The Design and Formal Analysis of the
Quantum Secure Messaging Protocol

John G. Underhill

Quantum Resistant Cryptographic Solutions Corporation
contact@qrcscorp.ca

March 3, 2024

Abstract

The Quantum Secure Messaging Protocol (QSMP) is a post-quantum se-
cure channel mechanism that supports two operational modes: a one-
way authenticated Simplex exchange and a mutually authenticated Du-
plex exchange. Both modes combine a post-quantum key encapsulation
mechanism, a signature scheme, and a SHA3-based key derivation func-
tion with a permutation-based authenticated encryption channel. This
paper presents a formal cryptanalysis of QSMP in a multi-session adver-
sarial model with active network control, adaptive compromise of long-
term keys, and full observation of protocol transcripts.

We provide a complete engineering-level description of the protocol, de-
rived directly from the reference implementation, and develop a sym-
bolic protocol model suitable for cryptographic reduction proofs. For
Simplex mode, we show that the client obtains unilateral authentication
of the server and that the derived session keys achieve indistinguishabil-
ity under compromise of the server’s long-term signing key after the ses-
sion. For Duplex mode, we establish mutual authentication and key in-
distinguishability under standard post-quantum hardness assumptions.
In both modes, confidentiality and integrity of application data follow
from the security of the underlying RCS-based authenticated channel,
which binds packet headers and sequence information into the associ-
ated data.

Our analysis further examines replay and reordering resistance through
the authentication of sequence numbers and timestamps, evaluates the
impact of long-term key compromise and ratcheting on forward secrecy,

contact@qrcscorp.ca

and identifies precise boundaries where security depends on the IND-

CCA security of the KEM, the EUF-CMA security of the signature scheme,
and the indifferentiability of SHA3 used within cSHAKE. We conclude

that QSMP meets its stated security goals under these assumptions and

outline several refinements that strengthen the binding properties and

formal treatment of key derivation and ratcheting.

Contents

1 Introduction

1.1
1.2
1.3
1.4

Background and Motivation.
High Level Descriptionof QSMP
Security Goals and Contributions
DocumentRoadmap

2 Engineering Description of QSMP

2.1
2.2
2.3
24

2.5

2.6

2.7
2.8

Roles, Trust Model, and Deployment Context
Global Parameters and Cryptographic Primitives
Key Material and long-term State
Handshake and Session Establishment in Simplex Mode
2.4.1 Simplex Key Exchange Pseudo-code
Handshake and Session Establishment in Duplex Mode
2.5.1 Duplex Key Exchange pseudo-code
Session Keys, Ratcheting, and Rekeying
2.6.1 Asymmetric Ratchet Integration in Duplex Mode

2.6.2 Symmetric Ratchet State Generation
Channel Protection and Packet Processing.
Error Handling, Time Validation, and Session Teardown

3 Formal Protocol Specification

3.1
3.2
3.3
34
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6

Notation and Conventions
Execution Model and Sessions
Message Flows for SimplexMode
Message Flows for DuplexMode
Partnering and Session Matching
Adversarial Interfaceand Oracles

Security Definitions

Simplex Authentication of the Server
Duplex Mutual Authentication
Key Indistinguishability
Forward Secrecy in Simplex and Duplex
Channel Confidentiality and Integrity
Ratcheting and Post Compromise Guarantees

N OO S

O o0 o

35
36
36
37
38
39
39

10

11

Assumptions on Cryptographic Primitives

51 KEMSecurity e
5.2 Signature Scheme Security
5.3 Hash and KDF Assumptions
54 RCSChannelSecurity

Simplex Security Proofs

6.1 Client Authentication in Simplex
6.2 Key Indistinguishability in Simplex
6.3 Forward Secrecy for Simplex
6.4 Discussion of Limitations in Simplex

Duplex Security Proofs

7.1 Mutual Authenticationin Duplex
7.2 Key Indistinguishability in Duplex
7.3 Forward Secrecy and Ratcheting in Duplex
7.4 Replay and Reordering Resistance

Channel Security and AEAD Binding

8.1 AEADModelforQSMP
8.2 Replay and Reordering as Forgery Events
8.3 Denial of Service and Liveness Considerations

Cryptanalytic Evaluation

9.1 Attack Surfaces and Adversarial Capabilities
9.2 long-term Key Compromise and Ratchet Behavior
9.3 Comparison with Related Protocols

Implementation Conformance and Side
Channel Considerations
10.1 Mapping Between Model and Reference Implementation

10.2 Constant Time Requirements

10.3 Random Number Generation and Time Synchronization

10.4 Error Handling, Logging, and Teardown

Concrete Security Estimates

11.1 Parameter Choices and Security Levels
11.2 Quantitative Bounds from the Reductions
11.3 Discussion of Security Margins

46
46
46
47
47

48
48
49
51
52

53
53
54
55
56

58
58
59
60

60
60
62
63

64
64
65
66
67

12 Conclusion 72

12.1 SummaryofResults 72
12.2 Limitationsand Caveats 72
12.3 Directions for Future Work 73

1 Introduction

1.1 Background and Motivation

The development of post-quantum secure communication systems has accel-
erated due to the standardization of lattice based key encapsulation mecha-
nisms and digital signatures, together with the growing availability of efficient
permutation based symmetric constructions. Modern secure messaging sys-
tems increasingly rely on hybrid designs that combine asymmetric and sym-
metric components, apply domain separated hashing for session key deriva-
tion, and authenticate control data to prevent transcript manipulation. The
Quantum Secure Messaging Protocol (QSMP) follows this design philosophy.
It provides a compact post quantum handshake suitable for low latency appli-
cations and builds an authenticated and encrypted data channel on top of a
Keccak based permutation.

QSMP was designed to support deployments where endpoints must establish
secure channels in environments that may include active adversaries with the
ability to intercept, reorder, or drop packets. The protocol supports one way
authenticated operation as well as full mutual authentication. It is intended
to serve as a general secure transport mechanism rather than a domain spe-
cific protocol, so its security must be expressed in a model that captures many
concurrent sessions and realistic adversarial capabilities.

1.2 High Level Description of QSMP

QSMP involves two roles, a client and a server, that exchange a sequence of
structured packets containing both control information and cryptographic ma-
terial. The protocol operates in two modes. The Simplex mode provides one
way authentication, where the client authenticates the server, establishes a
fresh session key through a post quantum key encapsulation mechanism, and
initializes a one way encrypted channel. The Duplex mode provides mutual au-
thentication through bidirectional exchange of signed ephemeral key material,
establishment of two independent KEM based shared secrets, and verification
of a session binding hash. Both modes employ SHA3 and cSHAKE for hashing
and key derivation, and both use an RCS based authenticated encryption chan-
nel to protect application data. Packet headers include sequence numbers and
timestamps that are authenticated as associated data.

Across both modes, QSMP maintains a stateful view of each connection that
contains sequence counters, expiration times, session keys, and an optional
ratchet value. These values determine how packets are interpreted and when
a session must be terminated because of invalid timestamps or protocol errors.

1.3 Security Goals and Contributions

The primary security objectives of QSMP differ between Simplex and Duplex
operation. In Simplex mode, the client obtains authentication of the server
identity and derives a session key that remains confidential even if the server’s
long-term signing key is compromised after the handshake. There is no expec-
tation of client identity authentication in this mode. In Duplex mode, both
parties authenticate each other through signed ephemeral keys, and both de-
rive session keys that achieve standard indistinguishability under passive and
active adversaries. For both modes, channel confidentiality and integrity fol-
low from the security of the RCS based authenticated encryption when used
with packet headers as associated data.

This paper provides a formal cryptanalysis of QSMP. It develops a symbolic
protocol model aligned with the reference implementation, defines authenti-
cation, key indistinguishability, forward secrecy, and channel integrity in a
multi session setting, and proves that QSMP meets these goals under standard
assumptions on the underlying cryptographic primitives. The analysis clari-
fies the scope of Simplex authentication, characterizes forward secrecy with
respect to long-term key compromise, and formalizes replay and reordering
resistance through authenticated control data. The paper also examines the
implications of ratcheting and evaluates the overall robustness of the protocol.

1.4 Document Roadmap

The next section gives an engineering level description of QSMP based di-
rectly on the reference implementation, stated in implementation indepen-
dent terms. Section 3 presents the formal specification of the protocol, includ-
ing roles, sessions, message flows, and adversarial capabilities. Section 4 de-
fines authentication, key indistinguishability, forward secrecy, and channel se-
curity in the multi session model used throughout the proofs. Section 5 states
the assumptions on the cryptographic primitives. Sections 6 and 7 contain the
Simplex and Duplex security proofs. Section 8 discusses the channel binding
properties of the authenticated encryption and the resistance to replay and re-
ordering attacks. Section 9 provides a cryptanalytic evaluation of the protocol.
Section 10 analyzes implementation conformance and side channel consider-
ations. Section 11 gives concrete security estimates for recommended param-
eter choices. Section 12 concludes with limitations and directions for future
work.

2 Engineering Description of QSMP

This section describes the behavior of QSMP as realized by the reference im-
plementation, using implementation independent terminology. All details are
derived from the public specification and code base and are expressed as ab-
stract operations on state, messages, and cryptographic primitives, rather than
as C level constructs.

2.1 Roles, Trust Model, and Deployment Context

QSMP operates between two roles, a client and a server. The client initiates
the connection and drives the handshake, while the server responds and en-
forces policy on key usage and session creation. In Duplex deployments both
peers may possess long-term signing keys, but for each connection one end-
point is treated as the client role and the other as the server role within the key
exchange.

The trust model assumes that server long-term signing keys are distributed
to clients through an external mechanism such as certificates or preconfig-
ured key directories. In Duplex mode, each endpoint maintains a verification
key for the other party and has its own signing key used to authenticate its
ephemeral contributions. The protocol does not define how these long-term
keys are provisioned or revoked, only that they are available and that their ex-
piration times are honored.

QSMP assumes that the underlying post-quantum key encapsulation mecha-
nism (KEM) provides IND-CCA security, that the signature scheme provides
EUF-CMA security, and that SHA3 and cSHAKE behave as collision resistant
hash and pseudo-random key derivation functions within their stated domains.
The RCS construction is treated as an authenticated encryption with associ-
ated data (AEAD) scheme that provides confidentiality and integrity under
chosen ciphertext attack when keyed with independent session keys.

QSMP is designed to run over a reliable ordered transport. Packet delivery,
loss, and reordering are considered under adversarial control, but the transport
does not provide any cryptographic guarantees. Deployments may use TCP
or another reliable channel that preserves byte ordering. The protocol itself
enforces all cryptographic protections and imposes its own sequencing and
time validation rules.

Simplex deployments use a long-term server signing key to authenticate the
server to anonymous clients that do not possess their own long-term keys. Du-
plex deployments are suited to environments where both peers maintain sign-
ing keys and wish to obtain mutual authentication and stronger binding be-
tween session keys and long-term identities.

2.2 Global Parameters and Cryptographic Primitives

QSMP is parameterized by a configuration string cfg that identifies the set of
cryptographic algorithms and parameter choices in use. The configuration
string is a fixed length byte array that appears explicitly in handshake mes-
sages and is included in several hash computations that bind session keys to a
particular algorithm suite.

Each long-term signing key is identified by a key identity kid, a 16 byte array
that acts as a combined device and key identifier. The identity is carried in
handshake messages and is used by the server to select the appropriate verifica-
tion or signing key and by the client to associate a handshake with a particular
expected server key.

Public verification keys and corresponding signing keys have an associated
expiration time represented as a 64 bit Unix style UTC low resolution (seconds)
timestamp. When the current time exceeds the expiration value the key is
considered invalid and handshakes using that key must fail.

QSMP packets share a compact header format of fixed size 21 bytes. The
header fields are:

« flag € {0, ..., 255}, a one byte message type that distinguishes handshake
packets, error packets, and encrypted data packets.

« msglen € {0, ...,23% — 1}, a four byte unsigned integer giving the length
of the message body in bytes.

« sequence € {0, ...,2% — 1}, an eight byte unsigned integer that increases
monotonically for each packet sent on a connection.

« utctime € {0,...,2% — 1}, an eight byte unsigned integer giving the
sender’s current UTC time in seconds.

The header is serialized in a deterministic byte order and is always treated as as-
sociated data for authenticated encryption operations. The maximum payload
size is bounded by a global constant QSMP_MESSAGE_MAX, and implemen-
tations also enforce a maximum transmission unit for the combined header
and ciphertext.

QSMP instantiates the KEM and signature scheme through abstract interfaces
that provide key generation, encapsulation, decapsulation, signing, and veri-
fication. The specific algorithm sets (Dilithium with Kyber, Dilithium with
McEliece, or McEliece with SPHINCS+) are fixed by the configuration string
and not negotiated during the handshake, (while asymmetric primitive param-
eter sets are defined in the adjoining QSC cryptographic library in the imple-
mentation). SHA3 and cSHAKE are used for hashing and key derivation. The
RCS construction is a duplex mode authenticated cipher built with wide-block

Rijndael and the Keccak permutation, that takes a key, a nonce, and optional
associated data and provides encryption and decryption with AEAD integrity
protection (AES-GCM is an optional configuration).

2.3 Key Material and long-term State

The server maintains a signing key pair (ssk, svk) together with an associated
configuration string cfg, key identity kid, and expiration time. In Duplex mode
each endpoint may maintain both a local signing key pair and a stored verifi-
cation key for its peer.
Client side long-term state consists of one or more verification keys svk or peer
verification keys, the corresponding key identities, associated configuration
strings, and expiration times. The protocol assumes that client software has
verified these keys through some external mechanism prior to use.
For each handshake QSMP derives a session cookie hash sch that binds the ses-
sion to long-term key material and the configuration string. In Simplex mode
the session cookie is

schg = H(cfg || kid || svk),

where svk is the server verification key. Both client and server compute this
value and store it as part of the handshake state. In Duplex mode the cookie
includes both long-term verification keys,

schp = H(cfg || kid || pvk¢ || pvks),

where pvk. and pvkg are the client and server verification keys bound by the
key identity kid. This value is used as input to key derivation and is also con-
firmed during the Duplex establish stage.

Each connection maintains a state record that stores at least:

« atransmit sequence counter txseq and receive sequence counter rxseq,

« the current transmit cipher state and receive cipher state for the RCS
channel,

« the current ratchet key state rtcs,

« the last observed UTC time in seconds for the peer, used to enforce time
windows,

- aflag indicating the last successful handshake stage.

This state persists for the lifetime of a session and is erased when the session
is torn down.

10

2.4 Handshake and Session Establishment in Simplex Mode

The Simplex handshake consists of three stages: a connect request from the
client, a connect response from the server, and an exchange stage that transfers
a KEM ciphertext and establishes the data channel.

Connect request. The client first verifies that the stored server verification
key corresponding to the chosen key identity kid is not expired. It then con-
structs a message body containing kid and cfg, and assembles a packet header
with the connect request flag, the current transmit sequence number, the length
of the message body, and the current UTC time. The client sets the packet se-
quence to the current txseq value without incrementing it yet. The Simplex
session cookie schg is computed as H(cfg || kid || svk) and stored in the hand-
shake state. The packet is then sent to the server.

Connectresponse. Upon receiving a packet, the server deserializes the header
and validates that the flagis a connect request, that the message length matches
the expected size, that the sequence number is rxseq, and that the timestamp
lies inside an acceptable tolerance window relative to its local clock (imple-
mentation default is 60 seconds). It uses the received kid to select the appropri-
ate server signing key and verifies that its own configuration string matches
cfg. The server computes the same Simplex session cookie schg and stores it.
The server generates an ephemeral KEM key pair (pk, sk) and constructs a tran-
script hash over the serialized header and the public key. It signs this hash with
its long-term signing key and returns a connect response message that carries
the signature and the ephemeral public key. The header of the response is
created with the connect response flag, the current server sequence number,
the response length, and the current server time. The server increments its
transmit sequence counter after sending the response.

Exchange stage. The client validates the connect response header with the
same structural checks and time window. It verifies the server signature on the
transcript hash and recomputes the hash over the received header and public
key to check consistency. If verification succeeds, the client encapsulates a
shared secret sec to the server’s ephemeral public key, obtaining a ciphertext
cpt and secret sec.

