QSMP-2024 Rev. 1.3a

Quantum Secure Messaging Protocol — QSMP 1.3

Revision 1.3a, December 08, 2024

John G. Underhill — john.underhill@protonmail.com

This document is an engineering level description of the QSMP 1.3 encrypted and authenticated

network messaging protocols. There are two protocols specified in this standard, the SIMPLEX
and DUPLEX forms of QSMP. In its contents, a guide to implementing QSMP, an explanation
of its design, as well as references to its component primitives and supporting documentation.

Contents Page
Foreword 2
Figures 3
Tables 4
1: Introduction 5
2: Scope 8
3: References 11
4: Cryptographic Primitives 12
5: Protocol Components and Structures 14
6: Duplex Operational Overview 20
7: Simplex Operational Overview 31
8: Duplex Formal Description 39
9: Simplex Formal Description 50
10: QSMP API 57
11: Security Analysis 68
12: Design Decisions 71
13: QSMP Cryptanalysis 82

QSMP-2024 Rev. 1.3a

Foreword

This document is intended as the preliminary draft of a new standards proposal, and as a basis
from which that standard can be implemented. We intend that this serves as an explanation of
this new technology, and as a complete description of the protocol.

This document is the third revision of the specification of QSMP, further revisions may become
necessary during the pursuit of a standard model, and revision numbers shall be incremented
with changes to the specification. The reader is asked to consider only the most recent revision of
this draft, as the authoritative implementation of the QSMP specification.

The author of this specification is John G. Underhill, and can be reached at
john.underhill@protonmail.com

QSMP, the algorithm constituting the QSMP messaging protocol is patent pending, and is owned
by John G. Underhill and Quantum Resistant Cryptographic Solutions Corporation. The code
described herein is copyrighted, and owned by John G. Underhill and Quantum Resistant
Cryptographic Solutions Corporation.

QSMP-2024 Rev. 1.3a

Figures

Contents

Figure 5.7: QSMP packet structure.

Figure 6.1: QSMP Duplex connection request.

Figure 6.2: QSMP server connection response.

Figure 6.3: QSMP client exchange request.
Figure 6.4: QSMP server exchange response.
Figure 6.5: QSMP client establish request.
Figure 6.6: QSMP server establish response.
Figure 6.7: QSMP client establish request.

Figure 7.1: QSMP Duplex connection request.

Figure 7.2: QSMP server connection response.

Figure 7.3: QSMP client exchange request.
Figure 7.4: QSMP server exchange response.
Figure 7.5: QSMP client establish request.

Page

18
21
22
24
23
24
30
31
33
33
35
37
38

QSMP-2024 Rev. 1.3a

Tables

Contents

Table 5.1: The Protocol string choices in revision 2a.

Table 5.2: The client key structure.
Table 5.3: The server key structure.
Table 5.4: The keep alive state.

Table 5.5: The connection state structure.

Table 5.6: The Duplex client KEX state structure.
Table 5.7: The Duplex server KEX state structure.
Table 5.7: The Simplex client KEX state structure.
Table 5.8: The Simplex server KEX state structure.

Table 5.8: Packet header flag types.

Table 5.9: Error type messages.

Table 10.1a QSMP error strings.

Table 10.1b QSMP configuration string.
Table 10.1c QSMP packet structure.

Table 10.1d QSMP client key structure.
Table 10.1e QSMP keep alive state structure.

Table 10.1f QSMP configuration enumeration.

Table 10.1g QSMP errors enumeration.
Table 10.1h QSMP flags enumeration.

Table 10.11 QSMP constants.

Table 10.1) QSMP connection state structure.
Table 10.2 QSMP key structure.

Table 10.3 QSMP client state structure.

Page

14
14
15
15
16
16
17
17
18
19
20
57
57
57
58
58
58
59
60
62
62
65
65

QSMP-2024 Rev. 1.3a

1: Introduction

Key exchange protocols are foundational components in secure networking today, with
prominent examples found in protocols like TLS, PGP, and SSH. These protocols establish
methods for securely exchanging secret keys between devices. Typically, a key exchange
function is part of a more extensive process that includes authentication both during and after the
key exchange, and establishes an encrypted tunnel that uses the shared secret to secure traffic
flows using symmetric ciphers.

