP Packet Header

The QSMP packet header is 21 bytes in length, and contains:

1. The Packet Flag, the type of message contained in the packet; this can be any one of the

key-exchange stage flags, a message flag, or an error flag.

2. The Packet Sequence, this indicates the sequence number of the packet in the exchange.

3. The Message Size, this is the size in bytes of the message payload.

4. The UTC time, the time the packet was created, used in an anti-replay attack mechanism.

The message is a variable sized array, up to QSMP_MESSAGE_MAX in size.

Packet Flag

1 byte

Packet Sequence

8 bytes

Message Size

4 bytes

UTC Time

8 bytes

Message

Variable Size

Figure 5.7: The QSMP packet structure.

This packet structure is used for both the key exchange protocol, and the communications

stream.

5.11 Flag Types

The following is a list of packet flag types used by QSMP:

Flag Name Numerical Value Flag Purpose

None 0x00 No flag was specified, the default value.

Connect Request 0x01 The key-exchange client connection

request flag.

Connect Response 0x02 The key-exchange server connection

response flag.

Connection Terminated 0x03 The connection is to be terminated.

Encrypted Message 0x04 The message has been encrypted by the

communications stream.

QSMP-2024 Rev. 1.3a

22

Exchange Request 0x07 The key-exchange client exchange request

flag.

Exchange Response 0x08 The key-exchange server exchange

response flag.

Establish Request 0x09 The key- exchange client establish request

flag.

Establish Response 0x0A The key- exchange server establish

response flag.

Keep Alive Request 0x0B The packet contains a keep alive request.

Keep Alive Response 0x0C The packet contains a keep alive

response.

Remote Connected 0x0D The remote host has terminated the

connection.

Remote Terminated 0x0E The remote host has terminated the

connection.

Session Established 0x0F The session is in the established state.

Establish Verify 0x10 The session is in the verify state.

Unrecognized Protocol 0x11 The protocol string is not recognized

Asymmetric Ratchet Request 0x12 The packet contains an asymmetric

ratchet request.

Asymmetric Ratchet Response 0x13 The packet contains an asymmetric

ratchet response.

Symmetric Ratchet Request 0x14 The packet contains a symmetric ratchet

request.

Error Condition 0xFF The connection experienced an error.

Table 5.8: Packet header flag types.

5.12 Error Types

The following is a list of error messages used by QSMP:

Error Name Numerical Value Description

None 0x00 No error condition was detected.

Authentication Failure 0x01 The symmetric cipher had an

authentication failure.

Bad Keep Alive 0x02 The keep alive check failed.

Channel Down 0x03 The communications channel has failed.

Connection Failure 0x04 The device could not make a connection

to the remote host.

Connect Failure 0x05 The transmission failed at the KEX

connection phase.

Decapsulation Failure 0x06 The asymmetric cipher failed to

decapsulate the shared secret.

QSMP-2024 Rev. 1.3a

23

Establish Failure 0x07 The transmission failed at the KEX

establish phase.

Exstart Failure 0x08 The transmission failed at the KEX

exstart phase.

Exchange Failure 0x09 The transmission failed at the KEX

exchange phase.

Hash Invalid 0x0A The public-key hash is invalid.

Invalid Input 0x0B The expected input was invalid.

Invalid Request 0x0C The packet flag was unexpected.

Keep Alive Expired 0x0D The keep alive has expired with no

response.

Key Expired 0x0E The QSMP public key has expired.

Key Unrecognized 0x0F The key identity is unrecognized.

Packet Un-Sequenced 0x10 The packet was received out of sequence.

Random Failure 0x11 The random generator has failed.

Receive Failure 0x12 The receiver failed at the network layer.

Transmit Failure 0x13 The transmitter failed at the network

layer.

Verify Failure 0x14 The expected data could not be verified.

Unknown Protocol 0x15 The protocol string was not recognized.

Listener Failure 0x16 The listener function failed to initialize.

Accept Failure 0x17 The socket accept function returned an

error.

Hosts Exceeded 0x18 The server has run out of socket

connections.

Allocation Failure 0x19 The server has run out of memory.

Decryption Failure 0x1A The decryption authentication has failed.

Ratchet Failure 0x1C The ratchet operation has failed.

Table 5.9: Error type messages.

QSMP-2024 Rev. 1.3a

24

6. Duplex Protocol Operational Overview

During the device initialization phase, clients generate an asymmetric signature key-pair. This

pair consists of a private key, which the client uses to sign messages in the key exchange, and a

public key, which is shared with other hosts and used to verify a message signature. The public

key contains the asymmetric signature verification key, a key identity array, the protocol

configuration string, and the key expiration date.

These public/private signature keys, generated by the clients, function as the primary

authentication keys. The public verification keys can be distributed to other clients via a trusted

intermediary, such as a server using a directory service, to ensure secure distribution.

Within the Duplex protocol, participating clients are assigned roles during the connection stage

as either a listener, which accepts network connection requests, or a sender, which initiates the

connection request, but a device can be both, initiating or accepting a connection. For the

purposes of providing clarity, the listener shall be described in this process as the server, and the

sender as the client.

The sender begins the connection process, and if the listener recognizes the sender’s key-id as

valid, the key exchange sequence is initiated. During this exchange, the asymmetric cipher keys

and ciphertext are signed, verified, and mutually exchanged between the sender and listener. This

process results in the generation of a pair of shared secrets, which are used to key symmetric

cipher instances for both transmitting and receiving data in a set of secure communication

channels.

If an error occurs during the key exchange the affected sender or listener immediately sends an

error message to the other host, disconnects, and terminates the session. Error handling includes

checks for message synchronization, timing, expected message size during the key exchange,

authentication failures, packet expiration, and any internal errors triggered by cryptographic or

network operations integral to the key exchange and communication flow.

QSMP-2024 Rev. 1.3a

25

6.1 Connection Request

Figure 6.1: QSMP Duplex connection request.

1) The client initiates the key exchange operation by sending a connection request packet to the

server. This packet includes the server’s key identification array, the protocol configuration

string, and a signed hash of the message including the serialized packet header.

2) The packet header fields are verified by the server; message size, sequence number, flag, and

the timestamp, all of which are added to the message hash, the message hash is signed, and

this guarantees protection from replay attacks.

3) The client generates a hash of the protocol string, along with both the client’s and server’s

asymmetric signature verification keys, and the remote key ID, and stores this information in

the session cookie (sch) state value for later use in the key exchange. This ensures that the

correct verification keys and cryptographic parameters are referenced throughout the key

exchange process.

QSMP-2024 Rev. 1.3a

26

6.2 Connection Response

Figure 6.2: QSMP server connection response.

QSMP-2024 Rev. 1.3a

27

1) The server inspects the packet header for the correct flag, sequence number, expected

message size, and that the packet valid-time has not expired.

2) The server checks its database for a key matching the key identification array sent by the

client in the connect request message. The verification key is retrieved or the exchange is

aborted. If the key is not known to the server, the server sends a key unrecognized error

message to the client.

3) The server compares the configuration string contained in the message against its own

protocol string for a match. If the protocol configuration strings do not match, the server will

send an unknown protocol error to the client and close the connection.

4) The server verifies the key’s expiration time, and if all fields are valid, loads the key into

state. If the client’s key has expired, the server will send a key expired error message.

5) The server checks the signature of the client’s message hash using the client’s signature

verification key.

6) If the signature is authenticated, the server hashes the key-id, the config string, and the

serialized connect request packet header, and compares this hash to the signed hash it

received from the client for equivalence, as the final stage of verification of the message. In

any protocol failure occurs, the server notifies the client, closes the connection, and logs the

event, and the client is expected to close the connection, and pass the error up to the user

interface software, that can initiate actions or inform the user of the cause of the failure.

7) The server generates a public/private asymmetric cipher key-pair.

8) The server hashes the public encapsulation key and the serialized connect response packet

header, and signs the hash with its asymmetric signature signing key. The client has a copy of

the asymmetric signature verification key, that will be used to verify this signature.

9) The server stores the private asymmetric cipher key temporarily in its state.

10) The server hashes the key-id array, the configuration string, and the local and remote copies

of the signature verification keys, and stores the hash in its session cookie state value sch, for

use as a session cookie.

11) The server adds the public asymmetric encapsulation key, and the public key’s signed hash,

to the connect response message, and sends it to the client.

QSMP-2024 Rev. 1.3a

28

6.3 Exchange Request

Figure 6.3: QSMP client exchange request.

QSMP-2024 Rev. 1.3a

29

1) The client inspects the connect response packet header for the correct flag, sequence number,

expected message size, and that the valid-time has not expired.

2) The client uses the server's public signature verification key to validate the signature on the

message hash.

3) If the signature verification is successful, the client hashes the asymmetric cipher key and

connection response packet header and compares this hash to the signed hash received from

the server. If the signature verification fails, the client sends an authentication failure

message to the server and terminates the connection. Similarly, if the hash comparison fails,

the client sends a hash invalid error message and closes the connection.

4) Once the signature and hash have been successfully authenticated, the client uses the

asymmetric cipher key to encapsulate a shared secret, generating a ciphertext that will be sent

to the server. This ciphertext will be used by the server to decapsulate the shared secret,

which the client securely stores for later use in deriving the session keys.

5) The client generates a new asymmetric encapsulation key-pair, and stores the private key.

The client hashes the public key, the ciphertext, and the serialized exchange request packet

header, signing the hash using its private signing key.

6) The client adds the asymmetric ciphertext, the public encryption key, and the signed hash to

the exchange request packet, which is sent to the server to continue the key exchange

process.

QSMP-2024 Rev. 1.3a

30

6.4 Exchange Response

QSMP-2024 Rev. 1.3a

31

Figure 6.4: QSMP server exchange response.