The client uses cSHAKE as a key derivation function with input sec and cus-
tomization string schs. The KDF output is parsed into two symmetric keys and
two nonces,

(ky,nq, ky, ny) < KDF(sec, schg),

11

and these values are used to initialize the transmit and receive RCS channels.
The internal ratchet state rtcs is set to a slice of the permuted Keccak state after
the key derivation, so that it does not equal any current encryption key.

The client assembles an exchange request packet whose message body con-
tains the ciphertext cpt. The packet header is built with the exchange request
flag, the current sequence number, the ciphertext length, and the current time.
The client sends the packet and increments its transmit sequence counter.
When the server receives the exchange request, it validates the header and
uses the ephemeral private key sk to decapsulate the ciphertext, recovering the
same secret sec. It runs the same key derivation procedure with sec and schg to
obtain k;, ny, k,, n,, initializes its own RCS transmit and receive channels, and
stores a ratchet key state derived from the post permutation Keccak state. The
ephemeral KEM private key and shared secret are cleared from memory after
the RCS keys and ratchet state have been initialized. No further handshake
messages are needed in Simplex mode; once the exchange stage completes,
the session transitions to the established state.

2.4.1 Simplex Key Exchange Pseudo-code

The Simplex key exchange is implemented by the functions
gsmp_kex_simplex client_key_exchange and
gsmp_kex_simplex_server_key_exchange in kex.c, together with their in-
ternal helpers. The pseudo-code in this subsection follows the control flow
of those functions and abstracts the code into Kyber style presentation, while
preserving the exact cryptographic operations, header construction, and state
updates.

We write now for the UTC timestamp function, HeaderCreate and HeaderSeri-
alize for the packet header routines, SHA3 for the SHA3 256-bit hash, Encap
and Decap for the KEM encapsulation and decapsulation algorithms, Sign and
Verify for the signature scheme, and cSHAKE for the KDF. RCS channel initial-
ization is written as RCS.Init and follows the transmit and receive assignment
in the implementation.

Client: Connect Request. In the Simplex connect request, the client first
checks that the cached server key record is still valid with respect to its expi-
ration time. If the key is valid, the client constructs a connect request packet
that contains the server key identity and the fixed configuration string. At the
same time the client computes the Simplex session cookie hash from the con-
figuration, key identity, and stored server verification key. The packet header
is created with the connect request flag, the current transmit sequence num-

12

ber, and the message length, and the exchange state flag is set to indicate that
a connect request has been prepared.

Algorithm 1 Simplex.ClientConnectRequest

1: procedure CLIENTCONNECTREQUEST(Kcs, cns, pkt)

2: t « now()

3 if t > kcs.expiration then

4 cns.exflag < none

5 return error_key_expired
6: end if
7
8
9

pkt.message <« kcs.keyid || QSMP_CONFIG_STRING
len « KEX_SIMPLEX CONNECT REQUEST MESSAGE SIZE
: pkt.header « HeaderCreate(connect_request, cns.txseq, len)
10: kcs.schash < SHA3(QSMP_CONFIG_STRING || kcs.keyid || kcs.verkey)
11: cns.exflag < connect_request
12: return error_none
13: end procedure

Server: Connect Response. On receipt of a Simplex connect request, the
server verifies that the incoming key identity matches a configured record, that
the configuration string equals the expected value, and that the server key has
not expired. If these checks pass the server computes the same Simplex session
cookie hash from its configuration string, key identity, and verification key.
The server then generates an ephemeral KEM key pair, constructs a connect
response header, hashes the serialized response header and the ephemeral
public key, and signs this hash with its long-term signing key. The connect
response message carries the signature and the ephemeral public key, and the
exchange state flag is updated accordingly.

13

Algorithm 2 Simplex.ServerConnectResponse

1: procedure SERVERCONNECTRESPONSE(KsS, cns, req, resp)
2: confs « extract configuration bytes from req.message

3: if KeyldVerify(kss.keyid, req.message) = false then
4: return error_invalid_input
5: end if
6: t < now()
7: if t > kss.expiration then
8: return error_key_expired
9: end if
10: if confs # QSMP_CONFIG_STRING then
11: return error_unknown_protocol
12: end if

13: kss.schash « SHA3(QSMP_CONFIG_STRING || kss.keyid || kss.verkey)
14: (kss.pubkey, kss.prikey) <« EncapKeyGen()

15: len < KEX_SIMPLEX_ CONNECT RESPONSE_MESSAGE SIZE
16: resp.header < HeaderCreate(connect_response, cns.txseq, len)
17: shdr « HeaderSerialize(resp.header)

18: phash <« SHA3(shdr || kss.pubkey)
19: sig « Signkss_sigkey(phash)

20: resp.message « sig || kss.pubkey
21: cns.exflag < connect_response
22: return error_none

23: end procedure

Client: Exchange Request. For the Simplex exchange request, the client
first validates the connect response header, including flag, sequence number,
timestamp window, and message size, as part of the surrounding key exchange
driver. It then parses the response message into the server signature and ephemeral
public key, recomputes the hash over the serialized response header and pub-
lic key, and verifies the signature under the stored server verification key. If
the signature and hash match, the client encapsulates a shared secret to the
ephemeral public key, stores only the ciphertext in the exchange request mes-
sage, and derives the transmit and receive keys and nonces from the combi-
nation of the shared secret and the previously computed session cookie hash
using cSHAKE. The client initializes RCS for both directions and records the
ratchet state extracted from the internal cSHAKE state.

14

Algorithm 3 Simplex.ClientExchangeRequest
1: procedure CLIENTEXCHANGEREQUEST(kcs, cns, resp, pkt)
2: parse resp.message as (sig, pubk)

3: shdr < HeaderSerialize(resp.header)

4: khash « SHA3(shdr || pubk)

5: if Verifyy s verkey(Sig, khash) = false then

6: cns.exflag < none

7: return error_signature_invalid

8: end if

9: (ssec, cpt) « Encap(pubk)

10: pkt.message « cpt

11: len < KEX_ SIMPLEX EXCHANGE REQUEST MESSAGE SIZE

12: pkt.header « HeaderCreate(exchange_request, cns.txseq, len)

13: prnd <« cSHAKE(ssec,custom = kecs.schash,outlen = 2 -
QSC_KECCAK_256 RATE)

14: derive (k;, ny, ky, n,) from prnd using the same byte layout as in kex. c

15: cns.rtcs « InternalState(cSHAKE)
16: RCS.Init(cns.txcpr, kq, ny, true)

17: RCS.Init(cns.rxcpr, k,, n,, false)
18: zeroize ssec and prnd

19: cns.exflag < exchange_request
20: return error_none

21: end procedure

Server: Exchange Response. When the server receives a Simplex exchange
request, it first verifies the header fields outside this routine. It then decapsu-
lates the KEM ciphertext from the message using the stored ephemeral private
key. If decapsulation succeeds, the server runs cSHAKE on the shared secret
with the Simplex session cookie hash as customization to derive the same pair
of keys and nonces as the client, assigns them to its receive and transmit RCS
instances in the opposite roles, and records a ratchet state derived from the
internal cSSHAKE state. The server zeroizes the shared secret and temporary
buffers, and finally emits an exchange response packet with an empty body and
the exchange response flag in the header to signal that the Simplex session is
established.

15

Algorithm 4 Simplex.ServerExchangeResponse
1: procedure SERVEREXCHANGERESPONSE(KkSS, cns, req, resp)
2: cpt < req.message

3: ssec « Decap(cpt, kss.prikey)
4: if decapsulation fails then
5: return error_decapsulation_failure
6: end if
7: prnd <« cSHAKE(ssec,custom = kss.schash,outlen = 2 -
QSC_KECCAK_256 RATE)
8: derive (k,, ny, k,, n,) from prnd
9: cns.rtcs < InternalState(cSHAKE)
10: RCS.Init(cns.rxcpr, ky, ny, false)
11: RCS.Init(cns.txcpr, k,, n,, true)
12: zeroize ssec and prnd
13: resp.header «— HeaderCreate(exchange_response, cns.txseq, 0)
// empty body
14: cns.exflag < session_established
15: return error_none

16: end procedure

Client: Establish Verify. The final Simplex step on the client side is to verify
the exchange response. The client checks that the response header carries the
expected exchange response flag, that the sequence number and timestamp
are valid with respect to its local state and time window, and that the message
length is zero as required. If these checks all succeed, the client marks the
session as established in its connection state. Any failure in header validation
or state checks leads to an error and aborts the key exchange.

Algorithm 5 Simplex.ClientEstablishVerify

1: procedure CLIENTESTABLISHVERIFY(kcS, cns, resp)

2: if header validation on resp.header fails then

3 cns.exflag < none

4 return error_invalid_input
5: end if
6
7
8

cns.exflag < session_established
return error_none
: end procedure

16

2.5 Handshake and Session Establishment in Duplex Mode

The Duplex handshake extends Simplex by performing mutual authentication
and by deriving session keys from two independent KEM secrets. It consists
of a connect stage, an exchange stage, and an establish stage that confirms
the session cookie. Duplex derives its channel keys from the concatenation
of two independent asymmetric cipher shared secrets, each providing approxi-
mately 256-bits of classical security. These secrets are combined and expanded
with cSHAKE_512, which yields RCS-512 keys with an effective 512-bit secu-
rity margin against preimage attacks. This provides higher strength than the
Simplex derivation, which uses only a single Kyber shared secret.

Connect stage. The client and server both possess long-term signing keys
and verification keys. The client constructs a connect request that includes
kid and cfg, an ephemeral KEM public key for the first shared secret, and a sig-
nature over a hash of the serialized header, the key identity, the configuration
string, and the public key. The Duplex session cookie schy = H(cfg || kid ||
pvke || pvkg) is computed and stored in the client state. The packet header is
created with the connect request flag, sequence number, message length, and
current time. The client sends the packet and increments its transmit sequence
counter.

The server validates the header and checks that kid and cfg match a local key
record. It verifies the client’s signature using the stored client verification key
and recomputes the transcript hash to bind the header and the client’s public
key. If verification succeeds, the server generates its own ephemeral KEM key
pair for the second secret and computes the same Duplex session cookie schp.
It constructs a connect response that carries the server’s ephemeral public key
and a signature over the hashed header and public key. The response header is
filled with the connect response flag, current sequence number, message size,
and time. The server sends the packet and increments its transmit sequence
counter.

Exchange stage. After validating the connect response header, the client
verifies the server’s signature and recomputes the transcript hash. It encap-
sulates to the server’s ephemeral public key to obtain a second shared secret
sec,, while the server, upon receiving the subsequent exchange request, decap-
sulates the first shared secret sec; from the ciphertext carried in the client’s ex-
change packet. In parallel, the client decapsulates sec; from the ciphertext re-
ceived in the connect response, and the server encapsulates sec, to the client’s
public key. At the end of the exchange stage both parties hold the same pair

17

(secy, sec,).
The KDF takes both secrets and the session cookie as input. Conceptually,

(ky, 1y, ky, ny) < KDF(secy, schp, sec,),

and these values are used to initialize the bidirectional RCS channels. As in
Simplex, a ratchet key state rtcs is stored from the post permutation Keccak
state; the state is permuted specifically to generate an unrelated ratchet key.
Ephemeral KEM private keys and shared secrets are cleared after use.

Establish stage. The Duplex establish stage confirms that both parties hold
the same session cookie and that their derived keys are synchronized. The
client constructs an establish request whose message body consists of schp en-
crypted under the transmit RCS channel. Before encryption, the client serial-
izes the establish request header and sets it as associated data for the cipher. It
then encrypts the cookie and sends the packet.

The server receives the establish request, serializes the header, and sets it as
associated data on its receive channel. It decrypts the cookie candidate and
compares it in constant time with its local value of schp. If they match, the
server computes a hash of the cookie, for example H(schp), and constructs
an establish response whose message body is this hash encrypted under the
transmit channel with the establish response header used as associated data.
The establish response is sent with the appropriate flag and updated sequence
number.

The client validates the establish response header, decrypts the message using
the receive channel with the serialized header as associated data, and com-
pares the recovered hash with H(schp). If this check succeeds, both parties
mark the session as established. Any failure in decryption, verification, or com-
parison causes the session to be torn down and all key material to be erased.

2.5.1 Duplex Key Exchange pseudo-code

The Duplex key exchange is implemented by
gsmp_kex_duplex_client_key_exchange and
gsmp_kex_duplex_server_key_exchange in kex.c, together with the inter-
nal helpers kex_duplex_client_connect_request,
kex_duplex_server_connect_response,
kex_duplex_client_exchange request,
kex_duplex_server_exchange response,
kex_duplex_client_establish_request,

kex_duplex_server establish response, and

18

kex_duplex_client_establish_verify. The pseudo-code in this subsection
follows the control flow and cryptographic operations of those functions as ex-
pressed in the reference implementation.

We write now for the UTC timestamp function, HeaderCreate and HeaderSe-
rialize for the packet header routines, SHA3 for SHA3 256-bit hashing, Encap
and Decap for the KEM encapsulation and decapsulation primitives, Sign and
Verify for the signature scheme, and cSHAKE for the KDF. RCS initialization is
written as RCS.Init, matching the direction assignments and key layouts used
in kex.c. In Duplex mode the client and server each hold a long-term signa-
ture key pair and an asymmetric encryption key pair, and the session cookie
hash schp is computed from the configuration string, key identity, and both
public verification keys.

Client: Connect Request. In the Duplex connect request, the client first
checks that its local key record has not expired. It then constructs a session
cookie hash from the configuration string and both public verification keys,
which will be used later as input to the key derivation function. The client pre-
pares a connect request message containing the server key identity and con-
figuration string, computes a hash over the serialized connect request header
and message, signs this hash with its own signing key, and appends the sig-
nature to the message. The header is created with the connect request flag,
current transmit sequence number, and the total message length, and the con-
nection state exchange flag is set to record that a Duplex connect request has
been prepared.

19

Algorithm 6 Duplex.ClientConnectRequest

1: procedure DUPLEXCLIENTCONNECTREQUEST(KcS, cns, pkt)
t < now()
3 if t > kcs.expiration then
4 cns.exflag < none
5 return error_key_expired
6: end if
7
8
9

pkt.message < kcs.keyid || QSMP_CONFIG_STRING
len «— KEX_DUPLEX_CONNECT REQUEST MESSAGE_SIZE
: pkt.header « HeaderCreate(connect_request, cns.txseq, len)
10: shdr « HeaderSerialize(pkt.header)
11: phash « SHA3(shdr || pkt.message)

12: slen < 0
13: siglen < QSMP_ASYMMETRIC_SIGNATURE_SIZE
14: Signkcs.sigkey(phash, QSMP_DUPLEX_HASH_SIZE, pkt.message +

|pkt.message|)

15: kcs.schash < SHA3(QSMP_CONFIG_STRING || kcs.keyid || kcs.verkey || kcs.rverkey)

16: cns.exflag < connect_request
17: return error_none
18: end procedure

Server: Connect Response. On receipt of a Duplex connect request, the
server validates the incoming header and timestamp in the key exchange driver.
The helper procedure checks that the key identity in the message matches a
configured record and that the configuration string equals the local configura-
tion. It verifies the signature on the client hash by recomputing the hash over
the serialized request header and message and comparing it in constant time to
the signed hash. If the verification succeeds, the server computes the Duplex
session cookie hash from the configuration string, key identity, and both pub-
lic verification keys. The server then generates an ephemeral KEM key pair for
the Duplex exchange, constructs a connect response header, computes a hash
of the serialized response header and ephemeral public key, signs this hash
with its signing key, and appends both the signature and the public key to the
response message. The exchange flag is updated to record a successful Duplex
connect response.