QSMP provides a comprehensive framework that encompasses key exchange, authentication
mechanisms, and encrypted tunnel creation. While existing protocols can be modified to
incorporate quantum-resistant cryptographic primitives, QSMP takes a different approach by
designing an entirely new set of mechanisms tailored for performance and security in a post-
quantum environment. Recognizing the inevitable transition to post-quantum cryptography,
QSMP was built from the ground up, avoiding the constraints of backward compatibility and the
complexity associated with older protocol artifacts, versioning, and legacy APIs.

As a quantum-secure messaging protocol, QSMP leverages state-of-the-art asymmetric
encryption and signature schemes alongside a post-quantum strength symmetric cipher. The
current version supports Kyber or McEliece as asymmetric ciphers, with Dilithium or Sphincs+
as signature schemes.

For symmetric encryption, QSMP employs the RCS authenticated stream cipher, which is based
on the wide-block (256-bit state size) version of the Rijndael cipher. This cipher features
increased rounds, a cryptographically secure key schedule, and AEAD (Authenticated
Encryption with Associated Data) authentication using KMAC. Designed to be both flexible and
post-quantum secure, QSMP was designed to surpass the protocols it intends to replace and is
suitable for any application that demands strong post-quantum security in an encrypted
messaging scheme.

QSMP includes two protocol variants: SIMPLEX and DUPLEX.

SIMPLEX Protocol: The SIMPLEX protocol is a streamlined one-way-trust authenticated key
exchange designed for client-server communications. In this unidirectional trust model, the client
trusts the server. The server authenticates by signing its public asymmetric cipher key, which the
client then verifies using the server’s public signature-verification key. This protocol creates a
256-bit secure, duplexed encrypted tunnel between the server and client in just two round trips,
making it ideal for applications requiring efficient, post-quantum secure encrypted channels
between a client and server.

DUPLEX Protocol: The DUPLEX protocol supports a bidirectional trust model, where two
hosts mutually authenticate and exchange shared secrets. Each host possesses the other's public
signature-verification key. They exchange signed public asymmetric cipher keys, signed
ciphertext, create individual shared secrets, and combine these secrets to create a 512-bit secure
encrypted communication stream. The QSMP DUPLEX protocol is designed for high-security,
post-quantum communication between remote hosts. It can also work in conjunction with

5

QSMP-2024 Rev. 1.3a

SIMPLEX to facilitate host registration, distribute public signature keys, and establish secure
communications within high-security environments.

The protocols within QSMP are versatile and adaptable to various use cases, offering modern
alternatives to aging cryptographic protocols that are merely being retrofitted with quantum-
resistant algorithms.

1.1 Purpose

Ephemeral Asymmetric Cipher Keys: The protocol ensures that asymmetric cipher keys are
used for just a single transfer of shared secrets, encapsulating shared secrets unique to each
session. This approach provides strong forward secrecy, guaranteeing that the compromise of
current asymmetric cipher keys does not affect the security of previous sessions.

Predictive Resistance: The capture of any shared keys within a session reveals no information
about future sessions, preventing adversaries from predicting or deriving future keys based on
past communications.

One-Way or Two-Way Authentication: QSMP supports both one-way and two-way
authenticated trust models, utilizing robust asymmetric and symmetric authentication methods to
establish secure and verifiable communication channels between parties.

Post-Quantum Security: The protocol is designed to be resistant to quantum attacks by using
quantum-safe cryptographic primitives such as Kyber and McEliece for key exchanges, and
Dilithium or Sphincs+ for digital signatures, ensuring long-term data security.

Scalable Encryption: QSMP utilizes the RCS stream cipher with AEAD authentication using
KMAC, which is based on the wide-block Rijndael cipher with increased rounds and a
cryptographically strong key schedule (¢cSHAKE). This ensures scalability and adaptability for
high-throughput environments, leveraging embedded CPU level AES-NI instructions, and
maintaining robust encryption with superior quantum-level security.

Flexible Protocol Variants: QSMP provides two protocol variants, SIMPLEX and DUPLEX, to
cater to different communication needs. SIMPLEX supports a streamlined one-way authenticated
key exchange ideal for client-server exchanges, while DUPLEX offers a bidirectional trust
model suitable for high-security communication between hosts.