1) The server inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The server verifies the signature of the hash of the message and packet header using the

client’s signature verification key.

3) The server hashes the public key, cipher-text, and serialized exchange request header, and

verifies the hash for equivalence to the one contained in the signed hash.

4) The server uses the stored asymmetric cipher private key to decapsulate the first shared

secret.

5) The server uses the public key sent by the client to generate a new shared secret and

encapsulate it in ciphertext.

6) The two shared secrets and the session cookie are used to key a KDF, which derives the two

symmetric session keys (tx and rx) on the server.

7) The symmetric cipher instances are keyed with the session keys, raising both the transmit and

receive channels of the encrypted tunnel.

8) The cipher-text and exchange response header are hashed, the hash is signed by the server’s

private asymmetric signature key, and these are sent back to the client in an exchange

response packet.

QSMP-2024 Rev. 1.3a

32

6.5 Establish Request

Figure 6.5: QSMP client establish request.

QSMP-2024 Rev. 1.3a

33

1) The client inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The client extracts the asymmetric ciphertext and the signed hash of the ciphertext. It uses the

server’s public verification key to verify the signature on the hash, ensuring its authenticity.

3) The client hashes the ciphertext and the serialized exchange response header, and compares

the generated hash with the signed hash. If the hashes match, the client confirms the integrity

of the data.

4) The client decapsulates the shared secret from the ciphertext.

5) The client combines this shared secret with the previously stored shared secret and the

session cookie to key a KDF which derives the (rx and tx) symmetric session keys.

6) The session keys are used to initialize the transmit and receive symmetric cipher instances,

establishing both transmit and receive channels of the encrypted tunnel.

7) The client encrypts the session cookie with the tx instance of the symmetric ciphers, and adds

the serialized establish request header to the additional data of the AEAD stream cipher

(RCS).

QSMP-2024 Rev. 1.3a

34

6.6 Establish Response

Figure 6.6: QSMP server establish response.

1) The server inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The server decrypts the ciphertext using the rx cipher instance, adding the serialized

establish request packet header as additional data.

3) The message is compared to the session cookie for equivalence. If the decryption

succeeds and the message equals the session cookie, the session cookie is hashed.

QSMP-2024 Rev. 1.3a

35

4) The hashed session cookie is encrypted using the tx cipher instance, adding the serialized

establish response packet header to the cipher MAC.

5) The message is sent to the client, and the tunnel interface is changed to the active state on

the server.

QSMP-2024 Rev. 1.3a

36

6.7 Establish Verify

Figure 6.7: QSMP client establish request.

1) The client inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The client decrypts the ciphertext using the rx instance of the cipher, adding the serialized

established request packet header to the cipher MAC.

3) The client hashes the session cookie, and compares it to the decrypted message for

equivalence.

4) If the hashes are equal, the tunnel state is changed to active, and the encrypted tunnel

interfaces are now ready to process data.

QSMP-2024 Rev. 1.3a

37

6.8 Asymmetric Ratchet

The [optional] asymmetric ratchet mechanism in QSMP injects new entropy by periodically re-

keying the symmetric ciphers. This process involves combining a hash of the original session

key with new keying material obtained through an asymmetric key exchange.

When the primary key exchange operation establishes the encrypted tunnel, the primary session

keys for both the receive and transmit channels are hashed, and this hash is stored in a persistent

ratchet state. This ratchet state forms the foundation for future re-keying operations.

Upon invocation of the asymmetric ratchet function, the initiator generates a new asymmetric

cipher key pair and transmits the public key to the remote host over the existing encrypted

tunnel. Before transmission, the public key is hashed, and this hash is signed using the initiator's

private signature key to ensure its authenticity.

The receiving host verifies the signature using the initiator's public signature verification key. If

the signature is valid, the host hashes the received public key and compares it to the signed hash

as an additional validation step. Upon successful verification, the host uses the verified public

key to generate a new shared secret and corresponding ciphertext. This shared secret is then

hashed, along with the hash of the original session key, and used to key the KDF and derive a

new set of session keys, which are used to re-key the transmit and receive channels of the

symmetric cipher instances.

The receiving host hashes the new ciphertext and signs the hash using its private signature key,

sending this signed hash and ciphertext back to the initiator. The initiator then verifies the

signature using its stored copy of the receiving host’s public signature verification key. If the

signature and hash checks are successful, the initiator decrypts the ciphertext to obtain the shared

secret, which is then added to a KDF with the initial session key hash to create new symmetric

session keys for both transmit and receive channels.

The persistent ratchet key state is updated by hashing these new session keys, preparing it for the

next invocation of the ratchet mechanism. This process can be initiated by either the sender or

the receiver, allowing either party to enhance the security of the communication stream.

The asymmetric ratchet can be triggered by the hosting software under various conditions, such

as after a specific amount of data has been transmitted, when starting a new session with

persistent keys, or even after each individual message exchange. This dynamic mechanism

provides robust forward security, ensuring that an adversary cannot derive previous keys from

the current key, and predictive resistance, preventing future keys from being derived from the

current state alone.

QSMP-2024 Rev. 1.3a

38

6.9 Symmetric Ratchet

The [optional] symmetric ratchet mechanism in QSMP periodically updates the symmetric

session keys using a randomly generated token. This process introduces new entropy into the

encrypted stream and ensures that even if the current session keys are compromised, past keys

remain secure.

The initiator of the symmetric ratchet generates a random token and transmits it over the

encrypted channel. After sending the encrypted key, the initiator hashes this token together with

the persistent ratchet key, which itself is a hash of the initial session key stored in the ratchet

state. The combined hash of the random token and the ratchet key is added to the key derivation

function and used to derive a new set of session keys. These derived session keys are used to re-

key the symmetric cipher instances for both the transmit and receive channels, ensuring forward

secrecy.

On the receiving end, the receiver decrypts the random token, then hashes it along with the

ratchet key from its own persistent state. The resulting hash is used to key the KDF and derive

the new symmetric session keys, which are then applied to re-key the transmit and receive

channels.

This symmetric ratchet mechanism offers strong forward secrecy, it ensures that the knowledge

of the current state alone is not sufficient to determine any of the previous session keys. This

continuous re-keying process prevents attackers from gaining insight into past communications,

even if they manage to compromise the current session key.

QSMP-2024 Rev. 1.3a

39

7: Simplex Protocol Operational Overview

The Simplex exchange is a one-way-trust client-server key exchange model in which the client

trusts the server, and a single shared secret is securely exchanged between them. Designed for

efficiency, the Simplex exchange is fast and lightweight, while providing 256-bit post-quantum

security, ensuring protection against future quantum-based threats.

This protocol is versatile and can be used in a wide range of applications, such as client

registration on networks, secure cloud storage, hub-and-spoke model communications,

commodity trading, and electronic currency exchange—essentially, any scenario where an

encrypted tunnel using strong quantum-safe cryptography is required.

The server in this model is built as a multi-threaded communications platform capable of

generating a uniquely keyed encrypted tunnel for each connected client. With a lightweight state

footprint of less than 4 kilobytes per client, a single server instance has the capability to handle

potentially hundreds of thousands of simultaneous connections. The cipher encapsulation keys

utilized during each key exchange are ephemeral and unique, ensuring that every key exchange

remains secure and independent from previous key exchanges.

The server distributes a public signature verification key to its clients. This key is used to

authenticate the server's public cipher encapsulation key during the key exchange process. The

server's public verification key can be shared with clients through various secure methods,

including during a registration event, pre-embedding in client software, or via other secure

distribution channels.

QSMP-2024 Rev. 1.3a

40

7.1 Connection Request

Figure 7.1: QSMP Simplex connection request.

1) The client begins the key exchange operation by sending a connect request packet to the

server. This packet contains the server’s key identification array and the protocol

configuration string.

2) The client hashes the configuration string, the key identification array, and its signature

verification key. This combined hash is stored in the session cookie state value (sch) and is

used as a unique session identifier. This approach ensures that the session's cryptographic

parameters are referenced and that the session state is uniquely identifiable.

3) The client adds the key-id and the configuration string, and sends the connection request to

the server.

QSMP-2024 Rev. 1.3a

41

7.2 Connection Response

Figure 7.2: QSMP server connection response.

1) The server inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The server checks its database for a key that matches the key identification array provided in

the request. If the verification key is not found, the server sends an unknown key error

message to the client, aborts the key exchange, logs the event, and tears down the session.

3) The server compares the protocol configuration string sent by the client with its own stored

protocol string to ensure compatibility.

QSMP-2024 Rev. 1.3a

42

4) The server verifies the expiration time of the key. If all these fields are validated

successfully, the server loads the key into its active state.

5) The server hashes the configuration string, the key identification array, and its signature

verification key, and stores this combined hash in its session cookie state value (sch).

6) The server generates a new public/private asymmetric cipher key pair. It hashes the public

encapsulation key and the serialized connection response packet header, and signs this hash

with its private signing key.

7) The server adds the public asymmetric encapsulation key and the signed hash of the public

key to the connect response message and sends it to the client to continue the key exchange

process.

QSMP-2024 Rev. 1.3a

43

7.3 Exchange Request

Figure 7.3: QSMP client exchange request.

1) The client inspects the packet header for the correct flag, sequence number, expected

message size, and that the packet valid-time has not expired.

2) The client uses the server’s signature verification key to verify the signature on the hash of

the asymmetric encapsulation key and serialized packet header. If the signature verification

fails, the client sends an authentication failure message and terminates the connection.

3) If the signature is successfully verified, the client hashes the asymmetric cipher key and

serialized header, and compares this hash to the signed hash in the server's response message.

QSMP-2024 Rev. 1.3a

44

If the hash check fails, the client sends a hash invalid error message and closes the

connection.

4) The client uses the asymmetric cipher key to encapsulate a shared secret, creating the

ciphertext.