20

Algorithm 7 Duplex.ServerConnectResponse

1: procedure DUPLEXSERVERCONNECTRESPONSE(KSS, cns, req, resp)

2:

10:
11:
12:

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:

L XN U R W

pkid < key identity bytes from req.message
cfg « configuration bytes from req.message
if KeyldLookup(pkid) fails then
cns.exflag < none
return error_invalid_input
end if
if cfg # QSMP_CONFIG_STRING then
cns.exflag < none
return error_unknown_protocol
end if
mlen «— QSMP_ASYMMETRIC SIGNATURE_SIZE +

QSMP_DUPLEX_HASH_SIZE

slen « 0

Verifyjs. rverkey (req.message, mlen, khash, slen)

shdr « HeaderSerialize(req.header)

phash « SHA3(shdr || req.message[0 : payloadlLen])

if ConstEq(khash, phash) = 0 then
kss.schash « SHA3(QSMP_CONFIG_STRING || kss.keyid || kss.rverkey || kss.verkey)
(kss.pubkey, kss.prikey) < EncapKeyGen()
len «— KEX_DUPLEX_ CONNECT RESPONSE_MESSAGE SIZE
resp.header < HeaderCreate(connect_response, cns.txseq, len)
shdr « HeaderSerialize(resp.header)
phash <« SHA3(shdr || kss.pubkey)
slen < 0
Signss.sigkey(Phash, QSMP_DUPLEX_HASH_SIZE, resp.message)
append kss.pubkey after the signature in resp.message
cns.exflag < connect_response
return error_none

else
cns.exflag < none
return error_verify_failure

end if

33: end procedure

Client: Exchange Request. For the Duplex exchange request, the client first
validates the server connect response header in the surrounding driver. It
parses the response message into the server signature and ephemeral public
encapsulation key, recomputes the hash of the serialized response header and

21

the public key, and verifies that this matches the signed hash. If the check fails
the exchange is aborted. Otherwise the client uses the server ephemeral public
key to encapsulate the first shared secret and obtain ciphertext cpta. The client
stores the shared secret seca for later use, generates its own ephemeral asym-
metric encryption key pair, computes a hash over its ephemeral public key,
cpta, and the serialized exchange request header, and signs this hash with its
signing key. The exchange request message consists of the client signature,
cpta and the client ephemeral public key and the exchange flag is updated ac-
cordingly.

Algorithm 8 Duplex.ClientExchangeRequest

1: procedure DUPLEXCLIENTEXCHANGEREQUEST(kcS, cns, resp, pkt)
2: parse resp.message as (sigg, pkg)

3: shdr < HeaderSerialize(resp.header)

4: phash « SHA3(shdr || pky)

S Verifykes.rverkey(Sigg» Phash)

6: if verification fails then

7: cns.exflag < none

8: return error_verify_failure

o: end if
10: (seca, cpta) < Encap(pkg)
11: store seca in kcs for later key derivation
12: (kcs.pubkey, kcs.prikey) < EncapKeyGen()
13: len « KEX_DUPLEX_EXCHANGE REQUEST MESSAGE_SIZE
14: pkt.header « HeaderCreate(exchange_request, cns.txseq, len)

15: shdr « HeaderSerialize(pkt.header)
16: kch < SHA3(kcs.pubkey || cpta || shdr)
17: SigNkcs.sigkey(kch, QSMP_DUPLEX_HASH_SIZE, sig-)

18: pkt.message < sig || cpta || kcs.pubkey
19: cns.exflag < exchange_request
20: return error_none

21: end procedure

Server: Exchange Response. When the server receives a Duplex exchange
request, it validates the header and timestamp in the driver, then parses the
message into the client signature, ciphertext cpta, and client ephemeral public
key. It verifies the client signature by recomputing the hash of the serialized
header and message fields and comparing this to the signed hash. If verifica-
tion fails the exchange is aborted. If it succeeds, the server decapsulates cpta
using its private ephemeral key to obtain the first shared secret seca, then en-

22

capsulates a second shared secret secb to the client ephemeral public key and
obtains ciphertext cptb. The server combines seca, secb, and the session cookie
hash schp, in cSHAKE to derive two symmetric keys and two nonces which are
assigned to the receive and transmit RCS instances. Finally, the server com-
putes a hash of cptb and the serialized exchange response header, signs this
hash, and sends the signature and cptb as the exchange response message.

Algorithm 9 Duplex.ServerExchangeResponse

1: procedure DUPLEXSERVEREXCHANGERESPONSE(KksS, cns, req, resp)
2: parse req.message as (sig, cpta, pk)

3: shdr « HeaderSerialize(req.header)
4: kch < SHA3(pk || cpta || shdr)
5: Verifykss.rverkey(SigC’ kCh)
6: if verification fails then
7: cns.exflag < none
8: return error_verify_failure
9: end if
10: seca < Decap(cpta, kss.prikey)
11: if decapsulation fails then
12: return error_decapsulation_failure
13: end if
14: (secb, cptb) « Encap(pk.)
15: prnd <« cSHAKE(seca || secb,custom = kss.schash,outlen = 3 -
QSC_KECCAK_512_RATE)
16: derive (k;, ny, k,, n,) from prnd using the byte layout in kex. c
17: copy part of the cSHAKE state into cns.rtcs as ratchet seed
18: RCS.Init(cns.rxcpr, kq, ny, false)
19: RCS.Init(cns.txcpr, ky, n,, true)
20: zZeroize seca, secb, prnd
21: len « KEX_DUPLEX_EXCHANGE RESPONSE_MESSAGE_SIZE
22: resp.header < HeaderCreate(exchange_response, cns.txseq, len)
23: shdr « HeaderSerialize(resp.header)

24: cpth « SHA3(cptb || shdr)
25 SigNkgssigkey(cPth, QSMP_DUPLEX_HASH_SIZE, sig)

26: resp.message < sigg || cptb
27: cns.exflag < exchange_response
28: return error_none

29: end procedure

23

Client: Establish Request. The client establish request handler processes
the server exchange response. It validates the header and timestamp, parses
the message into the server signature and ciphertext cptb, and recomputes the
hash over cptb and the serialized header. If the signature verification or hash
comparison fails, the exchange is aborted. When verification succeeds, the
client decapsulates cptb using its private ephemeral encryption key to obtain
sech, and combines seca, secb, and the session cookie hash schp in cSHAKE
to derive two symmetric keys and two nonces. These keys are assigned to
the client transmit and receive RCS instances and a ratchet seed is extracted
from the internal state. The client then encrypts the session cookie hash under
the transmit cipher, using the serialized establish request header as associated
data, and sends this ciphertext as the Duplex establish request message.

24

Algorithm 10 Duplex.ClientEstablishRequest
1: procedure DUPLEXCLIENTESTABLISHREQUEST(KcS, cns, resp, pkt)
2: parse resp.message as (sigs, cptb)

3: shdr < HeaderSerialize(resp.header)
4: cpth <« SHA3(cptb || shdr)
5: Verifykcs.rverkey(SigS’ Cpth)
6: if verification fails then
7: cns.exflag < none
8: return error_verify_failure
9: end if
10: secb < Decap(cptb, kcs.prikey)
11: if decapsulation fails then
12: return error_decapsulation_failure
13: end if
14: prnd <« cSHAKE(seca || secb,custom = kcs.schash,outlen = 3 -
QSC_KECCAK_512_RATE)
15: derive (k,, ny, k,, n,) from prnd

16: copy part of the cSHAKE state into cns.rtcs as ratchet seed
17: RCS.Init(cns.txcpr, kq, ny, true)

18: RCS.Init(cns.rxcpr, k,, n,, false)

19: zeroize secb and prnd

20: len « KEX_DUPLEX_ESTABLISH REQUEST MESSAGE SIZE
21: pkt.header « HeaderCreate(establish_request, cns.txseq, len)

22 shdr <« HeaderSerialize(pkt.header)
23: cm « RCS.Encrypt(cns.txcpr, ad = shdr, pt = kcs.schash)

24: pkt.message < cm
25: cns.exflag < establish_request
26: return error_none

27: end procedure

Server: Establish Response. The Duplex server establish response handler
processes the client establish request. It validates the request header and times-
tamp and decrypts the message using the receive cipher while treating the se-
rialized establish request header as associated data. The decrypted value is
compared to the locally stored session cookie hash; if they differ, the exchange
is aborted and the tunnel is torn down. If the session cookie hashes match, the
server hashes the session cookie, encrypts this hash under the transmit cipher
with the establish response header as associated data, and sends the resulting
ciphertext as the establish response message. The operational state is set to
session established.

25

Algorithm 11 Duplex.ServerEstablishResponse

1: procedure DUPLEXSERVERESTABLISHRESPONSE(KSS, cns, req, resp)

2:

10:
11:
12:
13:
14:
15:

L XN U R W

shdr < HeaderSerialize(req.header)
sch’ « RCS.Decrypt(cns.rxcpr, ad = shdr, ct = req.message)
if sch’ # kss.schash then

cns.exflag < none

return error_decryption_failure
end if
hsch « SHA3(kss.schash)
len < KEX_DUPLEX ESTABLISH_RESPONSE MESSAGE_SIZE
resp.header < HeaderCreate(establish_response, cns.txseq, len)
shdrg « HeaderSerialize(resp.header)
cm < RCS.Encrypt(cns.txcpr, ad = shdrg, pt = hsch)
resp.message < cm
cns.exflag < session_established
return error_none

16: end procedure

Client: Establish Verify. The final Duplex step on the client side is to verify
the establish response. The client first checks that the response header carries
the establish response flag, that the sequence number and timestamp are valid,
and that the message length matches the expected Duplex establish response
size. It then uses the receive cipher to decrypt the message with the serialized
establish response header as associated data and obtains the hash of the ses-
sion cookie. The client recomputes the hash of its local session cookie and com-
pares the result to the decrypted value in constant time. If the values match the
client confirms that both parties have established the same encrypted channel,
marks the session as established, and is ready to process application data. Any

failure causes the tunnel to be torn down.

26

Algorithm 12 Duplex.ClientEstablishVerify
1: procedure DUPLEXCLIENTESTABLISHVERIFY(KcS, cns, resp)
2: shdr < HeaderSerialize(resp.header)
hsch” « RCS.Decrypt(cns.rxcpr, ad = shdr, ct = resp.message)
hsch < SHA3(kcs.schash)
if hsch’ # hsch then
cns.exflag < none
return error_decryption_failure
end if
cns.exflag < session_established
10: return error_none
11: end procedure

N N A A

2.6 Session Keys, Ratcheting, and Rekeying

In both modes the KDF is realized by a cSSHAKE based construction that takes
as keying input the concatenation of one or two KEM secrets and uses the
session cookie as customization string. The output stream is parsed into sym-
metric keys and nonces for the RCS channels and an internal ratchet state rtcs.
The ratchet state is not used directly as an encryption key but is instead stored
as a seed for future key derivation.

QSMP supports two forms of rekeying. A symmetric ratchet derives fresh keys
from the internal ratchet state and fresh randomness or derived material, up-
dating rtcs and replacing the RCS keys while preserving the same role assign-
ment for transmit and receive channels. An asymmetric ratchet, available in
Duplex mode, injects new asymmetric KEM secrets into the KDF along with
the existing ratchet state, providing stronger recovery from long-term key com-
promise. In both cases the previous RCS keys are erased once the new keys are
installed, and the ratchet state is updated in a one-way fashion so that past keys
cannot be reconstructed.

2.6.1 Asymmetric Ratchet Integration in Duplex Mode

In Duplex mode the asymmetric ratchet is represented at the key exchange
layer by the persistent remote verification key field rverkey in the client and
server Duplex key exchange states. The key exchange code never generates
or updates rverkey itself; instead it relies on an external key_query interface
(on the server side) or higher level configuration (on the client side) to pro-
vide the current remote verification key. The presence of the compile time
flag QSMP_ASYMMETRIC_RATCHET controls whether rverkey is cleared when a

27

Duplex state is reset. When the flag is enabled, the remote verification key
persists across key exchange resets and thus can be advanced by an external
ratchet mechanism without being erased by QSMP’s key exchange layer.

The same rverkey value is:

« used in the Duplex session cookie hash schash on both client and server,
and

« used as the verification key for Duplex connect and exchange signatures.

The following pseudo-code extracts the asymmetric ratchet relevant parts of
the Duplex key exchange implementation in kex. c.

Duplex client ratchet sensitivereset. The Duplexclient reset function clears
all local key exchange state. When the asymmetric ratchet is disabled, it also
clears the stored remote verification key rverkey. When the asymmetric ratchet
flag is enabled, rverkey is left untouched so that it can persist across sessions
and be updated only by the external ratchet logic.

Algorithm 13 Duplex.ClientRatchetAwareReset

1: procedure DUPLEXCLIENTRATCHETAWARERESET(KcS)
2: clear kcs.keyid over QSMP_KEYID SIZE

3: clear kcs.schash over QSMP_DUPLEX_SCHASH_SIZE

4. clear kes.prikey over QSMP_ASYMMETRIC PRIVATE KEY SIZE

5. clear kcs.pubkey over QSMP_ASYMMETRIC PUBLIC KEY SIZE

6: clear kcs.verkey over QSMP_ASYMMETRIC _VERIFY KEY SIZE

7: clear kcs.sigkey over QSMP_ASYMMETRIC_SIGNING_KEY SIZE

8: clear kcs.ssec over QSMP_SECRET _SIZE

9: if QSMP_ASYMMETRIC_RATCHET is not defined then
10: clear kes.rverkey over QSMP_ASYMMETRIC_VERIFY KEY SIZE
11: end if
12: kcs.expiration < 0

13: end procedure

Duplex server ratchet sensitive reset. The Duplex server reset routine mir-
rors the client behavior. All local server key exchange state, including its own
long-term verification key, is cleared. The remote verification key rverkey is
only cleared when the asymmetric ratchet is disabled. With the ratchet flag
enabled, rverkey persists so that a higher layer ratchet mechanism can retain
and evolve the peer’s verification key across sessions.

28

Algorithm 14 Duplex.ServerRatchetAwareReset

1: procedure DUPLEXSERVERRATCHETAWARERESET(KsS)

2 clear kss.keyid over QSMP_KEYID SIZE
clear kss.schash over QSMP_DUPLEX SCHASH_SIZE
clear kss.prikey over QSMP_ASYMMETRIC PRIVATE KEY SIZE
clear kss.pubkey over QSMP_ASYMMETRIC_PUBLIC KEY SIZE
clear kss.sigkey over QSMP_ASYMMETRIC_SIGNING KEY SIZE
if QSMP_ASYMMETRIC_RATCHET is not defined then

clear kss.rverkey over QSMP_ASYMMETRIC_VERIFY KEY SIZE

end if
10: clear kss.verkey over QSMP_ASYMMETRIC_VERIFY KEY SIZE
11: kss.expiration < 0
12: end procedure

L XN U R W

Client side ratchet binding into the Duplex cookie. When preparing a
Duplex connect request, the client binds the current remote verification key
rverkey into the Duplex session cookie hash. This hash schash is later used as
the customization input to cSHAKE for channel key derivation. As a result,
changing rverkey (for example by advancing an asymmetric ratchet at a higher
layer) will change the derived session keys even if other parameters remain
fixed.

Algorithm 15 Duplex.ClientCookieHashWithRatchet
1: procedure DUPLEXCLIENTCOOKIEHASHWITHRATCHET(KcS)
2: clear kcs.schash over QSMP_DUPLEX_ SCHASH_SIZE
: initialize SHA3 state K

3
4 update K with QSMP_CONFIG_STRING over QSMP_CONFIG_SIZE

5: update K with kcs.keyid over QSMP_KEYID SIZE

6: update K with kcs.verkey over QSMP_ASYMMETRIC_VERIFY KEY SIZE
7. update K with kcs.rverkey over QSMP_ASYMMETRIC_VERIFY KEY SIZE
8: finalize K into kcs.schash over QSMP_DUPLEX_ SCHASH_SIZE

9: end procedure

Server side ratchet binding and lookup. On the server side, the key ex-
change layer does not construct rverkey directly. Instead it calls the configured
key_query interface with the incoming key identity. That interface is respon-
sible for loading the current remote verification key for the client, which may
have been advanced by an asymmetric ratchet. Once rverkey has been loaded,
it is used both to verify the client signatures and to build the Duplex session

29

cookie hash with the same ordering of fields as on the client.

Algorithm 16 Duplex.ServerLoadRatchetKeyAndCookieHash

1: procedure DUPLEXSERVERLOADRATCHETKEYANDCOOKIEHASH(KSS,

R IR A

o N Gy S
whk R

16:

pkid)

if kss.key_query(kss.rverkey, pkid) = false then
return error_invalid_input
end if
t < now()
if t > kss.expiration then
return error_key_expired
end if
clear kss.schash over QSMP_DUPLEX SCHASH_SIZE
initialize SHA3 state K
update K with QSMP_CONFIG_STRING over QSMP_CONFIG_SIZE
update K with kss.keyid over QSMP_KEYID SIZE
update K with kss.rverkey over QSMP_ASYMMETRIC VERIFY KEY SIZE
update K with kss.verkey over QSMP_ASYMMETRIC VERIFY KEY SIZE
finalize K into kss.schash
return error_none

17: end procedure

Use of ratchet key in Duplex signature verification. In Duplex mode all
client and server signatures in the connect and exchange stages are verified un-
der the current remote verification key rverkey. When the asymmetric ratchet
flag is enabled and rverkey is updated externally, the key exchange layer im-
plicitly starts using the new ratcheted public key without any further changes.
The following pseudo-code illustrates the verification pattern used in kex. c.