Efficient Key Exchange: The SIMPLEX protocol is optimized to establish secure
communication channels with minimal round trips, reducing latency and computational overhead
in the key exchange process. SIMPLEX achieves a two-way encrypted tunnel in just two round
trips.

Comprehensive Anti-Attack Strategy: The key exchange incorporates many different defenses
against packet and message tampering, impersonation, replay, memory overflow, authentication,
and cryptographic attacks against the key exchange and encrypted tunnel.

QSMP-2024 Rev. 1.3a

Interoperability: QSMP can be seamlessly integrated into existing network architectures and
communication systems, offering an upgrade path to quantum-resistant security without the need
to overhaul legacy infrastructure.

Multi-Layered Cryptographic Security: The protocol combines multiple layers of
cryptographic techniques, including digital signatures, asymmetric encryption, and authenticated
symmetric encryption, to provide comprehensive protection against a wide range of threats,
including CCA, CPA, man-in-the-middle (MITM) attacks, and replay attacks.

Robust Error Handling: QSMP includes well-defined error detection and correction
mechanisms to ensure communication integrity, with clear error messages and automated session
tear-down procedures in the event of protocol violations or security issues.

Future-Proof Design: The protocol is designed with the modular flexibility to adopt new
cryptographic algorithms and techniques as they emerge, ensuring that it remains secure against
evolving threats and advancements in cryptographic research for many years to come.

These features make QSMP a highly secure, efficient, and future-ready protocol for establishing
encrypted communication channels in environments that require strong post-quantum security.

QSMP-2024 Rev. 1.3a

2: Scope

This document provides a comprehensive description of the QSMP secure messaging protocols,
focusing on establishing encrypted and authenticated communication channels between two
hosts. It outlines the complete processes involved in key exchange, message authentication, and
the establishment of secure communication tunnels using both the QSMP SIMPLEX and
DUPLEX protocols.

2.1 Application

QSMP is designed primarily for institutions and organizations that require secure communication
channels to handle sensitive information exchanged between remote devices. It is ideally suited
for sectors where data confidentiality, integrity, and authenticity are paramount, including
financial institutions, government agencies, defense contractors, and enterprises managing
critical infrastructure.

The protocol is versatile enough to be applied in various settings, such as secure messaging,
VPNs, and other network communication systems where robust encryption and authentication
are essential. QSMP's design ensures that even if the cryptographic landscape changes due to
advancements in quantum computing, its security framework remains resilient and flexible.

Mandatory Protocol Components:

The key exchange, message authentication, and encryption functions defined in this document
are integral to the construction of a QSMP communication stream. These components MUST be
implemented to ensure secure operations and protocol compliance.

Use of Keywords for Compliance:

e SHOULD: Indicates best practices or recommended settings that are not compulsory but
are strongly advised for optimal performance and security.

e SHALL: Denotes mandatory requirements that must be followed to ensure full
compliance with the QSMP protocol. Deviations from these guidelines result in non-
conformity and may compromise the protocol's effectiveness.

2.2 Protocol Flexibility and Use Cases

QSMP is engineered to be highly adaptable, supporting various deployment scenarios ranging
from simple client-server architectures to more complex multi-party distributed systems. This
flexibility makes it ideal for cloud-based infrastructures, secure messaging applications, VPNs,
and IoT networks that demand high-performance encryption and authentication.

Key use cases for QSMP include:

o Institutional Communications: Securely encrypting and authenticating sensitive data
exchanges between financial institutions, government agencies, and corporate networks.

QSMP-2024 Rev. 1.3a

e Internet of Things (IoT): Enabling secure communication for connected devices that
require lightweight, efficient, and scalable encryption protocols to protect data integrity.

e Secure Messaging Platforms: Providing end-to-end encryption for messaging services
that need to resist both classical and quantum attacks.

The protocol's ability to integrate with existing network infrastructure without requiring
extensive modifications ensures that organizations can transition to post-quantum security
seamlessly while maintaining high levels of operational efficiency.

2.3 Compliance and Interoperability

The QSMP protocol is designed to maintain strict compliance with its core cryptographic
principles and industry standards while ensuring interoperability with other secure
communication frameworks. To guarantee that different QSMP implementations can interact
securely, adherence to the standards outlined in this document is crucial.