5) The shared secret is combined with the session cookie to key the KDF, which generates the

symmetric cipher keys and nonces used to key the transmit and receive cipher instances.

6) The cipher rx and tx symmetric instances are initialized and ready to transmit and receive

data.

7) The asymmetric ciphertext is added to the exchange request packet, which the client sends to

the server.

QSMP-2024 Rev. 1.3a

45

7.4 Exchange Response

Figure 7.4: QSMP server exchange response.

1) The server inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The server uses its stored asymmetric cipher private key to decapsulate the shared secret

from the ciphertext.

3) The decapsulated shared secret is combined with the session cookie to derive the two

symmetric session keys and nonces.

4) These derived session keys are used to initialize the symmetric cipher instances, activating

both the transmit and receive channels of the encrypted tunnel.

QSMP-2024 Rev. 1.3a

46

7.5 Establish Verify

Figure 7.5: QSMP client establish request.

1) The client inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The client verifies that the encrypted tunnel is now active and fully operational. If the packet

contains an error flag, indicating that an issue occurred during the tunnel setup, the client

immediately initiates a connection teardown.

3) The client should then handle the error according to its predefined procedures, ensuring the

user or application is informed of the failure.

QSMP-2024 Rev. 1.3a

47

Mathematical Symbols

← ↔ → -Assignment and direction symbols

:=, !=, ?= -Equality operators; assign, not equals, evaluate

C -The client host, initiates the exchange

S -The server host, listens for a connection

G(λ, r) -The asymmetric cipher key generation with parameter set and random source

-Esk -The asymmetric decapsulation function and secret key

Epk -The asymmetric encapsulation function and public key

Ssk -Sign data with the secret signature key

Vpk -Verify a signature the public verification key

cfg -The protocol configuration string

cprrx -A receive channels symmetric cipher instance

cprtx -A transmit channels symmetric cipher instance

cpt -The symmetric ciphers cipher-text

cpta -The asymmetric ciphers cipher-text

-Ek -The symmetric decryption function and key

Ek -The symmetric encryption function and key

H -The hash function (SHA3)

k, mk -A symmetric cipher or MAC key

KDF -The key expansion function (SHAKE)

kid -The public keys unique identity array

Mmk -The MAC function and key (KMAC)

pk, sk -Asymmetric public and secret keys

pvk -Public signature verification key

sch -A hash of the configuration string and and asymmetric verification-keys

sec -The shared secret derived from asymmetric encapsulation and decapsulation

spkh -The signed hash of the asymmetric public encapsulation-key

QSMP-2024 Rev. 1.3a

48

8 QSMP Duplex Formal Description

Duplex Key Exchange Sequence

Preamble:

The Duplex key exchange is designed to facilitate secure communication in a peer-to-peer

architecture. Each client in the network has a unique signature verification key, which is shared

with other clients to authenticate communications.

These signature verification keys can be exchanged using a host lookup system, where a client

queries a server that maintains a database of clients on its network. Upon receiving a request, the

server checks the client's authorization status and, if approved, returns information about the

target client, including its public signature verification key. This key can then be cached on the

querying client for as long as the key expiration time remains valid.

Additionally, the server could act as a central point of authentication by signing client

verification keys, thereby enhancing the trustworthiness of key exchanges.

In the Duplex architecture, since one node must initiate the connection while the other must

accept it, the initiator is designated as the client, and the recipient of the request is referred to as

the server within the key exchange context.

8.1 Connect Request

The client initiates the connection by sending a connection request to the server, which includes

its configuration string and signature verification-key identity string.

The key identity (kid) is a multi-part, 16-byte array that serves as both a device and key

identification array. This identifier is used to link the intended target with its corresponding

cryptographic key, ensuring that the correct signature verification key is used during the secure

exchange.

The configuration string (cfg) specifies the set of cryptographic protocols being utilized in the

key exchange process. For the exchange to proceed successfully, the configuration strings of

both the client and server must match exactly, indicating they are using the same protocol

parameters.

To maintain the integrity and state of the key exchange, the client generates a session cookie by

hashing a combination of the configuration string, the key identity, and the public asymmetric

signature verification keys from both the client and the server:

sch ← H(cfg || kid || pvka || pvkb)

Where:

• cfg is the configuration string.

QSMP-2024 Rev. 1.3a

49

• kid is the key identity.

• pvka is the client's public verification key.

• pvkb is the server's public verification key.

This session cookie (sch) serves as a unique identifier for the session, ensuring secure reference

to the cryptographic parameters throughout the key exchange.

The client serializes the connection request packet header (sh), including the protocol flag,

message size, sequence number, and the timestamp. The serialized header is added to a hash

along with the key id and configuration string. The client signs the hash with its asymmetric

signing key, and adds this to the packet message along with the kid and cfg arrays.

shm ← Ssk(H(kid || cfg || sh))

The client then transmits the connection request to the server to begin the key exchange

operation:

C{ kid || cfg || shm } → S

 8.2 Connect Response

The server processes the client's connection request and responds with either an error message or

a connect response packet. If any error occurs during the key exchange, the server generates an

error packet and sends it to the remote host, triggering a teardown of both the key exchange and

the network connection on both ends.

Key Verification and Configuration Check

The server checks the connect request packet header, including the sequence number, message

size, protocol flag, and valid-time timestamp. This check is done at each step of the exchange,

verifying inbound packets for correctness of the expected flag, message size, creation time, and

sequence number. The UTC timestamp is tested for a valid-time threshold; if the local time is

different from the packet creation time by more than the threshold (default is 60 seconds) the

packet is rejected, and the exchange is torn down. This mechanism protects the exchange from

replay attacks and packet header tampering. Serialized packet headers are either added to the

hash of a message and signed, or added to the additional data of the authenticated stream cipher

(RCS) to guarantee authenticity.

The server verifies that it has the requested asymmetric signature verification key that matches

the client's host using the key identity array (kid). It then checks that its protocol configuration is

compatible with that of the client.

The server verifies the message signature, then hashes the message, which is compared to the

hash signed by the client for equivalence.

Where:

QSMP-2024 Rev. 1.3a

50

• shm is the signed message hash received from the client.

• hm is the hashed message signed by the client.

• hm` is the message hashed by the server.

• m is the packet message : kid || cfg || sh

Vpk(shm) ← (true ?= hm : 0)

hm` ← H(kid || cfg || sh)

hm` ?= hm : m : 0

The server creates a session cookie by hashing the configuration string, the key identity, and both

the public signature verification keys:

Where:

• cfg is the configuration string.

• kid is the key identity.

• pvka is the client's public verification key.

• pvkb is the server's public verification key.

sch ← H(cfg || kid || pvkb || pvka)

This hash acts as a unique session identifier for the exchange, and is added to the KDF as an

input when the session keys are generated.

Asymmetric Key Generation and Signing

The server generates a new asymmetric cipher key pair and securely stores the private key. It

then hashes the public encapsulation key and the serialized outbound packet header, and signs

this hash using its private asymmetric signature key.

Key generation and signing steps are as follows:

Generate the public (pk) and private (sk) asymmetric encryption keys.

pk, sk ← G(λ, r)

Create a hash of the public key and serialized connection response packet header (sh).

pkh ← H(pk || sh)

Sign the hashed public key using the server's private signature key.

spkh ← Ssk(pkh)

The server then sends the connection response message to the client, which contains the signed

hash of the public asymmetric encapsulation key (spkh) and a copy of the public key:

S{ spkh || pk } → C

QSMP-2024 Rev. 1.3a

51

8.3 Exchange Request

The client processes the connect response message from the server and proceeds with the next

steps in the key exchange. This phase involves verifying the server's public key, encapsulating a

shared secret, and authenticating the message.

Signature Verification and Hash Check

The client checks the connect response packet header, the flag, expected message size, the valid-

time timestamp, and the sequence number.

The client verifies the server's signature on the hashed public key and serialized packet header. It

then generates its own hash of the received public key and serialized header and compares it to

the one included in the server's message. If the hashes match, the client proceeds with the key

exchange. If the hashes do not match, the key exchange is aborted, and the session is terminated.

The client verifies the hash of the public key using the server's public verification key. If the

hash is valid, the process continues; otherwise, the exchange fails.

Vpk(H(pk || sh)) ← (true ?= pk : 0)

Once the public key is verified, the client uses it to encapsulate a shared secret. The client

generates a ciphertext (cpta) and encapsulates the shared secret (seca) using the public key.

cpta = Epk(seca)

The client stores the shared secret (seca), which will be combined with another shared secret and

the session cookie to derive the symmetric session keys later in the exchange.

Asymmetric Key Generation and Signing

The client generates its own asymmetric encryption key pair and securely stores the private key.

It then creates a hash of its public encapsulation key, the ciphertext and the serialized outbound

packet header, and signs this hash using its private asymmetric signature key.

Key generation and signing steps:

Generate the client's public (pk) and private (sk) asymmetric encryption keys.

pk, sk ← G(λ, r)

Hash the client's public key and the ciphertext.

kch ← H(pk || cpta || sh)

Sign the hashed value using the client's private signature key.

QSMP-2024 Rev. 1.3a

52

skch ← Ssk(kch)

The client sends an exchange request message back to the server. This message contains the

signed hash of its public asymmetric encapsulation key and ciphertext, the ciphertext itself, and a

copy of the public encapsulation key:

C{ cpta || pk || skch } → S

8.4 Exchange Response

The server processes the exchange request from the client, verifying the integrity of the message,

decapsulating the shared secret, and establishing the symmetric session keys for the secure

communication channel.

Signature Verification and Hash Check

The server checks the exchange request packet header, the flag, expected message size, the

valid-time timestamp and sequence number.