Algorithm 17 Duplex.VerifyWithRatchetKey

1: procedure DUPLEXVERIFYWITHRATCHETKEY(kxs, packet, khash)

2:
3:

4
5
6:
7
8
9:

slen <0
mlen «— QSMP_ASYMMETRIC SIGNATURE SIZE +

QSMP_DUPLEX_HASH_SIZE

ok « SignatureVerify(khash, slen, packet.pmessage, mlen, kxs.rverkey)
if ok = false then
return error_authentication_failure
end if
return error_none

end procedure

30

2.6.2 Symmetric Ratchet State Generation

QSMP uses a simple symmetric ratchet that is initialized during the key ex-
change. In both Simplex and Duplex modes, the key exchange derives the
initial transmit and receive keys from a cSHAKE instance, then permutes the
internal Keccak state and copies part of that state into the connection state
field cns->rtcs. This stored value does not equal any active channel key, and
isintended to serve as the seed for future symmetric rekeying operations at the
channel layer.

In the Simplex case the cSHAKE instance is keyed with the Simplex KEM se-
cret and Simplex session cookie hash. In the Duplex case it is keyed with the
pair of Duplex KEM secrets and the Duplex session cookie hash. The number
of squeezed blocks and the symmetric key size constants follow kex . ¢ exactly,
and the ratchet seed always has size

QSMP DUPLEX SYMMETRIC KEY SIZE.

Simplex symmetric ratchet seed. In Simplex mode, the symmetric ratchet
seed is generated on both the client and the server immediately after the Sim-
plex channel keys and nonces have been derived from the KEM secret and the
Simplex session cookie hash. The implementation initializes a cSHAKE in-
stance with the shared secret ssec and the Simplex cookie hash schash, squeezes
two rate sized blocks into a local buffer prnd, permutes the Keccak state one
more time so that the current channel keys are not directly stored, and then
copies the first QSMP_DUPLEX_SYMMETRIC_KEY_SIZE bytes of the internal Kec-
cak state into cns->rtcs. The buffer prnd is then split into the Simplex trans-
mit and receive keys and nonces as described in the Simplex handshake pseudo-
code.

31

Algorithm 18 Simplex.SymmetricRatchetSeed

: procedure SIMPLEXSYMMETRICRATCHETSEED(ssec, schash, cns)

2 initialize Keccak state K

3 allocate prnd[2 - QSC_KECCAK_256_RATE] as zero bytes

4: // cSHAKE initialization: k = H(ssec, schash)

5 cSHAKE.Init(K,rate = gsc_keccak_rate_256,key = ssec,custom =
schash)

[

6: securely clear ssec

7: // generate two rate blocks of key material

8: cSHAKE.SqueezeBlocks(K,rate = qgsc_keccak_rate 256,out =
prnd, blocks = 2)

o: // permute so the stored state does not equal current keys

10: KeccakPermute(K)

11: // copy next ratchet seed from internal state

12: rtcs « K.state[0 : QSMP_DUPLEX_ SYMMETRIC KEY SIZE]
13: cns.rtcs « rtcs

14: // caller splits prnd into tx/rx keys and nonces
15: derive Simplex tx and rx keys and nonces from prnd as in kex.c
16: securely clear prnd

17: end procedure

In the reference implementation this logic appears in both the Simplex client
exchange request handler and the Simplex server exchange response handler,
with identical ordering of cSHAKE initialization, squeezing, permutation, and
the cns->rtcs update.

Duplex symmetric ratchet seed. In Duplex mode the symmetric ratchet
seed is generated on both sides after both KEM secrets seca and secb have been
established and before the Duplex transmit and receive channels are initial-
ized. The implementation initializes a cSHAKE instance with seca, secb, and
the Duplex cookie hash schash, squeezes three rate sized blocks into prnd, per-
mutes the Keccak state, and copies the first QSMP_DUPLEX_SYMMETRIC_KEY_ SIZE
bytes of the permuted state into cns->rtcs. The buffer prnd is then split into
the Duplex transmit and receive keys and nonces.

32

Algorithm 19 Duplex.SymmetricRatchetSeed

: procedure DUPLEXSYMMETRICRATCHETSEED(seca, secb, schash, cns)

2 initialize Keccak state K

3 allocate prnd[3 - QSC_KECCAK_512_RATE] as zero bytes

4: // cSHAKE initialization: k = H(seca, secb, schash)

5 cSHAKE.Init(K, rate = gsc_keccak_rate_512, key, = seca, custom =
schash, key, = secb)

[

6: securely clear seca and secb

7: // generate three rate blocks of key material

8: cSHAKE.SqueezeBlocks(K,rate = qgsc_keccak_rate 512,out =
prnd, blocks = 3)

o: // permute so the stored state does not equal current keys

10: KeccakPermute(K)

11: // copy next ratchet seed from internal state

12: rtcs « K.state[0 : QSMP_DUPLEX_ SYMMETRIC KEY SIZE]
13: cns.rtcs « rtcs

14: // caller splits prnd into tx/rx keys and nonces
15: derive Duplex tx and rx keys and nonces from prnd as in kex. c
16: securely clear prnd

17: end procedure

On the Duplex client side, this sequence appears in the handler that processes
the server exchange response and prepares the establish request. On the Du-
plex server side, the same pattern appears in the handler that processes the
client exchange request and prepares the exchange response. In both cases
the ratchet seed stored in cns->rtcs is independent of the active channel keys,
since the state is permuted after the key bytes have been extracted into prnd.

2.7 Channel Protection and Packet Processing

All application data is carried in packets that use the encrypted message flag in
the header. For each outbound packet, the sender constructs the header with
the appropriate flag, the current sequence number, the length of the plaintext,
and the current UTC time. The header is serialized into a fixed length byte
array and set as associated data for the RCS cipher. The sender then encrypts
the plaintext and computes the authentication tag as part of the RCS transform,
producing a ciphertext that occupies the message body. The transmit sequence
counter is incremented after the packet is sent.

On reception, the peer deserializes the header and validates that the flag is
an encrypted message, that the message length is within bounds, that the se-

33

quence number equals the current receive sequence counter, and that the times-
tamp lies inside the acceptable time window. It serializes the header to a byte
array and sets it as associated data on the receive cipher. If decryption and
tag verification succeed, the plaintext is delivered to the application and the
receive sequence counter is incremented. Any failure in header validation or
authentication results in an error and session teardown. Sequence numbers
are monotonically increasing and are never reused within a session. Times-
tamps are interpreted relative to a configured deviation window; packets with
times too far in the past or future are rejected even if authentication succeeds.
This coupling of sequence numbers and timestamps to the AEAD associated
data provides replay and reordering resistance under the assumption that the
RCS channel meets standard AEAD security definitions.

Table 1: QSMP packet header fields and their security role.

Field Description Security purpose
flag Encodes the packet Binds the ciphertext to a specific
type, for example protocol stage, which prevents a
Simplex or Duplex ciphertext that was valid in one
handshake step, data, stage from being replayed as a dif-
keep alive, or error. ferent kind of packet without fail-
ing AEAD verification.
sequence Monotonically in- Detects replay and reordering
number creasing counter within a session, since packets
maintained per direc- with reused or unexpected se-
tion and incremented quence numbers are rejected by
for every packet sent the receiver.
on that direction.
payload Length of the en- Protects framing of the encrypted
length crypted payload in stream. Any truncation or exten-
bytes as seen by the sion of the ciphertext changes the
sender. authenticated header and causes
the AEAD tag check to fail.
timestamp Sender supplied UTC Enables enforcement of a time

time value associated
with the packet.

window for packet validity and
detection of stale or excessively
delayed packets, under the clock
skew assumptions in the model.

Table 1 makes explicit how each header field contributes to the channel secu-
rity properties described in Section 2.7. The serialized header is always sup-

34

plied as associated data to the RCS AEAD, so any successful modification of
these fields without detection would imply a break of RCS integrity.

2.8 Error Handling, Time Validation, and Session Teardown

QSMP defines a set of error conditions that cover invalid input, key expira-
tion, header validation failures, authentication failures, decapsulation failures,
message time violations, sequence mismatches, and internal allocation fail-
ures. When a handshake function detects an error it constructs an error packet
where the message body carries encrypted error code and diagnostic informa-
tion, and it sends this packet with an error flag set in the header. After send-
ing the error packet, both endpoints close the underlying transport connec-
tion and erase all connection state, including RCS keys, ratchet state, and any
ephemeral secrets.

Time validation is enforced whenever a packet is received. The implementa-
tion compares the timestamp in the header to the current local time and rejects
packets whose time difference exceeds a configured limit. In the handshake
this prevents reuse of stale handshake messages. In the data phase it limits
the window in which replayed packets can be accepted even if their sequence
numbers match the expected value.

Keep alive behavior is modeled as an application level policy that periodically
sends empty or minimal payload packets over an established session. These
packets use the same encryption and authentication rules as normal applica-
tion data and are subject to the same sequence and time validation. Failure to
receive packets within a deployment specific timeout or repeated reception of
invalid packets is treated as a signal that the session is no longer usable, and
the implementation tears down the connection and clears all associated state.

3 Formal Protocol Specification

This section formalizes the behavior of QSMP as an abstract protocol executed
between a client role C and a server role S. The specification is aligned with
the engineering description but expressed in symbolic terms suitable for later
definitions and proofs. All cryptographic primitives are treated as idealized
interfaces, and all processing steps correspond to the logical behavior of the
reference implementation.

35

3.1 Notation and Conventions

Let {0, 1}"* denote the set of bitstrings of length n. Concatenation of bitstrings

is written as x || y. For a finite set X, x i X denotes uniform sampling. For a
probabilistic experiment Exp, Pr[Exp = 1] denotes its success probability.
Roles are C for client and S for server. Each party may maintain multiple ses-
sions indexed by a local session identifier sid. A session is created whenever a
party receives or generates a message that starts a handshake in either Simplex
or Duplex mode. The set of all sessions at party P is denoted Sp.

Each party maintains a local clock returning a value timep € N. QSMP times-
tamps appear as integers in a fixed format and must satisfy a validity predicate

ValidTime(t, timep) = 1

if and only if the deviation |t — timep| is below a protocol defined threshold.
A packet header is a tuple

H = (flag, msglen, seq, t),

and its serialized byte representation is written [H]. The associated message
body is written M. The entire packet is then the pair (H, M).

The protocol references the following cryptographic interfaces:
+ A KEM with algorithms (KGen, Enc, Dec).
+ A signature scheme with algorithms (SigGen, Sign, Verify).
« A collision resistant hash function H(-).

A cSHAKE based key derivation function KDF(-).

« An AEAD channel RCS with Enc and Dec, each taking associated data
AD = [H].
3.2 Execution Model and Sessions

The protocol is executed in a multi-session environment with a single adver-
sary controlling all network communication. The adversary may schedule ac-
tivations of parties through a set of oracles defined later, and may deliver, mod-
ify, drop, or reorder packets arbitrarily.

Each party P € {C, S} maintains local state for each active session:

op,sia = (mode, txseq, rxseq, cfg, kid, svk, ratchet, ky, kyx., Ny, yy),

where:

36

« mode € {Simplex, Duplex},

+ txseq, rxseq € N are sequence counters,

« cfgis the configuration string bound into the session,
« kid is the peer key identity,

« svk is the peer verification key,

 ratchet is the current ratchet state,

o Ky, ky and ngy, n,., are the transmit and receive keys and nonces for the
AEAD channel.

Sessions begin in the initiated state and progress through the handshake stages
described below. A session is considered accepted at a party once it has derived
its session keys. A session is established when both parties reach acceptance.

3.3 Message Flows for Simplex Mode

The Simplex handshake consists of three ordered symbolic messages exchanged
between client C and server S:

1. Connect request. The client sends:
C — S : (CR,kid, cfg).
Upon sending, the client computes the Simplex session cookie

schg = H(cfg || kid || svkg).

2. Connect response. The server generates an ephemeral KEM key pair
(pk, sk) and a transcript hash

h= H([[Hresp]] Il pk),

and replies with:
S — C : (CRsp, pk, Signg(h)).

The server computes the same cookie schg.

37

3. Exchange request. The client verifies the signature, encapsulates to ob-
tain (cpt, sec) = Enc(pk), and computes:

(ktxs Niys Kpys Ny) = KDF(sec, schg).

The client sends:
C — S : (EX,cpt).

The server decapsulates sec = Dec(sk, cpt) and derives the same symmetric
keys.
At this point the session is established.

3.4 Message Flows for Duplex Mode

The Duplex handshake consists of a connect stage, an exchange stage, and
an establish stage. Both roles possess long-term signing keys and verify each
other’s ephemeral contributions.

Let pvk and pvkg denote the long-term verification keys of client and server.
Define the Duplex session cookie:

schp = H(cfg || kid || pvke || pvkg).

1. Client connect request. The client samples an ephemeral KEM key pair
(pk¢s ske) and computes

he = H([[Hreq]] |l pke)-

It sends:
C — S : (CR,kid, cfg, pke, Sign-(hc)).

2. Server connectresponse. The server samples its ephemeral pair (pkg, sks),
verifies the client signature, computes

hg = H([[Hresp]] 1 ka),

and sends:
S — C : (CRsp, pkg, Signg(hg)).

38

3. Exchange. Both parties perform two KEM operations so that each obtains
a pair of secrets (secy, sec,):

Dec(skc, cpt;) client side, Enc(pkg) client side,
SECy = ec, =
! Enc(pke) server side, 2 Dec(skg,cpt,) server side.
The unified KDF computes:

(Ktx> Pixs Kpys py) = KDF(secy, schp, sec,).

4. Establish. The client encrypts the cookie:
C — S : (EST, Ency, (schp)).
The server decrypts and checks equality. If valid, it returns:
S — C : (ESTR, Ency, (H(schp))).

Upon matching, the client and server mark the session as established.

3.5 Partnering and Session Matching
Two sessions (P, sid) and (P’, sid") are partners if:
1. They run in opposite roles P # P’,
2. They derive the same session cookie sch,
3. They derive the same session keys k;y, Kyx, Bt x> s

4. Their transcripts correspond to the same ordered handshake messages.

In Simplex, partnering is defined only for the client side because the server
does not authenticate an identity for the client. In Duplex, partnering is sym-
metric.

3.6 Adversarial Interface and Oracles

The adversary controls all communication and interacts with the protocol through
the following oracles:

+ Send(P,sid, m): delivers message m to session (P, sid). The protocol may
generate a response packet.

39

+ RevealState(P, sid): returns the local state op g4 except for ephemeral
secrets that have already been erased.

+ RevealKey(P, sid): returns the session keys for (P, sid) if the session is
accepted.

+ CorruptLongTerm(P): returns the long-term signing key for party P.

« TamperHeader(H): allows the adversary to propose altered header val-
ues, constrained by validity of timestamps and sequence numbers.

+ Deliver(m): delivers an arbitrary packet constructed by the adversary to
any party.

The adversary cannot violate the local time validity predicate or force a session

to accept a packet with an invalid timestamp or sequence number. All AEAD

decryption operations are carried out with the serialized header as associated
data, and decryption failures terminate the session.

40

Table 2: Adversarial oracles in the QSMP security model.

Oracle Arguments Informal purpose
Send Session identi- Gives the adversary active control of the
fier, message network. The adversary can inject, mod-

ify, and deliver messages to any local
session and observe the resulting out-
puts.

Reveal Accepted session Returns the session key of an accepted
session. Models post establishment key
compromise and is used to define fresh-
ness in the key indistinguishability ex-
periments.

Corrupt Party identifier =~ Returns the long-term secret key mate-
rial for that party and marks it as cor-
rupted. Models full compromise of an
identity and is used in the forward se-
crecy and authentication definitions.

Test Fresh accepted Returns either the real session key or a

session random key of the same length, depend-
ing on a hidden bit. Defines the key in-
distinguishability advantage of the ad-

versary.
Encrypt Session, header, Uses the established transmit key of the
plaintext session to produce an RCS ciphertext

and tag under the supplied header as as-
sociated data. Models chosen plaintext
access to the channel.
Decrypt Session, header, Uses the established receive key of the
ciphertext, tag session to decrypt the ciphertext under
the supplied header as associated data.
Returns either the plaintext or a distin-
guished failure symbol and models cho-
sen ciphertext access to the channel.