To facilitate future upgrades and adaptations, QSMP is structured to support modular
cryptographic components. This approach allows for the addition of new cryptographic
primitives or the enhancement of existing ones without disrupting the overall architecture. As
new advancements in cryptographic techniques emerge, QSMP can be easily updated to include
these innovations, maintaining its position as a state-of-the-art security protocol.

Key elements of compliance:

o Interoperability Standards: QSMP is developed to work seamlessly with other post-
quantum cryptographic standards, ensuring that its communication channels can operate
in diverse network environments.

e Modular Design: The protocol's flexible design allows for straightforward upgrades,
facilitating the incorporation of future cryptographic advancements with minimal impact
on existing deployments.

e Powerful Building Block: QSMP is an ideal choice as the core encrypted tunneling and
networking components when constructing new protocols. It uses a simple interface that
wraps the complex interactions governing a key exchange, authentication, and an
encrypted tunnel. A sophisticated multi-threaded networked server can be implemented
with just a few function calls, and a client implementation is similarly simple to employ,
with a simple intuitive API, that makes the complex operations beneath them transparent
to the implementor. New protocols can easily be built on top of QSMP. The two variants
lend to the client-server model and peer-to-peer models of network communications,
providing a ‘black box’ interface for constructing more complex protocols on top of
QSMP.

2.4 Recommendations for Secure Implementation

QSMP-2024 Rev. 1.3a

In addition to outlining the core requirements for QSMP's secure communications model, this
document provides best practice recommendations to enhance implementation security,
performance, and reliability:

Regular Cryptographic Updates: Institutions are advised to keep updated on
developments in post-quantum cryptography and to update their cryptographic algorithms
to maintain compliance with industry standards.

Security Audits and Assessments: Routine security assessments should be conducted to
identify potential vulnerabilities in the protocol implementation and to apply necessary
mitigations.

Infrastructure Optimization: It is recommended to configure network infrastructure in
a way that supports QSMP's low-latency, high-throughput capabilities, ensuring that
performance remains consistent even under heavy loads.

These guidelines aim to help organizations maximize QSMP's security potential, ensuring that
their communication channels remain secure against both current and future threats.

2.5 Document Organization

This document is structured to provide a detailed, logical flow of information about the QSMP
protocol's operation and implementation. It includes the following key sections:

Cryptographic Primitives: Detailed explanations of the mathematical algorithms that
form the foundation of QSMP's encryption and authentication processes.

Key Exchange Mechanisms: Comprehensive breakdowns of how session keys are
established securely through QSMP's SIMPLEX and DUPLEX protocols.

Message Authentication: Detailed descriptions of the techniques used to verify the
authenticity and integrity of messages exchanged within QSMP communications.

Protocol Flows: Visual diagrams and cryptographic pseudocode outlining the message
flows for both SIMPLEX and DUPLEX, illustrating the secure handshake processes and
key exchanges.

Error Handling and Fault Tolerance: Guidelines on how to manage protocol errors and
disruptions while maintaining secure and stable communication channels.

Implementation Examples: Practical examples, code snippets, and detailed use cases
demonstrating the integration of QSMP in various application contexts.

10

QSMP-2024 Rev. 1.3a

3. Terms and Definitions

3.1 Cryptographic Primitives
3.1.1 Kyber

The Kyber asymmetric cipher and NIST Post Quantum Competition winner.

3.1.2 McEliece
The McEliece asymmetric cipher and NIST Round 3 Post Quantum Competition candidate.

3.1.3 Dilithium

The Dilithium asymmetric signature scheme and NIST Post Quantum Competition winner.

3.1.5 SPHINCS+

The SPHINCS+ asymmetric signature scheme and NIST Post Quantum Competition winner.

3.1.6 RCS

The wide-block Rijndael hybrid authenticated symmetric stream cipher.

3.1.7 SHA-3

The SHA3 hash function NIST standard, as defined in the NIST standards document FIPS-202;
SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

3.1.8 SHAKE

The NIST standard Extended Output Function (XOF) defined in the SHA-3 standard publication
FIPS-202; SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

3.1.9 KMAC

The SHA3 derived Message Authentication Code generator (MAC) function defined in NIST
special publication SP800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and
ParallelHash.