The server verifies the signature of the hash included in the client's message. It then generates its

own hash of the client's public key and the ciphertext, comparing this hash with the one provided

in the message signature. If the hashes match, the server continues with the key exchange;

otherwise, the process is terminated, and the key exchange is aborted.

The server uses the client's public verification key to verify the hash of the public key, ciphertext

and serialized exchange request packet header. If the verification is successful, the process

continues; otherwise, the server halts the exchange.

Vpk(H(pk || cpta || sh)) ← (true ?= pk || cpta : 0)

Shared Secret Decapsulation

The server decapsulates the first shared secret received from the client. The server uses its

private asymmetric key to decapsulate the shared secret (seca) from the ciphertext (cpta)

provided by the client.

seca ← -Esk(cpta):

This shared secret (seca) is securely stored for use in generating the session keys.

Generation of Second Shared Secret

The server generates a new ciphertext and a second shared secret using the client's public

encapsulation key. The server generates a second ciphertext (cptb) and shared secret (secb) using

the client's public key.

QSMP-2024 Rev. 1.3a

53

cptb ← Epk(secb)

Session Key Derivation

The server combines the two shared secrets (seca and secb) with the session cookie (sch) to

derive two symmetric session keys and two unique nonces, one for each communication channel.

The key expansion function generates two symmetric keys (k1, k2) and two nonces (n1, n2) for

the transmit and receive channels of the communication stream.

k1, k2, n1, n2 ← KDF(seca, secb, sch)

Cipher Initialization

The symmetric cipher instances for the receive and transmit channels are then initialized with the

derived session keys and nonces.

Initializes the receive channel cipher with key k1 and nonce n1.

cprrx(k1, n1)

Initializes the transmit channel cipher with key k2 and nonce n2.

cprtx(k2, n2)

Hash and Signature of Ciphertext

To complete the exchange response, the server hashes the newly generated ciphertext and signs

the hash to ensure its integrity and authenticity before sending it back to the client.

cpth ← H(cptb || sh)

scph ← Ssk(cpth)

The server sends the cipher-text, and the signed hash of the ciphertext and serialized header to

the client.

S{ cptb, scph } → C

8.5 Establish Request

In the final phase of the key exchange process, the client completes the establishment of the

encrypted communication channel by validating the received data, decapsulating the shared

secret, and generating the symmetric session keys.

Signature Verification and Hash Check

QSMP-2024 Rev. 1.3a

54

The client checks the exchange response packet header, the flag, expected message size, the

valid-time timestamp and sequence number.

The client verifies the server's signature on the hash of the ciphertext and serialized exchange

response packet header. It generates its own hash of the ciphertext and compares it with the one

provided by the server. If the hashes match, the client proceeds to decapsulate the shared secret;

otherwise, the key exchange is aborted.

The client verifies the hash of the server's ciphertext (cptb) using the server's public verification

key. If the verification is successful, the client continues; otherwise, it terminates the exchange.

Vpk(H(cptb || sh)) ← (true ?= cptb : 0):

Shared Secret Decapsulation

The client decapsulates the second shared secret from the ciphertext received from the server.

The client uses its private asymmetric key to decapsulate the second shared secret (secb) from

the server's ciphertext (cptb).

secb ← -Esk(cptb)

Session Key Derivation

The client combines both shared secrets (seca and secb) with the session cookie (sch) to generate

the session keys and nonces for the secure communication channels.

The key derivation function produces two symmetric session keys (k1 and k2) and two unique

nonces (n1 and n2) for the receive and transmit channels.

k1, k2, n1, n2 = KDF(seca, secb, sch)

Cipher Initialization

The client initializes the symmetric ciphers for both communication channels.

Initializes the receive channel cipher with key k2 and nonce n2.

cprrx(k2, n2)

Initializes the transmit channel cipher with key k1 and nonce n1.

cprtx(k1, n1)

Establish Request Message

QSMP-2024 Rev. 1.3a

55

Once the symmetric channels are successfully initialized, the client sends a copy of the session

cookie through the encrypted tunnel to the server, signaling that both encrypted channels of the

tunnel are now active and that the tunnel is in its operational state.

hsch ← H(sch || sh)

The establish request packet header is serialized and added to the additional data of the transmit

instance of the authenticated cipher (RCS). The session cookie is encrypted and sent to the

server.

cpt ← Ek(hsch, sh)

In the event of an error during this process, the client sends an error message to the server, which

causes the key exchange to abort and the connection to be terminated on both ends.

The client sends the establish request to the server, indicating the successful establishment of the

encrypted tunnel.

C{ cpt } → S

8.6 Establish Response

Strictly speaking, this step is not mandatory. If an error occurs during the final stage of the key

exchange and the session keys do not match between the hosts, the first message sent will fail

symmetric authentication, causing the tunnel to close automatically. However, in the interest of

good design and ensuring the secure establishment of the tunnel, the tunnel state should still be

explicitly confirmed. This approach prevents the risk of allowing the cipher’s MAC function to

process messages when the tunnel has not been properly confirmed.

Server Response Verification

The server checks the establish request packet header, the flag, expected message size, the valid-

time timestamp and sequence number.

The server adds the serialized establish request packet header to the additional data of the

receive instance of the authenticated stream cipher, and decrypts the session cookie.

hsch ← -Ek(cpt, sh)

The decrypted session cookie is compared to the local session cookie for equivalence. If the

hashes are equal, the server hashes the session cookie.

hhsch ← H(hsch)

QSMP-2024 Rev. 1.3a

56

The server adds the serialized establish response packet header to the additional data of the

transmit cipher instance, and encrypts the hashed session cookie.

cpt ← Ek(hhsch, sh)

Once the server sends the establish response, it sets its internal state to "session established,"

signaling that the encrypted tunnel is fully operational and ready to process data transmissions.

S{ cpt } → C

8.7 Establish Verify

In the final step of the key exchange sequence, the client verifies the status of the encrypted

tunnel based on the server's response.

Client Verification

The client checks the establish response packet header, the flag, expected message size, the

valid-time timestamp and sequence number.

If the flag does not indicate an establish response, the client identifies that the tunnel is in an

error state as specified by the message. In such cases, the client initiates a teardown of the tunnel

on both sides to ensure that no data is transmitted over an insecure connection.

Operational State

The client adds the serialized establish response packet header to the additional data of the

receive instance of the authenticated stream cipher. The client decrypts the session cookie,

hashes its own session cookie, and compares the two hashes for equivalence.

hhsch ← -Ek(cpt, sh)

hhsch` ← H(hsch)

hhsch` ?= hhsch (true : 0):

If the two hashes are equal the encrypted tunnel is in the up state, and ready to transmit and

receive data.

8.8 Transmission

QSMP-2024 Rev. 1.3a

57

During message transmission, either the client or server initiates the process of securely sending

data over the encrypted tunnel. This involves encrypting the message, updating the message

authentication code (MAC), and preparing the packet for secure delivery.

Message Serialization and Encryption

The transmitting host, whether it is the client or server, first serializes the packet header, which

includes details such as the message size, timestamp, protocol flag, and sequence number. This

serialized header is then added to the symmetric cipher's associated data parameter to ensure that

it is securely integrated into the encryption process.

The host proceeds to encrypt the message using the RCS (Rijndael Cryptographic Stream)

stream cipher’s Authenticated Encryption with Associated Data (AEAD) functions. The

encryption process generates a ciphertext, which is then passed through the MAC function to

produce a verification code.

The plaintext message (m) is encrypted using the symmetric encryption function (Ek) to generate

the ciphertext (cpt).

cpt ← Ek(m)

The MAC code (mc) is calculated by updating the MAC function with the serialized packet

header (sh) and the ciphertext (cpt).

mc ← Mmk(sh, cpt)

The MAC code is appended to the end of the ciphertext, ensuring that any tampering with the

data during transmission will be detected.

Packet Decryption and Verification

Upon receiving the packet, the host deserializes the packet header and adds it to the MAC state,

along with the received ciphertext. The host then finalizes the MAC computation and compares

the output code with the MAC code appended to the ciphertext. If the codes match, the ciphertext

is authenticated and can be safely decrypted.

If the MAC verification succeeds, the ciphertext (cpt) is decrypted back into the plaintext

message (m).

m ← -Ek(cpt)

The packet timestamp is compared to the UTC time, if the time is outside of a tolerance

threshold, the packet is rejected and the session is torn down.

If the MAC check fails, the decryption function returns an empty message array and an error

signal, indicating that the message was either corrupted or tampered with.

QSMP-2024 Rev. 1.3a

58

This process guarantees the integrity and confidentiality of the transmitted data, allowing the

application to handle any errors in a controlled manner.

9 QSMP Simplex Formal Description

Simplex Key Exchange Sequence

Preamble

The Simplex key exchange sequence begins with the client verifying the validity of the server's

public signature verification key. The client checks the expiration date of this key, and if it is

found to be invalid or expired, the client initiates a re-authentication session with the server.

During this session, a new key is distributed over an encrypted channel, and the client verifies

the new key's certificate using the designated authentication authority or scheme implemented by

the server and client software.

9.1 Connect Request

The client initiates the connection process by sending a connection request to the server that

includes its configuration string and asymmetric public signature key identity.

Key Identity

The key identity (kid) is a multi-part, 16-byte array that acts as a public asymmetric verification

key and device identification string. It is used to match the target server to its corresponding

cryptographic key, ensuring that the correct key is used during the exchange.

Configuration String

The configuration string (cfg) specifies the cryptographic protocol set being used in the key

exchange process. For the exchange to proceed successfully, the configuration strings used by

both the client and server must match, indicating that they are using the same cryptographic

parameters.

Session Cookie

To securely manage the state of the key exchange, the client generates a session cookie by

hashing a combination of the configuration string, the key identity, and the server public

asymmetric signature verification key:

sch ← H(cfg || kid || pvk)

Where:

QSMP-2024 Rev. 1.3a

59

• cfg is the configuration string.