Table 2 collects the adversarial interface defined in Section 3.6 into a single
view. It summarizes which inputs each oracle accepts and which aspect of
protocol or channel compromise it is intended to model in the subsequent se-
curity definitions and proofs.

41

4 Security Definitions

This section formalizes the security properties that QSMP aims to achieve. All
definitions are stated within the multi-session execution model introduced ear-
lier, with a single probabilistic polynomial time adversary controlling all net-
work scheduling, message delivery, and corruption operations. Each security
notion is expressed as an experiment whose advantage is the adversary’s prob-
ability of causing a violation.

4.1 Simplex Authentication of the Server

Simplex mode provides one way authentication. The client authenticates the
server, but the server does not authenticate the client and does not attempt to
associate an identity with the initiator. This asymmetry must be reflected in
the authentication experiment.

Let ExpngJ'\TAS :gﬁ\éﬁEX (A) be the experiment where the adversary interacts with

the client and server oracles. The experiment outputs 1 only if:

1. The client session (C, sid) reaches acceptance with a derived transcript,
cookie, and session keys.

2. No honest server session produces a compatible transcript. That is, there
exists no (S, sid") whose session cookie and transcript match those of
(C,sid).

3. The adversary has not corrupted the server’s long-term signing key prior
to the acceptance of (C, sid).

The adversary’s advantage in breaking Simplex client side authentication is
defined as:
QSMP-SIMPLEX QSMP-SIMPLEX
AdVaiTh-cuent (A) = PrExpagri-clent (A =1].

There is intentionally no corresponding AUTH-SERVER definition for Sim-
plex, since the server does not establish any authenticated client identity. Any
attempt by the server to attribute a unique partner identity to the client in Sim-
plex is outside the intended security model.

4.2 Duplex Mutual Authentication

In Duplex mode both parties authenticate each other’s long-term verification
keys. Let a session (P, sid) be accepted if it reaches the established state with
derived keys and cookie schp.

42

The experiment Expga'\TAHP "PUPLEX (4 outputs 1 if:

1. An accepted session (P, sid) exists at some party P.
2. There is no accepted partner session (P, sid") at the peer such that:

hP,sid_ hP’,sid’
SC D = SC D

3. The adversary has not corrupted either party’s long-term signing key be-
fore both sessions finish their respective connect stages.

The adversary’s mutual authentication advantage is:

QSMP-DUPLEX QSMP-DUPLEX
Adv, T (A) = Pr[EprUTH (A) = 1].

4.3 Key Indistinguishability

Key indistinguishability (KI) captures the confidentiality of the derived ses-
sion keys with respect to an adversary who may schedule sessions, observe all
transcripts, and corrupt long-term keys after the handshake. The Duplex key
derivation combines two independent IND CCA secure Kyber secrets, produc-
ing a KDF input of length 512-bits. Under cSHAKE_512 extraction, the result-
ing RCS-512 keys inherit a security level corresponding to the joint entropy of
both shared secrets.

The KI experiment Exp%SMP(A) proceeds as follows:

1. The adversary activates parties and may cause them to complete hand-
shakes in Simplex or Duplex mode.

2. At most once, the adversary issues a challenge query Test(P, sid) to an
accepted session that has not had its session keys revealed.

3. The experiment samples arandom bitb € {0, 1}. If b = 0, the experiment
returns the real session keys (k;y, k,); if b = 1, it returns uniformly
random keys of equal length.

4. The adversary continues interacting and finally outputs a guess b'.

The advantage is:
AdvoMP(A) = |Pr[b’ = b] - §|.

The experiment implicitly captures both Simplex and Duplex modes, because
the source of the keying material (one or two KEM secrets) and the applicable
long-term key compromise constraints differ between modes.

43

and k;y, k., sy, Ny match up to the role permutation.

4.4 Forward Secrecy in Simplex and Duplex

Forward secrecy (FS) is defined relative to long-term key compromise events
that occur after a session has completed. Since the Simplex client has no long-
term key, FS in Simplex is meaningful only with respect to compromise of the
server’s long-term signing key. In Duplex, both parties possess long-term sign-
ing keys whose compromise affects future authentication but should not reveal
past session keys.

QSMP

Let Expgg

(A) be the experiment:

1. The adversary causes a session (P, sid) to accept and then issues
CorruptLongTerm(P) against the corresponding role(s) after acceptance.

2. The adversary issues a Test(P, sid) query on that session.

3. The experiment responds using the same random bit technique as in the
KI experiment.

The FS advantage is:
AdvIMP(A) = |Pr[b’ = b] - §|.

In Simplex mode this captures secrecy of the client derived session key un-
der post compromise leakage of the server’s long-term signing key. In Duplex
mode this captures secrecy under compromise of either party’s long-term sign-
ing key, provided the compromise occurs after the connect stage.

4.5 Channel Confidentiality and Integrity

Channel security is defined using the AEAD security of the RCS encrypted
channel. Every encrypted packet has the form (H, C) with associated data
AD = [H], where the header contains seq and ¢t which enforce ordering and
time based freshness.

Confidentiality experiment. In EXp(CQa,'XII\IT—CONF(A)’ the adversary may:

« Query encryption of chosen plaintexts under chosen headers, with the
restriction that it cannot cause tag verification failures or reveal session
keys.

« Issue a single TestChan query for an unopened session, receiving either
the real ciphertext or a random ciphertext of equal length.

The advantage is defined as usual by the adversary’s ability to distinguish the
two cases.

44

Integrity and replay resistance. In Exp?ﬁ'\AANP_INT(A), the adversary attempts
to produce a forged packet (H*, C*) such that:

1. The receiver’s time validation predicate accepts H*.

2. The sequence number in H* matches the receiver’s expected sequence.
3. The RCS decryption and tag verification succeed.
4

. The adversary did not previously obtain an encryption of the same header
body pair.

Replays and reorderings necessarily violate the integrity condition because the
sequence number is included in the associated data. Any successful forgery
corresponds to an INT-CTXT forgery against the underlying AEAD scheme.

4.6 Ratcheting and Post Compromise Guarantees

For Duplex mode, QSMP supports asymmetric and symmetric ratchets. The
ratchet state is a one way evolving value ratchet; derived from the KDF output
and any injected KEM secrets.

Define the post compromise experiment Expgz’g/I P(A):

1. The adversary compromises the long-term signing key of a party and
observes ciphertexts under current session keys.

2. The adversary triggers a ratchet update by causing the party to execute
a rekeying operation.

3. The adversary issues a challenge query on the keys derived after the
ratchet update.

The PCS advantage is:

QSMP 1
Advpls (A) = |Pr[b’ = b] — 5|.
This definition models the ability of the protocol to recover confidentiality af-
ter compromise, assuming fresh asymmetric or symmetric entropy is injected
into the KDF during ratcheting. Past keys remain unrecoverable because the
ratchet state evolves in a one way fashion.

45

5 Assumptions on Cryptographic Primitives

QSMP relies on four classes of cryptographic primitives: a post-quantum key
encapsulation mechanism, a post-quantum digital signature scheme, a hash
and extendable output family, and a permutation based authenticated encryp-
tion channel. This section states the assumptions made about each primitive
in the security analysis. These assumptions are standard and correspond to
the security definitions under which the underlying constructions have been
formally analyzed.

5.1 KEM Security

QSMP uses a post quantum key encapsulation mechanism (KGen, Enc, Dec) to
derive one or more shared secrets during the handshake. The analysis assumes
that the KEM satisfies indistinguishability under adaptive chosen ciphertext
attack (IND CCA). Formally, for any probabilistic polynomial time adversary
A, the KEM advantage is

KEM KEM 1
Advinp-cca(A) = |Pr[EXp|ND_CCA(A) =1] - >

b

and this advantage is assumed to be negligible. The reductions for both Sim-
plex and Duplex key indistinguishability rely on this assumption, since the
KEM shared secrets are the primary source of entropy fed into the key deriva-
tion function.

5.2 Signature Scheme Security

QSMP uses a post quantum digital signature scheme (SigGen, Sign, Verify) to
authenticate ephemeral key material and bind handshake transcripts to long-
term identities. The analysis assumes that the signature scheme provides ex-
istential unforgeability under chosen message attack (EUF CMA). For any ad-
versary A, the advantage in producing a forgery is

SIG SIG
AdVEUF—CMA(A) = PF[EXpEUF_CMA(A) =1],

and this must be negligible. In Simplex mode this guarantees that an adver-
sary cannot impersonate the server identity. In Duplex mode it guarantees
that neither party can be impersonated during the connect stage and that both
signatures binding the ephemeral public keys are unforgeable.

46

5.3 Hash and KDF Assumptions

QSMP uses the SHA3 hash function and the cSHAKE extendable output con-
struction for transcript binding, session cookie computation, and key deriva-
tion. The security analysis makes the following assumptions.

Collision resistance. The hash function H(-) used for transcript hashing
and session cookie computation is assumed to be collision resistant. That is,
for any adversary A,

AdvEL(A) = Pr[A finds x # x’ with H(x) = H(x")]

isnegligible. This ensures that the transcript hash and session cookies uniquely
bind the handshake fields and long-term verification keys.

Random oracle or indifferentiability style behavior. The analysis requires
that the session cookie value sch be indistinguishable from a random value
unless the adversary produces a collision in the inputs. This is satisfied if SHA3
is treated either as a random oracle or as a sponge construction secure under
the indifferentiability framework.

cSHAKE as a randomness extractor and pseudo-random function. In
both Simplex and Duplex modes, the KDF is realized by cSHAKE with the
KEM secret(s) as keying input and the session cookie as customization string.
The analysis assumes that cSHAKE extracts pseudo-random bits from any in-
put of high min entropy and that its output is computationally indistinguish-
able from uniform. Formally, for any adversary A,

Advpre (4) = |PrA(KDF()) = 1] - Pr[A(U) = 1]|
is negligible, where U is a uniformly random function sampled from the ap-
propriate domain. This assumption is standard for Keccak based extendable
output functions and is required for the key indistinguishability and forward
secrecy proofs.

5.4 RCS Channel Security

QSMP uses an RCS based authenticated encryption channel to protect all ap-
plication data and the encrypted portions of the Duplex establish stage. The
RCS construction is modeled as an authenticated encryption with associated
data (AEAD) scheme. The analysis assumes both confidentiality and integrity
under chosen ciphertext attack.

47

Confidentiality. For any adversary A, the AEAD confidentiality advantage

1S

RCS RCS
AdVIND—CPA(A) = |Pr[EXp|ND-cpA(A) =1]

and this is assumed negligible. This guarantees that encrypted packets reveal
no information about their plaintexts, even under adaptive queries.

1

b

Integrity. RCS must also satisfy ciphertext integrity. For any adversary A,

RCS RCS
AdviNT-cTxT(A) = Pr[EXme-CTXT(A) =1]

is assumed negligible. Because sequence numbers, timestamps, and message

lengths are included in the associated data for all encrypted packets, a success-

ful forgery includes replay and reordering attempts, which reduce directly to

a violation of AEAD integrity.

Together, these assumptions form the cryptographic foundation on which the
QSMP security analysis is constructed. All reductions in later sections invoke
only these primitive level properties.

6 Simplex Security Proofs

In this section we analyze the security of QSMP in Simplex mode. The client
authenticates the server, derives a session key from a single KEM secret and
a binding hash of public configuration data, and initializes a unidirectional
encrypted channel. The server does not authenticate a client identity, so the
Simplex authentication guarantee is explicitly one sided.

6.1 Client Authentication in Simplex

Recall the Simplex client authentication experiment Expgaxﬁ:gfﬁﬁfx (A) de-

fined in the security definitions. The adversary succeeds if it causes an honest
client session to accept without a corresponding honest server partner session,
under the constraint that the server’s long-term signing key is not corrupted
before that acceptance.

Theorem 6.1 (Simplex client authentication). Let A be any probabilistic poly-
nomial time adversary attacking Simplex client authentication. Then there exists
an adversary B against the underlying signature scheme such that

QSMP-SIMPLEX SIG
AV Grh-cLienT | (A) < AdVEyE-cma(B) + negl(2),

where A is the security parameter and negl denotes a negligible function.

48

Proof sketch. We describe a reduction from any successful Simplex client au-

thentication attack to a forgery against the server’s signature scheme.

Assume that A succeeds in Expgagﬁ:giﬁﬁI{EX(A) with non-negligible probabil-

ity. Consider the first client session (C, sid) that accepts without a matching
server partner session. By definition of acceptance, this session must have:

« received a connect response containing an ephemeral KEM public key
pk and a signature o,

« verified o as valid on the transcript hash h = H([H,.sp] || pk),
« proceeded to the exchange stage using pk.

Since there is no matching honest server session, this signature was not pro-
duced by the honest server’s signing algorithm on this transcript. Hence, the
pair (h, o) constitutes a valid existential forgery for the signature scheme, pro-
vided that the reduction can simulate all other protocol operations consistently
with the view of A.

Adversary B interacts with the EUF CMA challenger for the signature scheme
and simulates the QSMP environment for A. Whenever the protocol requires
a signature under the server’s key, B queries the signing oracle. When A pro-
duces an accepting Simplex client session without a partner server session, B
outputs the corresponding (h, o) as its forgery. The only subtlety is that header
fields and ephemeral keys enter the transcript hash. The simulation ensures
that these values are honestly generated or relayed, so the forgery is nontrivial.
The reduction overhead is polynomial in the running time of A, and the proba-
bility that B outputs a valid forgery is at least the probability that A wins the au-
thentication experiment minus a negligible term that accounts for abort events
in the simulation. This yields the stated bound. O

The theorem shows that Simplex provides client side authentication of the
server under the EUF CMA security of the server’s signature scheme. The
server side property is intentionally weaker, since the protocol does not at-
tempt to authenticate a client identity in Simplex.

6.2 Key Indistinguishability in Simplex

We next show that under the IND CCA security of the KEM and the pseudo-
randomness of the cSHAKE based KDF, the Simplex session keys are indistin-
guishable from random in the presence of an active adversary who controls
the network and may schedule many concurrent handshakes.

49

Theorem 6.2 (Simplex key indistinguishability). Let A be any probadbilistic poly-
nomial time adversary in the Simplex key indistinguishability experiment. Then
there exist adversaries B; and B, such that

AdvMPSIMPLEX (1) < AdviSioncca(By) + Advige (By) + negl(A).

Hybrid proof sketch. We consider a sequence of hybrid games transitioning from
the real Simplex execution to an ideal execution in which the test session keys
are uniform.

Game G,. This is the real key indistinguishability experiment. The adver-
sary interacts with honest parties running Simplex, may adaptively corrupt
long-term keys subject to the usual constraints, and issues a single Test query
on an accepted session. The test session returns either the real keys or random

keys according to a hidden bit b. The adversary’s advantage in distinguishing

the two cases is AdeISMP'SIMPLEX(A).

Game G,. In G; we modify how the KEM secret sec is obtained for the test
session. Instead of using the real encapsulation and decapsulation algorithms,
we embed an IND CCA KEM challenge. When the test session is created, the
reduction obtains a challenge ciphertext and one of two possible secrets from
the KEM challenger, and uses these in place of (cpt, sec). All other KEM oper-
ations are simulated honestly.

If A can distinguish G, from G; with nonnegligible probability, then we build
B; that distinguishes real KEM secrets from random in the IND CCA experi-
ment by using A’s decision as its own. Hence

|Pr(Go =1] = Pr[G; =1]| < AdV:T\IEDMCCA(Bl)-

Game G,. In G, we replace the output of the KDF on the challenge KEM
secret and binding hash schg by uniform random keys of the same length. For
all non test sessions the KDF is evaluated honestly.

If the KDF behaves as a pseudo-random function on high entropy inputs, then
any difference in the adversary’s view between G; and G, can be used to con-
struct an adversary B, against the KDF. Therefore

PG, = 1] = Pr[G, = 1]| < Advir (By).

50

Game G;. In the final game we give the adversary direct access to uniformly
random keys as the response to the Test query for the challenge session. Since
in G, the keys used in the protocol are already uniform and independent of the
KEM secret from the adversary’s point of view, the distribution of transcripts
and ciphertexts in G, and G; is identical. Thus

Pr[G, = 1] = Pr[G; = 1].