3.2 Network References
3.2.1 Bandwidth

The maximum rate of data transfer across a given path, measured in bits per second (bps).

3.2.2 Byte
Eight bits of data, represented as an unsigned integer ranged 0-255.

3.2.3 Certificate

11

QSMP-2024 Rev. 1.3a

A digital certificate, a structure that contains a signature verification key, expiration time, and
serial number and other identifying information. A certificate is used to verify the authenticity of
a message signed with an asymmetric signature scheme.

3.2.4 Domain

A virtual grouping of devices under the same authoritative control that shares resources between
members. Domains are not constrained to an IP subnet or physical location but are a virtual
group of devices, with server resources typically under the control of a network administrator,
and clients accessing those resources from different networks or locations.

3.2.5 Duplex

The ability of a communication system to transmit and receive data; half-duplex allows one
direction at a time, while full-duplex allows simultaneous two-way communication.

3.2.6 Gateway: A network point that acts as an entrance to another network, often connecting a
local network to the internet.

3.2.7 IP Address

A unique numerical label assigned to each device connected to a network that uses the Internet
Protocol for communication.

3.2.8 IPv4 (Internet Protocol version 4): The fourth version of the Internet Protocol, using 32-
bit addresses to identify devices on a network.

3.2.9 IPv6 (Internet Protocol version 6): The most recent version of the Internet Protocol,
using 128-bit addresses to overcome IPv4 address exhaustion.

3.2.10 LAN (Local Area Network)
A network that connects computers within a limited area such as a residence, school, or office
building.

3.2.11 Latency
The time it takes for a data packet to move from source to destination, affecting the speed and
performance of a network.

3.2.12 Network Topology
The arrangement of different elements (links, nodes) of a computer network, including physical
and logical aspects.

3.2.13 Packet
A unit of data transmitted over a network, containing both control information and user data.

3.2.14 Protocol
A set of rules governing the exchange or transmission of data between devices.

12

QSMP-2024 Rev. 1.3a

3.2.15 TCP/IP (Transmission Control Protocol/Internet Protocol)
A suite of communication protocols used to interconnect network devices on the internet.

3.2.16 Throughput: The actual rate at which data is successfully transferred over a
communication channel.

3.2.17 UDP (User Datagram Protocol)
A communication protocol that offers a limited amount of service when messages are exchanged
between computers in a network that uses the Internet Protocol.

3.2.18 VLAN (Virtual Local Area Network)
A logical grouping of network devices that appear to be on the same LAN regardless of their
physical location.

3.2.19 VPN (Virtual Private Network)
Creates a secure network connection over a public network such as the internet.

3.3 Normative References

The following documents serve as references for cryptographic components used by QSTP:

3.3.1 FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable Output
Functions: This standard specifies the SHA-3 family of hash functions, including SHAKE
extendable-output functions. https://doi.org/10.6028/NIST.FIPS.202

3.3.2 FIPS 203: Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM): This
standard specifies ML-KEM, a key encapsulation mechanism designed to be secure against
quantum computer attacks. https://doi.org/10.6028/NIST.FIPS.203

3.3.3 FIPS 204: Module-Lattice-Based Digital Signature Standard (ML-DSA): This standard
specifies ML-DSA, a set of algorithms for generating and verifying digital signatures, believed

to be secure even against adversaries with quantum computing capabilities.
https://doi.org/10.6028/NIST.FIPS.204

3.3.4 NIST SP 800-185: SHA-3 Derived Functions: cSSHAKE, KMAC, TupleHash, and
ParallelHash: This publication specifies four SHA-3-derived functions: cSHAKE, KMAC,
TupleHash, and ParallelHash. https://doi.org/10.6028/NIST.SP.800-185

3.3.5 NIST SP 800-90A Rev. 1: Recommendation for Random Number Generation Using
Deterministic Random Bit Generators: This publication provides recommendations for the
generation of random numbers using deterministic random bit generators.
https://doi.org/10.6028/NIST.SP.800-90Ar1