• kid is the key identity.

• pvk is the server's public signature verification key.

This session cookie (sch) serves as a unique identifier for the session, helping to ensure that the

cryptographic parameters are consistently referenced throughout the exchange.

The client then sends the key identity string (kid) and the configuration string (cfg) to the server

to initiate the connection:

C{ kid, cfg } → S

9.2 Connect Response

The server processes the client's connection request and responds with either an error message or

a connect response packet. If any error occurs during the key exchange, the server generates an

error packet and sends it to the remote host, which triggers a teardown of the session and

network connection on both sides.

Key Verification and Protocol Check

The server begins by verifying that it has the appropriate asymmetric signature verification key

that corresponds to the client's request, using the key-identity array (kid).

It then checks that its protocol configuration matches the one specified by the client. To securely

manage the state of the exchange, the server creates a session cookie by hashing the

configuration string, the key identity, and the public signature verification key:

sch ← H(cfg || kid || pvk)

Where:

• cfg is the configuration string.

• kid is the key identity.

• pvk is the server's public signature verification key.

This session cookie (sch) serves as a unique identifier for the session, helping maintain the

integrity of the key exchange.

Asymmetric Key Generation and Signing

The server generates a new asymmetric encryption key pair and securely stores the private key. It

hashes the public encapsulation key and the serialized connect response packet header, and signs

QSMP-2024 Rev. 1.3a

60

this hash using its private asymmetric signature key. The signature provides a cryptographic

guarantee that the public asymmetric cipher key has not been tampered with during transmission.

Key generation and signing steps:

Generate the public (pk) and private (sk) asymmetric encryption keys.

pk, sk ← G(λ, r)

Create a hash of the public key and serialized connect response packet header (sh).

pkh ← H(pk || sh)

Sign the hashed public key using the server's private signature key.

spkh ← Ssk(pkh)

The public signature verification key itself can be enveloped and signed using a 'chain of trust'

model, such as X.509, to ensure further authentication through a signature verification extension

to the protocol.

Server Response

The server sends a connect response message back to the client, containing the signed hash of the

public asymmetric encapsulation key (spkh) and a copy of the public key itself:

S{ spkh, pk } → C

9.3 Exchange Request

The client processes the server's connect response and initiates the next steps of the key

exchange by verifying the received data, encapsulating a shared secret, and preparing the session

keys.

Signature Verification and Hash Check

The client begins by verifying the signature of the hash using the server's public verification key.

It then generates its own hash of the server's public key and compares it to the hash contained in

the server's message. If the hashes match, the client proceeds to encapsulate the shared secret. If

the hashes do not match, the key exchange is aborted.

The client uses the server's public verification key to check the hash of the public key. If the

verification is successful, the process continues; otherwise, the key exchange fails.

QSMP-2024 Rev. 1.3a

61

Vpk(H(pk)) ← (true ?= pk : 0)

The public encapsulation key and connect response packet header are hashed, and the hash is

compared with signed hash received from the server. Once the packet header and public key are

verified, the client uses the server's public key to encapsulate a shared secret.

The client generates a ciphertext (cpt) and encapsulates the shared secret (sec) using the server's

public key.

cpt, sec ← Epk(sec)

The client combines the shared secret and the session cookie to derive the session keys and two

unique nonces for the communication channels.

The Key Derivation Function (KDF) generates two session keys (k1, k2) and two nonces (n1, n2)

using the shared secret (sec) and the session cookie (sch).

k1, k2, n1, n2 ← KDF(sec || sch):

Cipher Initialization

The receive and transmit channel ciphers are then initialized using the derived keys and nonces.

Initializes the receive channel cipher with key k2 and nonce n2.

cprrx(k2, n2)

Initializes the transmit channel cipher with key k1 and nonce n1.

cprtx(k1, n1)

Client Transmission

The client sends the ciphertext to the server as part of the exchange request.

The client transmits the encapsulated shared secret to the server.

C{ cpt } → S

9.4 Exchange Response

The server processes the client's exchange request by decapsulating the shared secret, deriving

the session keys, and confirming the secure communication channel.

QSMP-2024 Rev. 1.3a

62

Shared Secret Decapsulation

The server decapsulates the shared secret from the ciphertext received from the client.

The server uses its private asymmetric key to decapsulate the shared secret (sec) from the

received ciphertext (cpt).

sec ← -Esk(cpt)

Session Key Derivation

The server combines the decapsulated shared secret and the session cookie hash to derive two

session keys and two unique nonces for the communication channels.

The Key Derivation Function (KDF) generates two symmetric session keys (k1, k2) and two

nonces (n1, n2) using the shared secret (sec) and the session cookie (sch).

k1, k2, n1, n2 ← KDF(sec || sch)

Cipher Initialization

The server initializes the symmetric ciphers for the receive and transmit channels.

Initializes the receive channel cipher with key k1 and nonce n1.

cprrx(k1, n1)

Initializes the transmit channel cipher with key k2 and nonce n2.

cprtx(k2, n2)

Server Response

The server sets the packet flag to "exchange response", indicating that the encrypted channels

have been successfully established. It then sends this notification back to the client to confirm the

secure communication channel.

The server sends an exchange response flag to the client, confirming that the secure tunnel is

established.

S{ f } → C

The server updates its operational state to session established, indicating that it is now ready to

securely process data over the encrypted channels.

QSMP-2024 Rev. 1.3a

63

9.5 Establish Verify

In the final step of the key exchange sequence, the client verifies the status of the encrypted

tunnel based on the server's exchange response.

Client Verification

The client inspects the flag of the exchange response packet received from the server. If the flag

indicates an error state, the client immediately tears down the tunnel to prevent any further data

transmission. This ensures that no data is sent over an insecure or compromised connection.

If the flag does not indicate an error state, the client confirms that the tunnel is successfully

established and in an operational state.

Operational State

Once the verification is complete and the tunnel is confirmed, the client updates its internal state

to session established, indicating that the secure communication channels are fully operational.

The client is now ready to process data over the encrypted tunnel.

9.6 Transmission

During the transmission phase, either the client or server sends messages over the established

encrypted tunnel using the RCS stream cipher's MAC, AEAD (Authenticated Encryption with

Associated Data), and encryption functions. This process ensures the integrity and confidentiality

of the transmitted data.

Message Serialization and Encryption

The transmitting host (client or server) starts by serializing the packet header, which includes

critical details such as the message size, timestamp, protocol flag, and sequence number. This

serialized header is then added to the symmetric cipher’s associated data parameter, which adds

metadata authentication to the encryption process.

The message encryption process is as follows:

1. Encrypt the Message: The plaintext message is encrypted using the symmetric

encryption function of the RCS stream cipher. The symmetric encryption function (Ek) is

applied to the plaintext message (m) to produce the ciphertext (cpt).

cpt ← Ek(m)

2. Update the MAC State: The serialized packet header is added to the MAC (Message

Authentication Code) state through the additional-data parameter of the RCS cipher.

QSMP-2024 Rev. 1.3a

64

The MAC function (Mmk) is updated with the serialized packet header (sh) and the

ciphertext (cpt) to produce the MAC code (mc).

mc ← Mmk(sh, cpt)

3. Append the MAC Code: The MAC code is appended to the end of the ciphertext,

ensuring that any tampering with the data during transmission will be detected.

Packet Decryption and Verification

Upon receiving the packet, the recipient host deserializes the packet header and adds it to the

MAC state along with the received ciphertext. The MAC computation is then finalized and

compared with the MAC code that was appended to the ciphertext. The packet timestamp is

compared to the UTC time, if the time is outside of a tolerance threshold, the packet is

rejected and the session is torn down.

1. Generate the MAC Code: Add the serialized packet header to the cipher AEAD. Add

the ciphertext and generate the MAC code.

mc` ← Mmk(sh, cpt)

Compare the MAC tag copy with the MAC tag appended to the ciphertext.

mc` ?= mc

If the MAC check fails, indicating potential data tampering or corruption, the decryption

function returns an empty message array and an error status. The application shall handle

this error accordingly.

2. Decrypt the Ciphertext: If the MAC code matches, the ciphertext is considered

authenticated, and the message is decrypted.

The ciphertext (cpt) is decrypted back into the plaintext message (m) if the MAC

verification succeeds.

m ← -Ek(cpt)

This process ensures that the transmitted data remains confidential and tamper-evident, providing

both encryption and authentication to protect the integrity of the communication. Any errors

during decryption signal an immediate response to prevent the further exchange of potentially

compromised data.

QSMP-2024 Rev. 1.3a

65

10: QSMP API

10.1 Definitions and Shared API

Header:

qsmp.h

Description:

The QSMP header contains shared constants, types, and structures, as well as function calls

common to both the QSMP server and client implementations.

Structures:

The QSMP_ERROR_STRINGS is a static string-array containing QSMP error descriptions,

used in the error reporting functionality.

Data Set Purpose

QSMP_ERROR_STRINGS A string array of readable error descriptions.

Table 10.1a QSMP error strings.

The QSMP_CONFIG_STRING is a static string containing the readable QSMP configuration

string.

Data Set Purpose

QSMP_CONFIG_STRING The QSMP configuration string.

Table 10.1b QSMP configuration string.

The qsmp_packet contains the QSMP packet structure.

Data Name Data Type Bit Length Function

flag Uint8 0x08 The packet flag

msglen Uint32 0x20 The packets message length

sequence Uint64 0x40 The packet sequence number

utctime Uint64 0x40 The UTC packet creation time

message Uint8 Array Variable The packets message data

Table 10.1c QSMP packet structure.

The qsmp_client_key contains the QSMP client key state.