In G; the adversary’s advantage is zero by construction, since the test session
keys are independent of the bit b. Combining the hybrid steps and applying
the triangle inequality yields the stated bound. O

6.3 Forward Secrecy for Simplex

We now consider forward secrecy in the sense defined previously. In Simplex
mode the client has no long-term key, so forward secrecy is meaningful only
relative to compromise of the server’s long-term signing key after a session
completes. The goal is to show that past Simplex session keys remain indis-
tinguishable from random even if the adversary later learns the server signing
key.

Theorem 6.3 (Simplex forward secrecy). Let A be any probabilistic polynomial
time adversary in the forward secrecy experiment for Simplex. Suppose that A
may corrupt the server’s long-term signing key at any time after the completion
of the target session. Then there exist adversaries B; and B, such that

Adv%3 MP_SIMPLEX(A) < Adv:f\,ED'\fcc A(B1) + AdvggFF (B,) + negl(d).

Proof sketch. The proof follows the structure of the key indistinguishability ar-
gument, with the additional complication that the adversary eventually learns
the server’s long-term signing key.

The crucial observation is that in Simplex mode the derived session key de-
pends only on the KEM secret and the binding hash of public values schg =
H(cfg || kid || svkg). Once the handshake completes and the session key is de-
rived, the server’s signing key no longer influences any future computations.
The KEM secret and the KDF output are not recomputed upon later key com-
promise.

We construct hybrids similar to those in the previous theorem, embedding the
KEM challenge in the target session and replacing the KDF output by uniform
keys. The corruption of the server signing key after the handshake completion
does not change the distribution of the KEM challenge or the KDF output. It

51

only allows the adversary to forge signatures on new transcripts, which does
not retroactively affect the already derived session key.

By the same reasoning as in the key indistinguishability proof, any advantage
in distinguishing the real session key from random in the forward secrecy ex-
periment can be translated into an advantage against the KEM or the KDF.
The post handshake corruption of the signing key does not provide additional
information about the KEM secret beyond what is captured by the standard
IND CCA model. This yields the stated bound. [

6.4 Discussion of Limitations in Simplex

The Simplex analysis above clarifies both the guarantees and the intentional
limitations of this mode.

First, authentication is strictly one sided. The client is guaranteed that any ac-
cepting Simplex session corresponds to a run with a server that holds the cor-
rect long-term signing key, except with probability bounded by the EUF CMA
advantage of the signature scheme. The server does not obtain any guarantee
about the identity or uniqueness of the client. Multiple clients can share the
same server verification key, and the server cannot distinguish honest clients
from active adversaries based solely on the Simplex handshake.

Second, forward secrecy is scoped to compromise of the server’s long-term
signing key and does not cover compromise of the KEM or the KDF. If the KEM
fails to provide IND CCA security or if the KDF fails to behave as a pseudo-
random extractor, an adversary might recover past session keys through struc-
tured attacks on the underlying primitives. These possibilities are ruled out
only under the stated assumptions.

Third, the Simplex mode does not provide any protection against misuse of
client side state or compromise of application level credentials. The crypto-
graphic analysis focuses on the confidentiality and authenticity of the trans-
port keys and the associated encrypted channel, not on higher layer authenti-
cation or authorization decisions.

Finally, the Simplex mode does not model or guarantee any notion of post
compromise recovery in the sense of advanced ratcheting schemes. Once the
server’s signing key is compromised, future Simplex sessions that rely on that
key are vulnerable to impersonation. Simplex therefore should be used in set-
tings where the server signing key is well protected or where higher layer mech-
anisms can detect and respond to compromise.

52

7 Duplex Security Proofs

In this section we analyze QSMP in Duplex mode. Both parties possess long-
term signing keys and verification keys, and both contribute ephemeral KEM
key pairs. The session keys are derived from two KEM secrets and a binding
hash of the configuration string and both long-term verification keys. Duplex
therefore provides mutual authentication and stronger resistance to certain
compromise patterns than Simplex, subject to the same primitive level assump-
tions.

7.1 Mutual Authentication in Duplex

Recall the experiment Expgfj'\TAS "PUPLEX(4) for Duplex mutual authentication.

The adversary succeeds if it causes an accepted session at one party without a
matching partner session at the peer, while not corrupting the relevant long-
term keys before both sides complete the connect stage.

Theorem 7.1 (Duplex mutual authentication). Let A be any probabilistic poly-
nomial time adversary in the Duplex mutual authentication experiment. Then
there exist adversaries B¢ and Bg against the client and server signature schemes
respectively such that

AdvgtsJ'\TAE_DUPLEX(A) < AdVEIUGF-CMA(BC) + AdVEIUGF-CMA(BS) + negl(A).

Proof sketch. The Duplex connect stage involves two signed messages. The
client sends a connect request containing an ephemeral public key and a sig-
nature over the transcript hash A, and the server sends a connect response
containing its own ephemeral public key and a signature over hg. Both hashes
bind the header fields, the configuration string, the key identity, and the ephemeral
key material.

Assume that A produces an accepted session at one party that has no matching
partner session at the other party. Consider the first such event in the execu-
tion.

If the unmatched session is at the client, then there must exist a connect re-
sponse whose signature verifies under the server’s verification key but which
does not correspond to any run of the server signing algorithm on the tran-
script observed by the client. This provides an existential forgery against the
server signature scheme. A reduction Bg simulates all other protocol behavior
for A using its signing oracle, and outputs the first such forged transcript hash
and signature pair.

53

If the unmatched session is at the server, the same reasoning applies to the
client signature scheme. An adversary B- embeds the client signing key pro-
vided by the EUF CMA challenger into the protocol simulation and uses any
valid server session that accepts without a matching client session to extract a
forgery against that scheme.
The probability that A wins the mutual authentication experiment is therefore
bounded by the sum of the EUF CMA advantages of B and Bg, plus negligible
terms for abort events in the simulation. This yields the claimed inequality.
O

7.2 Key Indistinguishability in Duplex

We now turn to key indistinguishability in Duplex mode. The main difference
from Simplex is that the session keys are derived from two KEM secrets and
a shared binding hash. This provides additional entropy and robustness, but
the proof approach is similar, using a series of hybrids that reduce to IND CCA
security of the KEM and pseudo-randomness of the KDF.

Theorem 7.2 (Duplex key indistinguishability). Let A be any probabilistic poly-
nomial time adversary in the Duplex key indistinguishability experiment. Then
there exist adversaries By, B, against the KEM and B; against the KDF such that

AdveeMPPUPLEX (4 < AdvinorccaBr)+AdVINDcea(Ba)+Advige (Bs)-+negl(2).

Hybrid proof sketch. We define a sequence of games.

Game G,. This is the real Duplex key indistinguishability experiment. The
adversary interacts with honest parties, may cause many Duplex sessions to
complete, and selects one accepted session for the test query.

Game G;. In G; we embed an IND CCA challenge for the first KEM secret
sec; of the test session. Instead of computing (cpt,, sec;) using the real KEM
algorithms, the reduction obtains an IND CCA challenge ciphertext and one
of two possible secrets from the KEM challenger. All other KEM operations
are carried out honestly. If A can distinguish G, from G,, we construct an
adversary B; that wins the KEM IND CCA game.

54

Game G,. In G, we similarly embed an IND CCA challenge for the second
KEM secret sec, of the test session. The reduction uses the KEM challenger
output in place of the real encapsulation or decapsulation results for this secret.
All other operations are unchanged. Any distinguishability between G; and G,
yields an adversary B, against the KEM.

Game G;. In G5 we keep the challenge KEM secrets as in G, but replace the
KDF output for the test session by uniformly random keys of the same length.
Specifically, instead of computing

(ktx> Mixs Kpys Npy) = KDF(secy, schp, sec,),

we sample a tuple of keys and nonces from the uniform distribution. For all
non test sessions the KDF is evaluated honestly. Any distinguisher between G,
and G5 implies an adversary B; against the pseudo-randomness of the KDF.

Game G,. In the final game, the keys returned in response to the test query
are replaced by freshly sampled uniform keys that do not participate in any
encryption operation. The transcript distribution and all ciphertexts observed
by the adversary remain unchanged from G;, because the KDF outputs for the
test session were already uniform and independent. Therefore Pr[G; = 1] =
Pr[G, = 1] and the adversary’s advantage in G, is zero.

Combining the differences across games by the triangle inequality and apply-
ing the bounds provided by the KEM and KDF assumptions yields the stated
result.]

7.3 Forward Secrecy and Ratcheting in Duplex

Duplex mode supports both forward secrecy with respect to long-term key
compromise and post compromise recovery through ratcheting. After the ini-
tial handshake, new KEM secrets or symmetric inputs can be injected into the
KDF along with the ratchet state in order to derive new session keys while
erasing old ones.

Theorem 7.3 (Duplex forward secrecy and ratcheting). Let A be any proba-
bilistic polynomial time adversary in the forward secrecy and post compromise
security experiments for Duplex.

Suppose that:

o the KEM is IND CCA secure,

55

« the KDF behaves as a pseudo-random function and extracts entropy from
its inputs,

« ratchet updates incorporate either fresh KEM entropy or high entropy sym-
metric inputs.

Then there exist adversaries By, B,, B3 such that

SMP-DUPLEX SMP-DUPLEX KEM KDF
Advs dvy

(A) + Advpcg (A) < Advinp-cca(Br) + Advpgr (By)
+ AdvEL(Bs) + negl(2).

Proof sketch. Forward secrecy for the initial Duplex session follows the same
pattern as in Simplex and is covered by Theorem 7.2, since compromise of
long-term signing keys after acceptance does not reveal the KEM secrets or
retroactively change the KDF output.

For post compromise security, we consider a scenario where the adversary
learns both long-term signing keys and even the current session keys at some
time ¢, then a ratchet update is performed at a later time t' > t. The ratchet
state ratchet; is a one way function of previous KDF outputs and any previously
injected secrets. At the update step, a fresh KEM secret or high entropy sym-
metric input r is combined with ratchet; and the session cookie sch, inside the
KDF to produce new keys and a new ratchet state ratchet; ;.

Under the IND CCA assumption on the KEM, the new secret r is indistinguish-
able from random even in the presence of past compromise, as long as the
new KEM operation is carried out with uncompromised ephemeral keys. Un-
der the pseudo-randomness and extractor properties of the KDF, the output
keys after the ratchet update are indistinguishable from random even given
the previous keys and ratchet state. Collision resistance of the hash function
that defines the cookie ensures that the binding to long-term verification keys
remains sound.

Therefore any adversary that can distinguish post ratchet keys from random,
or that can use past compromises to break confidentiality of post ratchet traf-
fic, can be turned into an adversary against the KEM, the KDF, or the hash
function. This yields the bound stated in the theorem. O

7.4 Replay and Reordering Resistance

Finally we formalize the replay and reordering resistance properties of the Du-
plex channel. These properties arise from the use of sequence numbers and
timestamps as associated data for the RCS AEAD, together with the sequence
number and time window checks enforced by the implementation.

56

Theorem 7.4 (Replay and reordering resistance). Assume that RCS provides
ciphertext integrity as an AEAD scheme and that the receiver enforces monotonic
sequence numbers and valid time windows. Then any adversary that causes an
honest party to accept a replayed or reordered application packet in Duplex mode
can be turned into an adversary that forges an RCS ciphertext. In particular,

SMP-DUPLEX RCS
Adv(gHAN—INT (A) < Adv)yT-cTxT(B) + negl(A).

Proof sketch. Consider an adversary A that succeeds in delivering a replayed
or reordered packet that is accepted by the receiver as valid. Let (H*, C*) be
the first such packet. Since the receiver enforces a strictly increasing sequence
counter for each session and uses the serialized header [H*] as associated data,
acceptance implies that:

« the sequence number in H* equals the current expected receive sequence,
« the timestamp in H* satisfies the time validity predicate,

« RCS decryption under the session key with associated data [H*] pro-
duces a valid plaintext and tag.

If (H*, C*) was previously output by the sender’s encryption algorithm, then
acceptance does not represent a successful attack because the sequence num-
ber would already have been advanced and the packet either would be rejected
as stale or violate the monotonicity check. Thus the first accepted replay or re-
order cannot coincide with a previously generated packet and must be a new
ciphertext and header pair from the AEAD point of view.

We can therefore define an adversary B against RCS that uses A to obtain a
valid ciphertext and header pair that is accepted by the decryption oracle with-
out having been produced by the encryption oracle. From the AEAD perspec-
tive this is an INT CTXT forgery. The reduction simulates all honest encryp-
tions for A, forwards decryption attempts to the RCS challenger, and when
A succeeds in convincing the receiver to accept a new packet, B outputs that
packet as its forgery.

This shows that any nonnegligible advantage for A in breaking replay or re-
ordering resistance would contradict the assumed INT CTXT security of RCS,
up to negligible simulation error. O

These theorems together establish that Duplex mode provides mutual authen-
tication, session key indistinguishability, forward secrecy with post compro-
mise recovery through ratcheting, and strong channel integrity, under the stan-
dard assumptions stated earlier.

57

8 Channel Security and AEAD Binding

The security of the QSMP data channel relies on the correct use of the RCS au-
thenticated encryption scheme with packet headers bound as associated data.
This section formalizes that use, clarifies how replay and reordering attacks
are captured as AEAD forgeries, and discusses what aspects of denial of ser-
vice and liveness are outside the cryptographic model.

8.1 AEAD Model for QSMP

Let AEAD = (Enc, Dec) be an authenticated encryption scheme with associ-
ated data. For each established session in QSMP, the parties share:

« atransmit key and nonce (k;y, 1;y),
+ areceive key and nonce (k,, 1),
« a pair of sequence counters (txseq, rxseq).
Each application packet is represented as a pair (H, M), where
H = (flag, msglen, seq, t)
is the header and M is the plaintext payload. The serialized header
AD = [H]
is used as associated data for AEAD. The sender computes
C = Ency, (nsx, M, AD)

and transmits the packet (H, C). The receiver, upon accepting H as syntacti-
cally valid and satisfying local checks on seq and ¢, performs

M' = Decy, (n,y, C,AD),

and accepts the plaintext only if decryption returns a non error symbol.
The abstract model assumes that:

1. The same pair (k;y, k,,) is never reused across distinct sessions.

2. For a fixed session and direction, nonces and sequence numbers are
never reused.

3. Every acceptance event corresponds to a single successful AEAD decryp-
tion with the correct associated data.

Under these conditions, the channel security analysis reduces to the standard
confidentiality and integrity properties of the underlying AEAD scheme.

58

8.2 Replay and Reordering as Forgery Events

We formalize how replay and reordering attacks on QSMP map to the cipher-
text integrity game Expﬁfﬁ_ %TXT for RCS. An adversary is considered successful
if it causes an honest party to accept a packet whose ciphertext and associated
data pair (C*, AD") was not previously output by any honest encryption query
for that party and direction.

In QSMP, two types of attacks are of interest:

+ Pure replays, where an adversary resends an old packet (H, C) to the re-
ceiver.

* Reorderings or header tampering, where the adversary changes seq or ¢
while reusing the same ciphertext C, possibly with a modified header
H*.

Let (H, C) be a packet originally produced by Enc;, with associated data AD =
[H]. When the adversary sends (H, C) again without modification, the re-
ceiver will reject it because the sequence number in H no longer matches the
expected rxseq. Even if the timestamp remains within the valid window, the se-
quence check fails and the packet is discarded before AEAD decryption. Such
replays therefore do not impact AEAD security and are handled entirely by
local state checks.

Now consider an adversary that attempts to reorder packets or change header
fields. The adversary must produce a pair (H*, C*) such that:

1. AD™ = [H*] passes the receiver’s syntactic checks and satisfies
ValidTime(t*, timep) = 1.

2. The sequence number seq* equals the receiver’s current rxseq.

3. Decryption under the session key and nonce with associated data AD*
succeeds.

4. The pair (C*, AD") was not previously produced by an honest encryption
call in this direction.

Any successful replay or reordering attack on QSMP that results in acceptance
must therefore correspond to a successful INT CTXT forgery against the AEAD
scheme with respect to the pair (C*, AD®). This is because the receiver’s se-
quence and time checks rule out acceptance of any previously seen encryption
output. Thus an adversary who can cause an honest party to accept a replayed
or reordered packet distinct from all prior encryptions yields an adversary in
the AEAD integrity game with essentially the same advantage.