3.3.6 NIST SP 800-108: Recommendation for Key Derivation Using Pseudorandom

Functions: This publication offers recommendations for key derivation using pseudorandom
functions. https://doi.org/10.6028/NIST.SP.800-108

13

QSMP-2024 Rev. 1.3a

3.3.7 FIPS 197: The Advanced Encryption Standard (AES): This standard specifies the
Advanced Encryption Standard (AES), a symmetric block cipher used widely across the globe.
https://doi.org/10.6028/NIST.FIPS.197

14

QSMP-2024 Rev. 1.3a

4: Cryptographic Primitives

QSMP relies on a set of cryptographic primitives designed to provide resilience against both
classical and quantum-based attacks. The following sections detail the specific cryptographic
algorithms and mechanisms that form the foundation of QSMP's encryption, key exchange, and
authentication processes.

4.1 Asymmetric Cryptographic Primitives

QSMP employs post-quantum secure asymmetric algorithms to ensure the integrity and
confidentiality of key exchanges, as well as to facilitate digital signatures and asymmetric key
exchanges. The primary asymmetric primitives used are:

o Kyber: An IND-CCA secure lattice-based key encapsulation mechanism that provides
secure and efficient key exchange resistant to quantum attacks. Kyber is valued for its
balance between computational speed and cryptographic strength, making it suitable for
scenarios requiring rapid key generation and exchange.

e McEliece: A code-based cryptosystem that remains one of the most established and
trusted post-quantum algorithms. It leverages the difficulty of decoding general linear
codes, offering a high level of security even against advanced quantum decryption
techniques.

o Dilithium: A lattice-based digital signature scheme based on that of the underlying
MLWE and MSIS problems, that offers fast signing and verification while maintaining
strong security guarantees against quantum attacks.

o Sphincs+: A stateless hash-based signature scheme, which provides long-term security
without reliance on specific problem structures, making it robust against future
advancements in cryptographic research.

These asymmetric primitives are selected for their proven resilience against quantum
cryptanalysis, ensuring that QSMP's key exchange and signature operations remain secure in the
face of evolving computational threats.

4.2 Symmetric Cryptographic Primitives

QSMP's symmetric encryption employs the Rijndael Cryptographic Stream (RCS), a stream
cipher adapted from the Rijndael (AES) symmetric cipher to meet post-quantum security needs.
Key features of the RCS cipher include:

e Wide-Block Cipher Design: RCS extends the original AES design with a focus on
increasing the block size (from 128 to 256 bits) and number of transformation rounds
(from 14 to 21 for a 256-bit key, and 30 rounds for a 512-bit key), thereby enhancing its
resistance to differential and linear cryptanalysis.

o Enhanced Key Schedule: The key schedule in RCS is cryptographically strong using
Keccak (cSHAKE), ensuring that derived keys are resistant to known attacks, including
algebraic-based and differential attacks. RCS replaces Rijndael’s cryptographically-weak
key schedule, with a tweakable post-quantum secure key expansion function.

15

QSMP-2024 Rev. 1.3a

o Authenticated Encryption with Associated Data (AEAD): RCS integrates with KMAC
(Keccak-based Message Authentication Code) to provide both encryption and message
authentication in a single operation. This approach ensures that data integrity is
maintained alongside confidentiality. Additional data can be added to the MAC function,
to ensure the integrity of non-encrypted messaging components such as packet headers.

The RCS stream cipher's design is optimized for high-performance environments, making it
suitable for low-latency applications that require secure and efficient data encryption. It
leverages AVX/AVX2/AVX512 intrinsic functions, and AES-NI instructions embedded in
modern CPUs.

4.3 Hash Functions and Key Derivation

Hash functions and key derivation functions (KDFs) are essential to QSMP's ability to transform
raw cryptographic data into secure keys and hashes. The following primitives are used:

e SHA-3: SHA-3 serves as QSMP's primary hash function, providing secure, collision-
resistant hashing capabilities.

o SHAKE: QSMP employs the Keccak SHAKE XOF function for deriving symmetric
keys from shared secrets. This ensures that each session key is uniquely generated and
unpredictable, enhancing the protocol's security against key reuse attacks.

e KMAC: The SHA-3 keyed hashing function (MAC), part of the SHA-3 family of post-
quantum resistant hashing functions.