QSMP-2024 Rev. 1.3a

66

Data Name Data Type Bit Length Function

expiration Uint64 0x40 The expiration time, in seconds from epoch

config Uint8 Array Variable The primitive configuration string

keyid Uint8 Array Variable The key identity string

verkey Uint8 Array Variable The asymmetric signatures verification-key

Table 10.1d QSMP client key structure.

The qsmp_keep_alive_state contains the QSMP keep alive state.

Data Name Data Type Bit Length Function

target Struct Variable The target host socket structure

etime Uint64 0x40 The keep alive epoch time

seqctr Uint64 0x40 The keep alive packet sequence number

recd Boolean 0x08 The keep alive response received status

Table 10.1e QSMP keep alive state structure.

Enumerations:

The qsmp_configuration enumeration defines the cryptographic primitive configuration.

Enumeration Purpose

qsmp_configuration_none No configuration was specified

qsmp_configuration_sphincs_mceliece The Sphincs+ and McEliece configuration

qsmp_configuration_dilithium_kyber The Dilithium and Kyber configuration

qsmp_configuration_dilithium_ntru The Dilithium and NTRU configuration

qsmp_configuration_falcon_kyber The Falcon and Kyber configuration

qsmp_configuration_falcon_ntru The Falcon and NTRU configuration

Table 10.1f QSMP configuration enumeration.

The qsmp_errors enumeration is a list of the QSMP error code values.

Enumeration Purpose

qsmp_error_none No error was detected

qsmp_error_authentication_failure The symmetric cipher had an authentication failure

qsmp_error_bad_keep_alive The keep alive check failed

qsmp_error_channel_down The communications channel has failed

qsmp_error_connection_failure The device could not make a connection to the remote host

qsmp_error_connect_failure The transmission failed at the KEX connection phase

QSMP-2024 Rev. 1.3a

67

qsmp_error_decapsulation_failure The asymmetric cipher failed to decapsulate the shared secret

qsmp_error_establish_failure The transmission failed at the KEX establish phase

qsmp_error_exstart_failure The transmission failed at the KEX exstart phase

qsmp_error_exchange_failure The transmission failed at the KEX exchange phase

qsmp_error_hash_invalid The public-key hash is invalid

qsmp_error_invalid_input The expected input was invalid

qsmp_error_invalid_request The packet flag was unexpected

qsmp_error_keep_alive_expired The keep alive has expired with no response

qsmp_error_key_expired The QSMP public key has expired

qsmp_error_key_unrecognized The key identity is unrecognized

qsmp_error_packet_unsequenced The packet was received out of sequence

qsmp_error_random_failure The random generator has failed

qsmp_error_receive_failure The receiver failed at the network layer

qsmp_error_transmit_failure The transmitter failed at the network layer

qsmp_error_verify_failure The expected data could not be verified

qsmp_error_unknown_protocol The protocol string was not recognized

qsmp_error_accept_fail The socket accept function returned an error

qsmp_error_hosts_exceeded The server has run out of socket connections

qsmp_error_memory_allocation The server has run out of memory

qsmp_error_decryption_ The decryption authentication has failed

qsmp_error_keepalive_timeout The decryption authentication has failed

qsmp_error_ratchet_fail The ratchet operation has failed

Table 10.1g QSMP errors enumeration.

The qsmp_flags enum contains the QSMP packet flags.

Enumeration Purpose

qsmp_flag_none No flag was specified

qsmp_flag_connect_request The QSMP key-exchange client connection request flag

qsmp_flag_connect_response The QSMP key-exchange server connection response flag

qsmp_flag_connection_terminate The connection is to be terminated

qsmp_flag_encrypted_message The message has been encrypted flag

qsmp_flag_exstart_request The QSMP key-exchange client exstart request flag

qsmp_flag_exstart_response The QSMP key-exchange server exstart response flag

qsmp_flag_exchange_request The QSMP key-exchange client exchange request flag

qsmp_flag_exchange_response The QSMP key-exchange server exchange response flag

qsmp_flag_establish_request The QSMP key-exchange client establish request flag

QSMP-2024 Rev. 1.3a

68

qsmp_flag_establish_response The QSMP key-exchange server establish response flag

qsmp_flag_keep_alive_request The packet contains a keep alive request

qsmp_flag_remote_connected The remote host is connected flag

qsmp_flag_remote_terminated The remote host has terminated the connection

qsmp_flag_session_established The exchange is in the established state

qsmp_flag_session_establish_verify The exchange is in the established verify state

qsmp_flag_unrecognized_protocol The protocol string is not recognized

qsmp_flag_asymmetric_ratchet_request The host has received an asymmetric key ratchet request

qsmp_flag_symmetric_ratchet_request The host has received a symmetric key ratchet request

qsmp_flag_transfer_request The host has received a transfer request

qsmp_flag_error_condition The connection experienced an error

Table 10.1h QSMP flags enumeration.

Constants:

Constant Name Value Purpose

QSMP_CONFIG_DILITHIUM_KYBER N/A Sets the asymmetric cryptographic

primitive-set to Dilithium/Kyber

QSMP_CONFIG_DILITHIUM_MCELIECE N/A Sets the asymmetric cryptographic

primitive-set to Dilithium/McEliece

QSMP_CONFIG_DILITHIUM_NTRU N/A Sets the asymmetric cryptographic

primitive-set to Dilithium/NTRU

QSMP_CONFIG_SPHINCS_MCELIECE N/A Sets the asymmetric cryptographic

primitive-set to Sphincs+/McEliece

QSMP_SERVER_PORT 0x1315 The default server port address

QSMP_CONFIG_SIZE 0x30 The size of the protocol configuration

string

QSMP_CONFIG_STRING Variable The QSMP cryptographic primitive

configuration string

QSMP_CIPHERTEXT_SIZE Variable The byte size of the asymmetric

cipher-text array

QSMP_PRIVATEKEY_SIZE Variable The byte size of the asymmetric cipher

private-key array

QSMP_PUBLICKEY_SIZE Variable The byte size of the asymmetric cipher

public-key array

QSMP_SIGNKEY_SIZE Variable The byte size of the asymmetric

signature signing-key array

QSMP_VERIFYKEY_SIZE Variable The byte size of the asymmetric

signature verification-key array

QSMP-2024 Rev. 1.3a

69

QSMP_SIGNATURE_SIZE Variable The byte size of the asymmetric

signature array

QSMP_PUBKEY_ENCODING_SIZE Variable The byte size of the encoded QSMP

public-key

QSMP_PUBKEY_STRING_SIZE Variable The string size of the serialized QSMP

client-key structure

QSMP_HASH_SIZE 0x20 The size of the hash function output

QSMP_HEADER_SIZE 0x13 The QSMP packet header size

QSMP_KEEPALIVE_STRING 0x14 The keep alive string size

QSMP_KEEPALIVE_TIMEOUT 0x18750 The keep alive timeout in milliseconds

(5 minutes)

QSMP_KEYID_SIZE 0x10 The QSMP key identity size

QSMP_MACKEY_SIZE 0x20

QSMP_MACTAG_SIZE 0x20 The size of the mac function output

QSMP_SRVID_SIZE 0x08 The QSMP server identity size

QSMP_TIMESTAMP_SIZE 0x08 The key expiration timestamp size

QSMP_MESSAGE_MAX Variable The maximum message size used

during the key exchange

QSMP_PKCODE_SIZE 0x20 The size of the session token hash

QSMP_PUBKEY_DURATION_DAYS 0x223 The number of days a public key

remains valid

QSMP_PUBKEY_DURATION_SECONDS Variable The number of seconds a public key

remains valid

QSMP_PUBKEY_LINE_LENGTH 0x40 The line length of the printed QSMP

public key

QSMP_SECRET_SIZE 0x20 The size of the shared secret for each

channel

QSMP_SIGKEY_ENCODED_SIZE Variable The secret signature key size

QSMP_SEQUENCE_TERMINATOR 0xFFFFFFFF The sequence number of a packet that

closes a connection

QSMP_CONNECT_REQUEST_SIZE Variable The key-exchange connect stage

request packet size

QSMP_EXSTART_REQUEST_SIZE Variable The key-exchange exstart stage request

packet size

QSMP_EXCHANGE_REQUEST_SIZE Variable The key-exchange exchange stage

request packet size

QSMP_ESTABLISH_REQUEST_SIZE Variable The key-exchange establish stage

request packet size

QSMP_CONNECT_RESPONSE_SIZE Variable The key-exchange connect stage

response packet size

QSMP-2024 Rev. 1.3a

70

QSMP_EXCHANGE_RESPONSE_SIZE Variable The key-exchange exchange stage

response packet size

QSMP_ESTABLISH_RESPONSE_SIZE Variable The key-exchange establish stage

response packet size

Table 10.1i QSMP constants.

The qsmp_connection_state contains the QSMP connection state.

Data Name Data

Type

Bit Length Function

target Struct 0x440 The target host socket structure

rxcpr Struct Variable The receive channel cipher state

txcpr Struct Variable The transmit channel cipher state

rxseq Uint64 0x40 The receive channels packet sequence number

txseq Uint64 0x40 The transmit channels packet sequence number

instance Uint32 0x20 The connections instance count

exflag Uint8 0x08 The KEX position flag

rtcs Uint8 0x40 The ratchet key

receiver bool 0x08 The hosts receiver status

mode enum 0x08 The QSMP mode

Table 10.1j QSMP connection state structure.