59

8.3 Denial of Service and Liveness Considerations

The formal model and reductions capture confidentiality and integrity of the
QSMP channel, including resistance to replay and reordering attacks that aim
to inject forged ciphertexts. However, several aspects of denial of service (DoS)
and liveness lie outside the scope of the cryptographic analysis.

First, the adversary is allowed to drop, delay, or reorder packets arbitrarily.
The model does not attempt to guarantee that honest parties will eventually
complete handshakes or deliver application messages. It only guarantees that
if a packet is accepted, then it satisfies the integrity and freshness properties
implied by AEAD security and the local sequence and time checks.

Second, the use of timestamps and sequence numbers introduces explicit poli-
cies for session timeouts and packet freshness. These policies are modeled via
the ValidTime predicate and the monotonic sequence counters, but the choice
of thresholds and retry strategies is a deployment decision. Parameters that are
too strict may cause honest sessions to fail under network delay, while param-
eters that are too loose may increase the window for benign replays. Balancing
these trade offs is an operational matter rather than a cryptographic one.
Third, error handling and logging on authentication failures can be abused by
an adversary to trigger resource exhaustion or connection churn. The analysis
assumes that sessions which encounter repeated failures are torn down and
that implementations enforce global limits on concurrent sessions and queued
connections. These measures mitigate DoS but are not modeled in the security
games.

In summary, the formal treatment of AEAD binding in QSMP ensures that
accepted packets are authentic and fresh, but it does not guarantee availabil-
ity. Liveness and robustness against resource level DoS attacks remain system
design concerns that must be addressed through transport level mechanisms,
rate limiting, and deployment specific policies.

9 Cryptanalytic Evaluation

This section examines QSMP from a cryptanalytic perspective beyond the ide-
alized reductions. The focus is on practical attack surfaces, the effect of long-
term key compromise under different patterns, and how QSMP compares at a
high level with related secure messaging and key exchange protocols.

9.1 Attack Surfaces and Adversarial Capabilities

The formal model gives the adversary full control over the network, access
to key corruption oracles, and the ability to interact with many concurrent

60

sessions. In practice, additional attack strategies must be considered.

Transcript manipulation and downgrade attempts. QSMP does not nego-
tiate the configuration string cfg inside the handshake. Instead, the config-
uration is fixed by deployment and included in the session cookie computa-
tion and transcript hashes. This choice reduces downgrade risks that arise
when multiple suites are negotiated interactively. An adversary who attempts
to modify cfg in transit must either forge signatures on altered transcripts or
produce collisions in the hash computations that define sch. Both strategies
are bounded by the EUF CMA and collision resistance assumptions.

Key identity confusion. The key identity kid is a short fixed length identi-
fier mapped to long-term verification keys. An adversary who can trick a client
into associating the wrong verification key with a given kid could redirect con-
nections to an unintended server. This risk is orthogonal to the protocol design
and depends on the correctness of the external key distribution and binding
mechanisms, such as certificates or configuration databases. Once the map-
ping from kid to svk is fixed, the binding of kid inside the session cookie and
transcript hashes prevents silent substitution on the wire.

Side channel leakage. The analysis treats KEM, signature, and RCS opera-
tions as ideal black boxes with no side channel leakage. In practice, timing,
cache, or power side channels could reveal information about long-term or
ephemeral secrets. Mitigation requires constant time implementations, mask-
ing, and other engineering level defenses. The security model does not account
for such leakage, and attacks that exploit side channels fall outside the formal
guarantees.

Randomness quality. QSMP depends on high quality randomness for KEM
key generation, encapsulation randomness where applicable, and signature
operations. Weak random number generators can lead to predictable ephemeral
keys, repeated KEM secrets, or biased signatures. These failures would under-
mine the assumptions used in the reductions and could enable key recovery
attacks. The protocol assumes that the underlying system provides sufficient
entropy and that random number generation is correctly implemented and
seeded.

Implementation bugs and parsing errors. The protocol uses a compact bi-
nary header format with length fields and timestamps. Incorrect parsing, in-
teger overflow, or failure to validate lengths and reserved values can lead to

61

memory safety vulnerabilities or logic bypasses that are not captured by the
symbolic model. The cryptographic analysis assumes correct implementation
of the specified checks, including strict enforcement of message sizes and re-
jection of unsupported flags.

9.2 long-term Key Compromise and Ratchet Behavior

QSMP separates long-term signing keys from session keys that are derived
from KEM secrets and cookies. This separation limits the effect of various
compromise patterns.

Server signing key compromise. InSimplex mode, compromise of the server
signing key before a handshake allows full impersonation to clients, but does
not directly reveal past KEM secrets or session keys. In Duplex mode, compro-
mise of one party’s signing key before the connect stage enables impersonation
of that party in future runs but does not retroactively affect past sessions. The
formal forward secrecy results show that past session keys remain secure as
long as the KEM and KDF assumptions hold.

Ephemeral KEM key compromise. Ifan attacker obtains an ephemeral pri-
vate KEM key sk for a specific session, it can recover the corresponding secret
for that handshake. This exposes that session’s keys, but because the KEM key
pairs are generated per session and erased after key derivation, the damage
is localized. In Duplex mode, compromise of a single ephemeral key reveals
only one of the two KEM secrets, and the combined KDF input still includes
entropy from the other secret.

Session key compromise and ratchet recovery. If a Duplex session is con-
figured with an asymmetric or symmetric ratchet, and an attacker compro-
mises the current session keys, the ratchet mechanism can provide recovery.
Once a new ratchet step injects fresh KEM or symmetric entropy into the KDF,
subsequent keys become independent of the previously compromised values.
The ability to recover depends on correct implementation of key erasure and
on the assumption that at least one fresh high entropy input is available. If
the attacker can persistently compromise every new ephemeral key, then the
ratchet cannot restore confidentiality.

Cookie and transcript binding under compromise. The session cookies
schg and schp bind configuration strings and long-term verification keys to

62

the KEM secrets. Compromise of long-term verification keys does not allow
an attacker to retroactively alter the cookie for a past session without finding
collisions in the hash function. This property is important for replay defenses
in Duplex mode, where the establish stage confirms that both parties hold the
same cookie value before accepting the session as fully authenticated.

9.3 Comparison with Related Protocols

QSMP occupies a design space similar to other post quantum aware secure
channel protocols, while making different trade offs in handshake structure
and channel binding.

Relation to SSH and TLS. Traditional SSH and TLS deployments rely on
classical key exchange and signature algorithms and often support a large num-
ber of negotiated cipher suites. QSMP adopts a more constrained approach. It
fixes a post quantum KEM and signature scheme per configuration and avoids
interactive cipher suite negotiation. This simplifies downgrade analysis, since
there is no path for an attacker to force a weaker suite within the protocol itself.
The use of a compact binary header with explicit sequence numbers and times-
tamps is conceptually similar to record oriented protocols but is more tightly
coupled to the AEAD associated data.

Relation to Noise and modern secure messaging frameworks. Noise based
protocols and modern secure messaging systems such as Signal emphasize a

clear separation between handshake patterns, key derivation, and ratcheting.

QSMP shares this modular structure. It uses explicit handshake stages in Sim-

plex and Duplex mode, a Keccak based KDF that incorporates multiple secrets

and binding data, and a ratchet state that supports rekeying and post compro-
mise recovery. Unlike generic frameworks that allow many pattern instanti-
ations, QSMP fixes a small number of handshake flows and hard codes the

interpretation of flags and header fields, which simplifies analysis but reduces

flexibility.

Post quantum focus and cryptographic assumptions. QSMP is designed
from the outset for post quantum security. Its core assumptions are the IND
CCA security of a post quantum KEM, the EUF CMA security of a post quan-
tum signature scheme, and well studied properties of SHA3 and cSHAKE. The
RCS channel relies on Keccak style permutation based encryption rather than
block ciphers. This contrasts with protocols that layer post quantum KEMs
on top of classical designs or that retain classical signatures for authentication.

63

By binding both long-term verification keys and configuration strings into the
cookie and KDF inputs, QSMP attempts to give a clear and explicit mapping
from primitive level assumptions to end to end guarantees.

Overall, the cryptanalytic evaluation indicates that QSMP does not introduce
unusual structural weaknesses relative to established secure channel designs,
provided that implementations satisfy the constant time and randomness re-
quirements and that key distribution mechanisms correctly bind key identi-
ties to verification keys. Remaining risks arise primarily from implementation
quality, side channels, and system level misconfiguration, rather than from the
cryptographic design itself.

10 Implementation Conformance and Side
Channel Considerations

This section examines the relationship between the formal model and the ref-
erence implementation of QSMP, the side channel assumptions required by
the analysis, and operational considerations relating to randomness, time syn-
chronization, and error handling. The goal is to show that the implementation
follows the abstract specification closely enough for the formal results to ap-
ply, and to identify the engineering properties that the formal model treats as
idealizations.

10.1 Mapping Between Model and Reference Implementation

The reference implementation follows the symbolic protocol specification with
a direct correspondence between code level functions and formal handshake
stages.

Handshake structure. The Simplex and Duplex modes each implement a
sequence of connect, exchange, and (for Duplex) establish stages. Each stage
corresponds to the symbolic message flows defined earlier. The implementa-
tion uses explicit flag values to represent message types and constructs packet
bodies in the exact order required by the formal specification.

Session cookies and transcript binding. The session cookies schg and schp
are computed as hashes of configuration strings, key identities, and verifica-
tion keys. The code computes these values using SHA3 in the same order and
with the same input framing as in the symbolic model. Transcript hashes for

64

signed messages include the serialized header and the sender’s ephemeral pub-
lic key, consistent with the formal definition of h and hg.

Keyderivation and ratchet state. The KDF isimplemented through cSSHAKE
with the KEM secret or secrets as keying input and the session cookie as cus-
tomization string. The output buffer is partitioned into RCS keys, nonces, and
aratchet state extracted from the post permutation Keccak state. This matches
the formal specification of KDF(sec, sch) in Simplex and of KDF(sec;, schp, sec,)
in Duplex.

AEAD usage and associated data. In the implementation, the header is se-
rialized into a contiguous byte array and provided to RCS as associated data
for both encryption and decryption. Decryption fails if tag verification fails
or if the internal nonce and sequence number state does not match expecta-
tions. This behavior corresponds exactly to the formal AEAD model described
earlier.

State transition and cleanup. The code erases ephemeral KEM private keys,
shared secrets, and derived symmetric keys once they are no longer needed,
aligning with the formal assumption that ephemeral values are erased immedi-
ately after use. Session state transitions follow the order specified in the model,
ensuring that no packet is accepted out of order or with stale transcript data.

10.2 Constant Time Requirements

The formal analysis assumes that QSMP’s cryptographic operations do not
leak information through timing or other side channels. To satisfy this as-
sumption, the implementation must enforce constant time or time indepen-
dent behavior in several places.

KEM decapsulation. The KEM decapsulation operation must run in con-
stant time with respect to the input ciphertext. In particular, decapsulation
failures must be handled without revealing whether the failure was caused
by an invalid ciphertext or by an invalid public key. This prevents chosen ci-
phertext timing attacks that could recover the ephemeral secret or allow oracle
based key recovery.

65

Signature verification. Verification operations should avoid control flow
branches on secret dependent values. The attacker should not be able to dis-
tinguish verification failures arising from malformed packets versus failures
from forged signatures based on timing.

AEAD decryption. The RCS tag comparison must be constant time, and the
implementation must not leak whether decryption failed early due to header
checks or late due to authentication failure. Ideally, decryption attempts pro-
ceed using a constant time comparison after the header has been validated
syntactically and temporally.

Equality checks. All equality tests involving schp, its hashed confirmation
value H(schp), or any other sensitive field must be performed with constant
time comparison functions to avoid leaking partial equality or length depen-
dent information.

10.3 Random Number Generation and Time Synchronization

Several operations in QSMP rely on high quality entropy or synchronized time.

Randomness requirements. Secure randomness is required for:

« generation of ephemeral KEM key pairs,
« encapsulation randomness where required by the KEM,
« signing randomness where required by the signature scheme,

« generation of fresh entropy for ratchet updates.

If any of these sources produce low entropy values or repeat outputs, session
keys may become predictable or attackers may be able to identify relationships
across sessions. The formal model assumes perfect randomness, so real deploy-
ments must use cryptographically secure random number generators backed
by system entropy sources.

Time synchronization. QSMP uses timestamps in packet headers, and the
receiver validates that each packet lies within a bounded time window. Loose
synchronization between peers is required. If clocks drift too far apart, legiti-
mate packets may fail the ValidTime predicate, causing liveness issues. If the
window is too large, adversaries gain a marginally larger window to replay old
packets that still fall within the time bounds but will nevertheless be rejected

66

based on sequence numbers. The time bound therefore must be calibrated for
the intended deployment environment.

Sequence numbers and strict monotonicity. Both the transmit and receive
sequence numbers must be strictly monotonic during the lifetime of a session.
If an implementation incorrectly increments or resets sequence values, an at-
tacker might bypass replay detection or force undefined behavior. The formal
model presumes strict monotonicity and relies on it for channel integrity.

10.4 Error Handling, Logging, and Teardown

Error handling behavior affects both security and robustness. The formal model
treats decryption failures and handshake verification failures as terminal events
that erase state. The implementation conforms to this behavior.

Error generation and propagation. On detecting an error in header vali-
dation, time validation, sequence checking, signature verification, or AEAD
decryption, the implementation constructs an error packet indicating the fail-
ure cause and sends it to the peer if the session state permits. Immediately af-
terward, it clears all cryptographic state and tears down the connection. This
prevents use of keys after validation failures and limits the scope of adversarial
influence.

Logging. The implementation includes logging hooks for failures. While
logging provides valuable diagnostic information, care must be taken that log
messages do not leak sensitive data or timing patterns visible to external ob-
servers. Logs should not contain plaintext fragments, key identifiers beyond
what is necessary for debugging, or detailed error codes that could reveal pars-
ing decisions.

Teardown behavior. After any unrecoverable error, the implementation re-
sets session state, clears RCS keys, ratchet state, ephemeral keys, and local
buffers. This aligns with the formal assumption that state is erased upon error
detection. Teardown behavior prevents adversaries from exploiting partially
initialized or stale state in subsequent protocol operations.

In summary, the reference implementation tracks the formal model closely
in its cryptographic structure, message processing, and key derivation logic.

67

While the formal analysis abstracts away many engineering details, the im-
plementation must satisfy strict constant time, randomness, and state erasure
requirements for the formal guarantees to hold in practice.

11 Concrete Security Estimates

This section provides concrete security interpretations for the QSMP construc-
tion. The goal is not to produce exact security numbers, but to show how the
reductions and assumptions translate into practical confidence levels when in-
stantiated with standard post quantum primitives.

Table 3 summarizes the quantitative security levels of the primitives used in
QSMP and identifies the dominant computational assumptions for each. All
values correspond to the parameter sets defined in Section 11.1.

11.1 Parameter Choices and Security Levels

QSMP is parameterized by a configuration string cfg that selects fixed crypto-
graphic primitives. A typical configuration pairs:

« apostquantum KEM such as Kyber or a code based KEM at a target level
comparable to NIST Category 3 or Category 5,

« a post quantum signature scheme such as Dilithium or SPHINCS that
meets EUF CMA at the same target level,

« SHA3 and cSHAKE with capacity and rate parameters that match 256-
bit or 512-bit strength,

« the RCS authenticated channel built on the Keccak permutation, config-
ured to provide either 256-bit or 512-bit AEAD security.

When these primitives are instantiated with Category 3 or Category 5 param-
eters, their concrete resistance to classical and quantum adversaries is on the
order of 2160 operations or greater for Category 3, and on the order of 22°° oper-
ations or greater for Category 5. Because QSMP composes these primitives in
a hybrid structure, the effective security level for the session keys is dominated
by the weakest primitive. For Duplex, the combination of two KEM secrets can
raise the entropy of the KDF input but does not raise the security level beyond
the bound given by the lowest strength KEM input.

68

Table 3: Security levels of QSMP primitives and dominant assumptions.