These cryptographic primitives ensure that QSMP's key management processes remain secure,
even in scenarios involving high-risk adversaries and quantum-capable threats.

16

QSMP-2024 Rev. 1.3a

5. Protocol Components and State Structures

5.1 Protocol String

The protocol string in QSMP is composed of four key components, each representing a specific
cryptographic element used in the secure communication process:

1. Asymmetric Signature Scheme: Specifies the signature scheme along with its security
strength (e.g., s1, s3, s5) from low to high. Example: dilithium-s3 correlates to the NIST
level 3 security designation (192 bits of post-quantum security).

2. Asymmetric Encapsulation Cipher: Defines the asymmetric encryption algorithm and
its security strength. Example: mceliece-s5.

3. Hash Function Family: The designated hash function used within the protocol, which is
set as SHA3.

4. Symmetric Cipher: The symmetric cipher used for data encryption, set as the
authenticated stream cipher RCS.

The protocol string plays a crucial role during the initial negotiation phase to ensure that both the
client and server agree on a common set of cryptographic parameters. If the client and server do
not support the same protocol settings, a secure connection cannot be established.

Signature Scheme | Asymmetric Cipher HASH Function Symmetric Cipher
Dilithium Kyber SHA3 RCS
Dilithium McEliece SHA3 RCS
Sphincs+ McEliece SHA3 RCS

Table 5.1: The Protocol string choices in revision QSMP 1.3a.

5.2 Client Key Structure

The client key is a publicly exportable structure that contains the signature verification key and

associated metadata. It includes parameters such as the key expiration time, protocol string,
public signature verification key, and key identity array.

Parameter Data Type Bit Length Function

Expiration Uint64 64 Validity check
Configuration Uint8 array 320 Protocol check
Key ID Uint8 array 128 Identification
Verification Key Uint8 array Variable Authentication

Table 5.2: The client key structure.

o Expiration: A 64-bit unsigned integer indicating the number of seconds since the epoch
(01/01/1900) until the UTC time when the key remains valid. If the key has expired, the
client must request a new public key from the server.

17

QSMP-2024 Rev. 1.3a

o Configuration: Contains the protocol string that defines the cryptographic parameters. If
the protocol string on both hosts does not match, the connection is aborted.

o Key ID: A unique identifier for the public verification key, facilitating quick reference on
the server.

o Verification Key: The public asymmetric signature verification key used for
authenticating asymmetric encapsulation keys and data during the key exchange.

The client key can be distributed openly or could be enveloped and signed using X.509
certificates to create a chain of trust, enhancing its security in diverse environments.

5.3 Server Key Structure

The server key is a private (secret) key retained by the server. It contains all elements of the
client key plus an additional parameter, the asymmetric signing key.

Data Name Data Type Bit Length Function
Expiration Uint64 64 Validity check
Configuration Uint8 array 320 Protocol check
Key ID Uint8 array 128 Identification
Verification Key Uint8 array Variable Authentication
Signing Key Uint8 array Variable Signing

Table 5.3: The server key structure.

The inclusion of the signing key in the server key structure allows the server to sign messages
during the key exchange, ensuring that data exchanges are authenticated and trusted.

5.4 Keep Alive State

QSMP SIMPLEX uses an internal keep-alive mechanism to maintain active connections. The
server periodically sends a keep-alive packet to the client, which the client must acknowledge
within the defined interval.

Parameter Data Type Bit Length Function
Expiration Time Uint64 64 Validity check
Packet Sequence Uint64 64 Protocol check
Received Status Bool 8 Status

Table 5.4: The keep alive state.

If the server does not receive a response within the timeout period, it logs a keep-alive error and
terminates the connection to prevent stale sessions.

5.5 Connection State

18

QSMP-2024 Rev. 1.3a

The internal connection state structure stores the critical data required by QSMP operations,

including cipher states, sequence counters, and the ratchet key.

Data Name Data Type Bit Length Function
Target Socket struct 664 Validity check
Cipher Send State Structure Variable Symmetric Encryption
Cipher Receive State Structure Variable Symmetric Decryption
Receive Sequence Uint64 64 Packet Verification
Send Sequence Uint64 64 Packet Verification
Connection Instance Uint32 32 Identification
KEX Flag Uint8 8 KEX State Flag
Ratchet Key Uint8 array 512 Symmetric Ratchet
PkHash Uint8 array 256 Authentication
Session Token Uint8 array 256 Authentication
ExFlag Uint8 8 Protocol Check

Table 5.5: The connection state structure.