Functions:

Asymmetric Ratchet

Run the asymmetric ratchet and update the session keys (duplex mode).
void qsmp_duplex_send_asymmetric_ratchet_request(qsmp_connection_state* cns)

Symmetric Ratchet

Run the symmetric ratchet and update the session keys (duplex mode).
void qsmp_duplex_send_symmetric_ratchet_request(qsmp_connection_state* cns)

Connection Close

Close the network connection between hosts.
void qsmp_connection_close(qsmp_connection_state* cns, qsmp_errors err, bool

notify)

Decode Public Key

Decode a public key string and populate a client key structure.
void qsmp_decode_public_key(qsmp_client_key* pubk, const char

enck[QSMP_PUBKEY_STRING_SIZE])

QSMP-2024 Rev. 1.3a

71

Encode Public Key

Encode a public key structure and copy to a string.
void qsmp_encode_public_key(char enck[QSMP_PUBKEY_STRING_SIZE], const

qsmp_client_key* pubk)

Deserialize Signature Key

Decode a secret signature key structure and copy to an array.
void qsmp_deserialize_signature_key(qsmp_server_key* prik, const uint8_t

serk[QSMP_SIGKEY_ENCODED_SIZE])

Serialize Signature Key

Encode a secret key structure and copy to a string.
void qsmp_serialize_signature_key(uint8_t serk[QSMP_SIGKEY_ENCODED_SIZE],

const qsmp_server_key* prik)

Connection Dispose

Reset the connection state.
void qsmp_connection_close(qsmp_connection_state* cns)

Decrypt Packet

Decrypt a message and copy it to the message output.
qsmp_errors qsmp_decrypt_packet(qsmp_connection_state* cns, uint8_t* message,

size_t* msglen, const qsmp_packet* packetin)

Encrypt Packet

Encrypt a message and copy it to a packet.
qsmp_errors qsmp_encrypt_packet(qsmp_connection_state* cns, qsmp_packet*

packetout, const uint8_t* message, size_t* msglen)

Generate Key Pair

Generate a QSMP key-pair; generates the public and private asymmetric signature keys.
void qsmp_generate_keypair(qsmp_client_key* pubkey, qsmp_server_key* prikey,

const uint8_t keyid[QSMP_KEYID_SIZE])

Packet Clear

Clear a packet's state, resetting the structure to zero.
void qsmp_packet_clear(qsmp_packet* packet)

Error To String

Return a pointer to a string description of an error code.
const char* qsmp_error_to_string(qsmp_errors error)

Error Message

Populate a packet structure with an error message.
void qsmp_packet_error_message(qsmp_packet* packet, qsmp_errors error)

Header Deserialize

Deserialize a byte array to a packet header.
void qsmp_packet_header_deserialize(const uint8_t* header, qsmp_packet*

packet)

QSMP-2024 Rev. 1.3a

72

Header Serialize

Serialize a packet header to a byte array.
void qsmp_packet_header_serialize(const qsmp_packet* packet, uint8_t* header)

Log Error

Log the message, socket error, and string description.
void qsmp_log_error(const qsmp_messages emsg, qsc_socket_exceptions err,

const char* msg)

Log Message

Log the message.
void qsmp_log_message(const qsmp_messages emsg)

Log Write

Log the message, and string description.
void qsmp_log_write(const qsmp_messages emsg, const char* msg)

Packet Clear

Clear a packet's state.
size_t qsmp_packet_clear(const qsmp_packet* packet)

Packet To Stream

Serialize a packet to a byte array.
size_t qsmp_packet_to_stream(const qsmp_packet* packet, uint8_t* pstream)

Stream To Packet

Deserialize a byte array to a packet.
void qsmp_stream_to_packet(const uint8_t* pstream, qsmp_packet* packet)

10.2 Server API

Header:

qsmpserver.h

Description:

Functions used to implement the QSMP server.

Structures:

The qsmp_server_key contains the QSMP server key structure.

Data Name Data Type Bit Length Function

QSMP-2024 Rev. 1.3a

73

expiration Uint64 0x40 The expiration time, in seconds

from epoch

config Uint8 Array 0x180 The primitive configuration

string

keyid Uint8 Array 0x80 The key identity string

sigkey Uint8 Array Variable The asymmetric signature

signing-key

verkey Uint8 Array Variable The asymmetric signature

verification-key

Table 10.2a QSMP key structure.

Functions:

Broadcast

Broadcast a message to all connected hosts.
void qsmp_server_broadcast(const uint8_t* message, size_t msglen)

Pause

Pause the server, suspending new joins.
void qsmp_server_pause()

Quit

Quit the server, closing all connections.
void qsmp_server_quit()

Resume

Resume the server listener function from a paused state.
void qsmp_server_resume()

Listen IPv4

Run the IPv4 networked key exchange function. Returns the connected socket and the QSMP

server connection state.
qsmp_errors qsmp_server_listen_ipv4(qsmp_server_key* prik, void

(*receive_callback)(qsmp_server_connection_state*, const char*, size_t))

Listen IPv6

Run the IPv6 networked key exchange function. Returns the connected socket and the QSMP

server state.
qsmp_errors qsmp_server_listen_ipv6(qsmp_server_key* prik, void

(*receive_callback)(qsmp_server_connection_state*, const char*, size_t))

10.3 Client API

QSMP-2024 Rev. 1.3a

74

Header:
qsmpclient.h

Description:

Functions used to implement the QSMP client.

Structures:

The qsmp_kex_client_state contains the QSMP server state structure.

Data Name Data Type Bit Length Function

rxcpr RCS state Variable The receive channel cipher state

txcpr RCS state Variable The transmit channel cipher

state

config Uint8 Array 0x180 The primitive configuration

string

keyid Uint8 Array 0x80 The key identity string

pkhash Uint8 Array 0x20 The session token hash

prikey Uint8 Array Variable The asymmetric cipher private

key

pubkey Uint8 Array Variable The asymmetric cipher public

key

mackey Uint8 Array 0x20 The intermediate mac key

token Uint8 Array 0x100 The session token

verkey Uint8 Array Variable The asymmetric signature

verification-key

exflag enum qsmp_flags The KEX position flag

expiration Uint64 0x40 The expiration time, in seconds

from epoch

rxseq Uint64 0x40 The receive channels packet

sequence number

txseq Uint64 0x40 The transmit channels packet

sequence number

Table 10.3 QSMP client state structure.

Functions

Decode Public Key

QSMP-2024 Rev. 1.3a

75

Decode a public key string and populate a client key structure.
bool qsmp_client_decode_public_key(qsmp_client_key* clientkey, const char

input[QSMP_PUBKEY_STRING_SIZE])

Send Error

Send an error code to the remote host.
void qsmp_client_send_error(const qsc_socket* sock, qsmp_errors error)

Connect IPv4

Run the IPv4 networked key exchange function. Returns the connected socket and the QSMP

client state.
qsmp_errors qsmp_client_connect_ipv4(qsmp_kex_client_state* ctx, qsc_socket*

sock, const qsmp_client_key* ckey, const qsc_ipinfo_ipv4_address* address,

uint16_t port)

Connect IPv6

Run the IPv6 networked key exchange function. Returns the connected socket and the QSMP

client state.
qsmp_errors qsmp_client_connect_ipv6(qsmp_kex_client_state* ctx, qsc_socket*

sock, const qsmp_client_key* ckey, const qsc_ipinfo_ipv6_address* address,

uint16_t port)

Connection Close

Close the remote session and dispose of resources.
void qsmp_client_connection_close(qsmp_kex_client_state* ctx, const

qsc_socket* sock, qsmp_errors error)

Decrypt Packet

Decrypt a message and copy it to the message output.
qsmp_errors qsmp_client_decrypt_packet(qsmp_kex_client_state* ctx, const

qsmp_packet* packetin, uint8_t* message, size_t* msglen)

Encrypt Packet

Encrypt a message and build an output packet.
qsmp_errors qsmp_client_encrypt_packet(qsmp_kex_client_state* ctx, const

uint8_t* message, size_t msglen, qsmp_packet* packetout)

QSMP-2024 Rev. 1.3a

76

11: Security Analysis

QSMP is designed to protect against a range of threats, including both classical and quantum

attacks. This section provides a detailed analysis of its security features, highlights potential

attack vectors, and describes how the protocol mitigates these risks.

11.1 Post-Quantum Cryptography

QSMP utilizes cryptographic primitives that are specifically designed to withstand the

computational power of quantum computers. It implements the asymmetric ciphers Kyber and

McEliece, and the signature schemes Dilithium and Sphincs+. These algorithms are

recommended by the NIST Post-Quantum Cryptography standardization process in the case of

the signature schemes, and the Kyber cipher. We added McEliece, the third round candidate for

its excellent long-term security potential.

• Quantum Resistance: The cryptographic algorithms employed in QSMP are chosen to

resist attacks by quantum computers, particularly Shor's algorithm, which can break

classical encryption methods like RSA and ECC.

• Algorithm Flexibility: QSMP’s design supports multiple post-quantum algorithms,

which enhances its adaptability. In the event that a vulnerability is discovered in one

algorithm, the protocol can easily switch to another secure alternative.

11.2 Forward Secrecy and Predictive Resistance

QSMP incorporates robust mechanisms to ensure that past and future communications remain

secure, even if a key is compromised.

• Forward Secrecy: The use of ephemeral asymmetric keys in both SIMPLEX and

DUPLEX exchanges ensures that each session’s key is independent of previous keys.

This means that even if an attacker gains access to the current session’s keys, they cannot

decrypt any previous session data.

• Predictive Resistance: The asymmetric ratcheting mechanism ensures that future a state

cannot be derived from the current key state. This prevents attackers from calculating or

predicting future session keys, even if they have access to the current keys on a long

running tunnel implementation.

11.3 Ratcheting Mechanism

QSMP uses both asymmetric and symmetric ratcheting to inject new entropy into the encrypted

communication channel, enhancing its security.

• Asymmetric Ratchet: Periodically re-keys the symmetric encryption using new

asymmetric key exchanges, providing a higher level of security. This approach ensures

that even if an attacker gains access to one set of keys, they cannot compute the next set

of keys.