Primitive Parameter set Security level Dominant assumption
KEM Kyber (config- = 256 bits IND CCA hardness of
ured) MLWE
Signature Dilithium (con- = 256 bits EUF CMA hardness of
figured) MLWE
Hash (Simplex) = SHA3_256 256-bit preimage Sponge indifferentia-
bility
Hash (Duplex) SHA3_512 512-bit preimage Sponge indifferentia-
bility

KDF (Simplex) cSHAKE_256

KDF (Duplex) cSHAKE_512

AEAD RCS (Simplex)
AEAD RCS (Duplex)

Session cookie SHA3 256
(Simplex)
Session cookie SHA3 512
(Duplex)

256-bit output

512-bit output

256-bit integrity
512-bit integrity
256-bit hash

512-bit hash

Pseudo-randomness
from SHA3 permuta-
tion
Pseudo-randomness
from SHA3 permuta-
tion

Strength of tag, associ-
ated data binding
Strength of tag, associ-
ated data binding
Collision resistance

Collision resistance

11.2 Quantitative Bounds from the Reductions

The reductions provide explicit bounds on the adversarial advantage in each
security game. For illustration, suppose that:

« the underlying KEM achieves IND CCA advantage at most exgpy,

« the signature scheme achieves EUF CMA advantage at most €,

« the cSHAKE based KDF behaves as a pseudo-random function with ad-

vantage at most €xpr,

» the AEAD channel has confidentiality and integrity advantages at most

€RCS,conf AN ERCS int-

Then, ignoring negligible simulation terms, the reductions give the following

upper bounds:

69

Simplex client authentication.

QSMP-SIMPLEX

AdVauTH-cLENT < €SiG:

Simplex key indistinguishability.

QSMP-SIMPLEX
AdVKI < €EKEM + €KDF-

Simplex forward secrecy.

QSMP-SIMPLEX
AdVFS < €EKEM + €KDF-

Duplex mutual authentication.

QSMP-DUPLEX
AdVAUTH < 2€S|G'

Duplex key indistinguishability.

QSMP-DUPLEX
AdVKI < 2€KE|\/| + €KDE-

Duplex forward secrecy and post compromise recovery.

QSMP-DUPLEX

SMP-DUPLEX
AdVSS + AdVPCS < €EKEM T €kDF t+ €CR>

where ecR is the collision bound for SHA3.

Channel confidentiality and integrity.

SMP-CHAN-CONF SMP-CHAN-INT
Adv® Adv®

< €RCS,conf < €RCS,int-

These bounds remain valid across many concurrent sessions, provided that
each session uses fresh KEM secrets, fresh KDF calls, and non overlapping
key material. If the adversary performs q sessions or queries, standard hybrid
arguments give linear scaling, for example

QSMP-SIMPLEX

Adv (Ag) < qekem + qexpr-

This scaling reflects the fact that each session independently uses the KEM
and KDF in a manner that does not share secrets with other sessions.

70

11.3 Discussion of Security Margins

Practical security margins depend on the exact primitives chosen.

KEM and signature margins. Modern post quantum KEMs and signature
schemes have undergone extensive cryptanalytic evaluation. Their concrete
security levels reflect both classical and quantum attack costs. When using
Category 3 or Category 5 parameters, the margin against the best known at-
tacks is significant, with no known shortcuts that substantially reduce secu-
rity beyond the NIST estimates. QSMP inherits these margins directly, since
its session key entropy flows from the KEM secrets.

Hash and KDF margins. The SHA3 family and cSHAKE have strong indif-
ferentiability and collision resistance bounds. For 256-bit output configura-
tions, collision searches require on the order of 21?8 operations. This provides
ample margin for both transcript binding and cookie computation. The KDF’s
pseudo-randomness margin is similarly strong, because the full Keccak per-
mutation is used with appropriate rate and capacity settings.

AEAD channel margins. The RCS channel relies on Keccak and a domain
separated duplex construction. Its integrity and confidentiality rely on the se-
curity of the underlying permutation. Keccak has a large security margin, and
no practical attacks threaten the capacity used by RCS in the QSMP configura-
tion. As long as keys and nonces are not reused and associated data inputs are
correct, the AEAD channel inherits these margins.

Multiplicative effects of composition. Incomposed protocolsitis common
for reductions to lose security bits due to multiple uses of primitives. QSMP
avoids heavy multiplicative losses by using only one or two KEM secrets and
one KDF invocation per session, and by avoiding symmetric key reuse. As a
result, the overall security parameter is close to that of the weakest primitive,
rather than suffering significant reduction from composition.

Operational margins. Time windows for packet acceptance and bounds on
sequence numbers do not reduce cryptographic security, but they do influ-
ence robustness. Adversarial manipulation of timing may cause disruptions
but does not significantly change confidentiality or integrity guarantees. Im-
plementations should treat time windows conservatively to avoid unnecessary
rejection of legitimate packets.

71

In summary, QSMP retains the concrete security levels of its underlying post
quantum primitives, with no significant reduction introduced by the protocol
structure. When instantiated with conservative parameter sets, the protocol
achieves security levels suitable for long-term confidentiality against both clas-
sical and quantum attackers.

12 Conclusion

12.1 Summary of Results

This paper presented a formal and cryptanalytic analysis of the Quantum Se-
cure Messaging Protocol, covering both its Simplex and Duplex operating modes.
The study introduced a precise engineering level specification derived directly
from the reference implementation, then developed a symbolic protocol model
suitable for rigorous cryptographic reasoning. Within this model, we defined
authentication, key indistinguishability, forward secrecy, channel integrity,
and post compromise recovery, and we proved that QSMP satisfies these prop-
erties under standard assumptions.

For Simplex mode, we established unilateral authentication of the server to the
client based on the existential unforgeability of the server’s signature scheme.
We proved that session keys achieve indistinguishability under attacks permit-
ted by the multi session model, and that forward secrecy holds for past ses-
sions when the server’s long-term signing key is compromised after the hand-
shake. For Duplex mode, we proved mutual authentication based on the un-
forgeability of both parties’ signatures, demonstrated that session keys remain
indistinguishable from random under adaptive adversaries, and showed that
the ratchet design supports recovery from certain compromise patterns when
fresh entropy is injected.

In both modes, we showed that data channel confidentiality and integrity re-
duce to the AEAD properties of the RCS construction when the packet header
is included as associated data. The sequence and timestamp validation en-
forced by the implementation ensure that replay and reordering attacks trans-
late to INT CTXT forgery attempts. The cryptanalytic evaluation confirmed
that QSMP’s security derives cleanly from its underlying KEM, signature scheme,
hash, and AEAD components, with no unusual structural vulnerabilities intro-
duced by the protocol design.

12.2 Limitations and Caveats

The analysis relies on several idealizations that must be recognized when in-
terpreting the results. The multi session model assumes perfect randomness,

72

correct enforcement of monotonic sequence numbers, and reliable time syn-
chronization within bounded drift. Failures in system entropy, clock manage-
ment, or sequence number handling fall outside the formal guarantees and
may weaken security in practice.

Side channels are not modeled. The proofs assume that KEM, signature, and
AEAD operations are implemented in constant time and do not leak secret de-
pendent information. Without such protections, practical attacks may violate
confidentiality or authentication even when the underlying primitives remain
cryptographically sound.

The analysis also does not cover the correctness of external key distribution
mechanisms. The binding between key identities and verification keys is as-
sumed to be correct and authenticated by out of band means. Attacks on cer-
tificate validation, key provisioning, or key revocation fall outside the protocol
and thus beyond the scope of the formal model.

Denial of service, connection churn, and resource exhaustion attacks are like-
wise not modeled. The results guarantee that accepted packets satisfy authen-
ticity and freshness, but they do not guarantee liveness in the presence of an
active adversary. Operational safeguards such as rate limiting, connection
quotas, and robust error handling must complement the cryptographic pro-
tections.

12.3 Directions for Future Work

Several directions merit further investigation.

Extended ratcheting. QSMP includes optional support for simple symmet-
ric and asymmetric ratcheting, but the design could be enriched with a more
advanced ratchet structure that provides stronger post compromise security
or continuous key evolution. Exploring formal models for multi stage ratch-
ets and integrating them into QSMP’s handshake framework could increase
resilience under persistent compromise.

Formal verification of the implementation. The protocol’s correctness de-
pends on rigorous enforcement of length checks, state transitions, and con-
stant time operations. Formal verification of the reference implementation,
for example using symbolic execution or model checking, would provide addi-
tional assurance that the implementation conforms to the formal specification.

Broader comparative analysis. QSMP’s design philosophy differs from pro-
tocols such as SSH, TLS, or the Noise framework. A deeper comparative study

73

could illuminate trade offs in handshake structure, state management, and
post quantum assumptions. Such analysis could also explore hybrid designs
where QSMP components are combined with classical mechanisms or layered
inside larger transport protocols.

Integration with deployment level mechanisms. The behavior of QSMP
is influenced by the quality of time synchronization, key distribution, and ran-
domness sources. Future work could address how best to integrate QSMP into
system architectures that provide these services, ensuring that the protocol’s
assumptions hold under practical conditions.

In summary, QSMP provides a compact and well structured design for post
quantum secure messaging. This paper shows that, when implemented cor-
rectly and supported by robust system level defenses, the protocol achieves
strong authentication, confidentiality, and integrity guarantees grounded in
standard assumptions on its cryptographic components.

74

References

1.

10.

11.

Underhill, J. G. Quantum Secure Messaging Protocol (QSMP) Specification.
Quantum Resistant Cryptographic Solutions Corporation, 2025. Available
at: https://www.qrcscorp.ca/documents/qsmp_specification.pdf.

Underhill, J. G. Quantum Secure Messaging Protocol Implementation Anal-
ysis. Quantum Resistant Cryptographic Solutions Corporation, 2025. Avail-
able at: https://www.qrcscorp.ca/documents/gqsmp_analysis.pdf.

. Underhill, J. G. QSMP Reference Implementation (C Source Code). Quantum

Resistant Cryptographic Solutions Corporation, 2025. Available at: https:
//github.com/QRCS-CORP.

National Institute of Standards and Technology (NIST). CRYSTALS-Kyber,
Public-Key Encryption and Key-Establishment Algorithm. NIST PQC Stan-
dard, 2024. Available at: https://doi.org/10.6028/NIST.FIPS.203.

. National Institute of Standards and Technology (NIST). CRYSTALS-

Dilithium, Digital Signature Algorithm. NIST PQC Standard, 2024. Avail-
able at: https://doi.org/10.6028/NIST.FIPS.204.

National Institute of Standards and Technology (NIST). Falcon:
Lattice-Based Digital Signature Algorithm (Round 4 Candidate).
NIST PQC Project, 2023. Available at: https://csrc.nist.gov/projects/
post-quantum-cryptography/round-4-submissions.

National Institute of Standards and Technology (NIST). FIPS 202: SHA-3
Standard, Permutation-Based Hash and Extendable Output Functions. U.
S. Department of Commerce, 2015. Available at: https://doi.org/10.6028/
NIST.FIPS.202.

. Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. The Keccak Ref-

erence. Submission to the NIST SHA-3 Competition, 2011. Available at:
https://keccak.team/files/Keccak-reference-3.0.pdf.

. Krawczyk, H. Cryptographic Extraction and Key Derivation: The HKDF

Scheme. In CRYPTO 2010. Available at: https://link.springer.com/chapter/
10.1007/978-3-642-14623-7_34.

Bellare, M., and Namprempre, C. Authenticated Encryption: Relations
among Notions and Analysis of the Generic Composition Paradigm. In ASI-
ACRYPT 2000. Available at: https://link.springer.com/chapter/10.1007/
3-540-44448-3_209.

Rogaway, P. Nonce-Based Symmetric Encryption. In FSE 2004. Available at:
https://link.springer.com/chapter/10.1007/978-3-540-25937-4_10.

75

https://www.qrcscorp.ca/documents/qsmp_specification.pdf
https://www.qrcscorp.ca/documents/qsmp_analysis.pdf
https://github.com/QRCS-CORP
https://github.com/QRCS-CORP
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.204
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://keccak.team/files/Keccak-reference-3.0.pdf
https://link.springer.com/chapter/10.1007/978-3-642-14623-7_34
https://link.springer.com/chapter/10.1007/978-3-642-14623-7_34
https://link.springer.com/chapter/10.1007/3-540-44448-3_29
https://link.springer.com/chapter/10.1007/3-540-44448-3_29
https://link.springer.com/chapter/10.1007/978-3-540-25937-4_10

12.

13.

14.

15.

16.

17.

Rogaway, P., and Shrimpton, T. A Provable-Security Treatment of the Key-
Wrap Problem. In EUROCRYPT 2006. Available at: https://link.springer.
com/chapter/10.1007/11761679_3.

Bellare, M., and Rogaway, P. Entity Authentication and Key Distribution. In
CRYPTO 1993. Available at: https://www.iacr.org/archive/crypto93/.

Canetti, R., and Krawczyk, H. Analysis of Key Exchange Protocols and Their
Use for Building Secure Channels. In EUROCRYPT 2001. Available at: https:
//link.springer.com/chapter/10.1007/3-540-44987-6_18.

Abadi, M., and Rogaway, P. Reconciling Two Views of Cryptography. Jour-
nal of Cryptology, 2002. Available at: https://link.springer.com/article/10.
1007/s00145-002-0042-4.

Bernstein, D. J., Chuengsatiansup, C., Lange, T., and van Vredendaal, C.
NTRU Prime: Round 3 Specification. NIST PQC Project, 2020. Available at:
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf.

Alkim, E., Ducas, L., Péppelmann, T., and Schwabe, P. NewHope:
Algorithm Specifications and Supporting Documentation. NIST PQC
Project, 2019. Available at: https://newhopecrypto.org/resources/
newhope-specification-2019.pdf.

76

https://link.springer.com/chapter/10.1007/11761679_3
https://link.springer.com/chapter/10.1007/11761679_3
https://www.iacr.org/archive/crypto93/
https://link.springer.com/chapter/10.1007/3-540-44987-6_18
https://link.springer.com/chapter/10.1007/3-540-44987-6_18
https://link.springer.com/article/10.1007/s00145-002-0042-4
https://link.springer.com/article/10.1007/s00145-002-0042-4
https://ntruprime.cr.yp.to/nist/ntruprime-20201007.pdf
https://newhopecrypto.org/resources/newhope-specification-2019.pdf
https://newhopecrypto.org/resources/newhope-specification-2019.pdf

	Introduction
	Background and Motivation
	High Level Description of QSMP
	Security Goals and Contributions
	Document Roadmap

	Engineering Description of QSMP
	Roles, Trust Model, and Deployment Context
	Global Parameters and Cryptographic Primitives
	Key Material and long-term State
	Handshake and Session Establishment in Simplex Mode
	Simplex Key Exchange Pseudo-code

	Handshake and Session Establishment in Duplex Mode
	Duplex Key Exchange pseudo-code

	Session Keys, Ratcheting, and Rekeying
	Asymmetric Ratchet Integration in Duplex Mode
	Symmetric Ratchet State Generation

	Channel Protection and Packet Processing
	Error Handling, Time Validation, and Session Teardown

	Formal Protocol Specification
	Notation and Conventions
	Execution Model and Sessions
	Message Flows for Simplex Mode
	Message Flows for Duplex Mode
	Partnering and Session Matching
	Adversarial Interface and Oracles

	Security Definitions
	Simplex Authentication of the Server
	Duplex Mutual Authentication
	Key Indistinguishability
	Forward Secrecy in Simplex and Duplex
	Channel Confidentiality and Integrity
	Ratcheting and Post Compromise Guarantees

	Assumptions on Cryptographic Primitives
	KEM Security
	Signature Scheme Security
	Hash and KDF Assumptions
	RCS Channel Security

	Simplex Security Proofs
	Client Authentication in Simplex
	Key Indistinguishability in Simplex
	Forward Secrecy for Simplex
	Discussion of Limitations in Simplex

	Duplex Security Proofs
	Mutual Authentication in Duplex
	Key Indistinguishability in Duplex
	Forward Secrecy and Ratcheting in Duplex
	Replay and Reordering Resistance

	Channel Security and AEAD Binding
	AEAD Model for QSMP
	Replay and Reordering as Forgery Events
	Denial of Service and Liveness Considerations

	Cryptanalytic Evaluation
	Attack Surfaces and Adversarial Capabilities
	long-term Key Compromise and Ratchet Behavior
	Comparison with Related Protocols

	Implementation Conformance and Side Channel Considerations
	Mapping Between Model and Reference Implementation
	Constant Time Requirements
	Random Number Generation and Time Synchronization
	Error Handling, Logging, and Teardown

	Concrete Security Estimates
	Parameter Choices and Security Levels
	Quantitative Bounds from the Reductions
	Discussion of Security Margins

	Conclusion
	Summary of Results
	Limitations and Caveats
	Directions for Future Work