QSMP-2024 Rev. 1.3a

77

• Symmetric Ratchet: Provides a lightweight method for continuously re-keying the

encryption stream based on hash values derived from current session keys. This

technique is efficient and allows for quick recovery if a key compromise is detected.

11.4 Man-in-the-Middle (MITM) Attack Mitigation

QSMP implements strong authentication techniques to counter MITM attacks.

• Digital Signatures: Messages are signed using the sender’s private key, and these

signatures are verified by the recipient using the sender’s public key. This method

prevents attackers from tampering with or spoofing messages.

• Public Key Authentication: The protocol’s use of signature verification keys ensures

that attackers cannot impersonate another party, as they cannot forge the digital

signatures without the corresponding private key.

11.5 Replay Attack Prevention

To prevent replay attacks, QSMP employs a valid-time timestamp, nonce values, and sequence

numbers for each message.

• Timestamp: Each packet during the key exchange and during tunnel operation has a low

resolution (seconds) timestamp added to the packet header. The packet header itself is

added to signature hashes during the key exchange, and to the additional data field of the

symmetric cipher during tunnel exchanges. This guarantees that the packet header has not

been altered, and that the packet cannot exceed a timeout threshold (60 seconds by

default) or the packet is discarded.

• Sequence Numbers: Sequence numbers are included with each message to prevent

replay attacks, ensuring that old messages cannot be resent to gain unauthorized access.

These are added to the MAC AAD input of the sessions symmetric stream cipher (RCS).

• Message Size: During the key exchange, the packet flag and message size are checked on

each message, if the message size is not exactly what is expected by that stage of the

exchange, the key exchange is aborted and the connection is torn down.

11.6 Resistance to Key Compromise

QSMP’s use of ephemeral keys and ratcheting provides resilience against key compromise,

ensuring that a breach of one key does not affect other sessions.

• Ephemeral Key Generation: Each session generates a new ephemeral key pair, meaning

that even if one session’s key is compromised, it does not compromise other sessions.

• Key Expiry and Replacement: Keys have defined expiration times, which are checked

upon every use, prompting regular re-authentication and generation of new keys, which

mitigates risks associated with long-term key reuse.

11.7 Error Handling and Security Considerations

QSMP-2024 Rev. 1.3a

78

Effective error handling is a critical part of QSMP’s security strategy, ensuring minimal

information is leaked to attackers.

• Error Codes and Logging: Error messages are intentionally limited to only a

nondescript packet flag value to prevent attackers from gaining insights into the

protocol’s state or operation, which could aid in crafting more sophisticated attacks.

• Session Tear-Down on Error: When a critical error is detected (e.g., signature

mismatch or decryption failure), the session is immediately terminated, logged, and

further communication is halted to prevent exploitation.

Potential Attack Vectors and Mitigations

Attack Vector Description QSMP Mitigation

Quantum Attacks Exploitation of quantum

algorithms to break classical

cryptosystems.

Uses post-quantum algorithms like

Kyber, McEliece, SPHINCS+, and

Dilithium.

Man-in-the-

Middle (MITM)

An attacker intercepts and

manipulates communication

between two parties.

Digital signatures and public key

verification are used.

Replay Attacks Re-sending a previously

captured message to gain

unauthorized access.

Session tokens, timestamps, and

sequence numbers prevent replays.

Key Compromise Access to encryption keys by

adversaries due to theft or

malware.

Ephemeral keys and symmetric and

asymmetric key ratcheting provide

forward secrecy.

Side-Channel

Attacks

Attacks exploiting

information from hardware

or software leakage.

Components are written to be timing

neutral, including support functions,

asymmetric, and symmetric primitives.

Cryptographic

Downgrade

Attacks

Forcing the use of weaker

cryptographic algorithms.

Protocol negotiation ensures only post-

quantum algorithms are used. The key

exchanges themselves do not support

handshake negotiations.

Denial-of-Service

(DoS) Attacks

Overloading the server with

requests to disrupt

communications.

Error handling and session timeout

mechanisms mitigate this risk.

Summary

The security architecture of QSMP is robust and forward-looking, integrating post-quantum

cryptography, ratcheting techniques, strong authentication, and comprehensive error handling to

guard against a wide range of classical and quantum threats. By employing these techniques,

QSMP ensures that it remains resilient in the face of evolving attack vectors and advances in

computational capabilities.

QSMP-2024 Rev. 1.3a

79

12: Design Decisions

QSMP has been carefully crafted with several strategic design choices to ensure robust security

and adaptability for future developments in cryptography and network protocols. This section

outlines the rationale behind the key design decisions that shape QSMP's implementation.

12.1 Networking Protocol Considerations

While the accompanying example code for QSMP is built upon the Transport Control Protocol

(TCP), it is important to note that the choice of networking protocol is considered to operate at a

layer beneath the QSMP protocol itself. QSMP could utilize TCP, UDP, or even a custom IP

stack to transport packets.

• Layered Flexibility: The flexibility to use different transport protocols allows for future

enhancements that may include custom IP stack implementations with features such as

windowing controls, packet buffers, and other advanced networking controls tailored to

specific use cases.

• Example Simplicity: The current implementation using TCP was intentionally kept

simple to provide clarity for those studying or adopting QSMP. This choice aligns with

common practices in many widely-used VPN software implementations, which also use

TCP to avoid the complexities associated with custom IP stacks.

12.2 Protocol Negotiation

QSMP intentionally omits protocol negotiation for a number of reasons, despite the relative ease

of implementation.

• Security Integrity: Protocol negotiation is often misused to reduce the security level of

communications to the lowest common denominator, which undermines the integrity of

the protocol suite. By avoiding this, QSMP maintains a consistent security posture across

all implementations.

• Current Algorithm Support: QSMP supports three asymmetric configurations:

Dilithium-Kyber, Dilithium-McEliece, and SphincsPlus-McEliece. The parameter sets

corresponding to NIST 128, 192, and 256-bit security (S1, S3, and S5) are implemented,

allowing for granular security controls via the different parameter sets. Although

additional asymmetric algorithms sets may be added in the future, the current structure

already offers robust security without the need for protocol negotiation.

12.3 Signature Chaining

QSMP does not implement signature chaining directly but allows for this functionality to be

integrated via secondary protocols such as X.509.

• Optional Feature: Signature chaining is not a core feature of QSMP since the protocol is

designed as a standalone secure tunneling system. However, for implementations where

QSMP-2024 Rev. 1.3a

80

additional layers of authentication are required, signature chaining can be added using

existing standards. This would be done by enveloping the QSMP verification key in a

secondary authentication scheme like X.509.

• Integration with Existing Systems: Public keys can be distributed using X.509 or other

"web of trust" mechanisms. This additional authentication step can provide greater

assurance in key-exchange processes when necessary.

12.4 Compact Packet Headers

QSMP’s packet headers were designed to be highly efficient, significantly smaller than standard

SSH-2 protocol headers, with a size of just 21 bytes.

• Optimization for Efficiency: By eliminating unnecessary fields and limiting integer

sizes to ranges that reflect realistic use cases, the protocol reduces overhead and increases

efficiency for real-time applications like SSH.

• Scalable Design: The use of a single byte for flags and a 32-bit unsigned integer for the

message size parameter ensures scalability without exceeding the requirements of most

use cases, where payload sizes typically remain below 4 GB. This could however be

easily changed with just a couple small adjustments to the QSMP header file.

12.5 Dual-Channel Communication System

QSMP employs a two-channel communication system, with each channel independently keyed,

to maximize security.

• 512-bit Secure Tunnel: The duplex mode creates a 512-bit secure encrypted tunnel.

Combined with an aggressive choice of asymmetric protocols and parameter sets, this

will likely never be broken.

• Separate Key Generation: Each host independently generates the keys for the channels

it uses to transmit data. This practice is a significant enhancement over protocols that use

a single shared secret for both transmit and receive channels.

• Avoiding Security Shortcuts: While some protocols opt for single key exchanges to

simplify operations, QSMP deliberately avoids these shortcuts to ensure the highest level

of security.

12.6 Post-Quantum Authenticated Stream Cipher (RCS)

QSMP uses the RCS (Rijndael Cryptographic Stream) cipher, which is based on a wide-block

transformation (256-bit) of the Rijndael cipher (AES) and includes several enhancements.

• Advanced Features: RCS utilizes cSHAKE for round key generation, KMAC for

authentication, and features 22 transformation rounds compared to the AES-256 14

rounds. It also has a 512-bit secure option used by the duplex mode, utilizing 30 rounds

of encryption

• Forward-Thinking Security: The decision to use RCS over more established ciphers

like AES or ChaCha reflects a proactive stance toward post-quantum security. QSMP

QSMP-2024 Rev. 1.3a

81

chooses stronger cryptographic primitives now to mitigate future risks posed by advances

in quantum computing and future cryptanalytic breakthroughs.

12.7 Long-Term Security Vision

QSMP is designed with the future of computing technology in mind, anticipating the significant

advances that are almost certain to arise.

• Future-Proofing: The protocol prioritizes long-term security by employing

cryptographic techniques that are resilient not just against current threats but also those

that may emerge as quantum computing evolves.

• Focus on Strong Security: QSMP's design aims to keep sensitive data secure for

decades to come, ensuring that it remains robust in the face of unknown future

developments in cryptography and computer capabilities.

Summary of Design Principles

The decisions that guide QSMP's design emphasize security, adaptability, and efficiency. By

focusing on post-quantum cryptographic techniques, dual-channel communication, and

streamlined packet structures, QSMP aims to provide the highest possible security in a protocol

that is both versatile and forward-compatible. The absence of protocol negotiation and the choice

to employ RCS over older ciphers highlight QSMP’s commitment to proactive defense against

emerging threats, ensuring that it remains a resilient solution for secure messaging in the

quantum era.