This data structure ensures secure handling of connection parameters, packet sequencing, and
cryptographic states during active communication sessions.

5.6 Duplex Client KEX State

The Duplex client key exchange (KEX) state holds information about asymmetric and symmetric

keys during the key exchange process.

Data Name Data Type Bit Length Function

Key ID Uint8 array 128 Key Identification
Session Token Uint8 array 512 Verification

Private Cipher Key Uint8 array Variable Asymmetric Encryption
Public Cipher Key Uint8 array Variable Asymmetric Encryption
Remote Verification Key Uint8 array Variable Asymmetric Authentication
Signature Key Uint8 array Variable Asymmetric Authentication
Shared Secret Uint8 array 256 Symmetric Key
Verification Key Uint8 array Variable Asymmetric Authentication
Expiration Uint64 64 Verification

Table 5.6: The Duplex client KEX state structure.

This state ensures that all required keys and tokens are securely managed throughout the key

exchange process.

5.7 Duplex Server KEX State

19

QSMP-2024 Rev. 1.3a

The Duplex server KEX state structure mirrors the client state, with additional functionality for
handling server-specific key queries.

Data Name Data Type Bit Length Function

Key ID Uint8 array 128 Key Identification
Session Token Uint8 array 512 Verification

Private Cipher Key Uint8 array Variable Asymmetric Encryption
Public Cipher Key Uint8 array Variable Asymmetric Encryption
Remote Verification Key Uint8 array Variable Asymmetric Authentication
Signature Key Uint8 array Variable Asymmetric Authentication
Shared Secret Uint8 array 256 Symmetric Key
Verification Key Uint8 array Variable Asymmetric Authentication
Expiration Uint64 64 Verification

Key Query Callback Uint64 64 Function Pointer

Table 5.7: The Duplex server KEX state structure.

5.8 Simplex Client KEX State

The Simplex protocol's client and server state structures focus on one-way authentication, storing
essential key exchange data:

Data Name Data Type Bit Length Function

Key ID Uint8 array 128 Key Identification
Session Token Uint8 array 512 Verification
Remote Verification Key Uint8 array Variable Asymmetric Authentication
Signature Key Uint8 array Variable Asymmetric Authentication
Shared Secret Uint8 array 256 Symmetric Key
Verification Key Uint8 array Variable Asymmetric Authentication
Expiration Uint64 64 Verification

Table 5.7: The Simplex client KEX state structure.

5.9 Simplex Server KEX State

The Simplex server state structure stores the asymmetric cipher and signature keys used during
the key exchange execution.

Data Name Data Type Bit Length Function

Key ID Uint8 array 128 Key Identification
Session Token Uint8 array 512 Verification
Private Cipher Key Uint8 array Variable Asymmetric Encryption
Public Cipher Key Uint8 array Variable Asymmetric Encryption

20

QSMP-2024 Rev. 1.3a

Signature Key Uint8 array Variable Asymmetric Authentication
Shared Secret Uint8 array 256 Symmetric Key
Verification Key Uint8 array Variable Asymmetric Authentication
Expiration Uint64 64 Verification

Table 5.8: The Simplex server KEX state structure.

5.10 QSMP Packet Header

The QSMP packet header is 21 bytes in length, and contains:

1. The Packet Flag, the type of message contained in the packet; this can be any one of the

key-exchange stage flags, a message flag, or an error flag.

2. The Packet Sequence, this indicates the sequence number of the packet in the exchange.

[98)

The Message Size, this is the size in bytes of the message payload.

4. The UTC time, the time the packet was created, used in an anti-replay attack mechanism.

The message is a variable sized array, up to QSMP_MESSAGE MAX in size.

Packet Flag
1 byte

Packet Sequence

8 bytes

Message Size UTC Time

4 bytes

8 bytes

Message

Variable Size

Figure 5.7: The QSMP packet structure.

This packet structure is used for both the key exchange protocol, and the communications

stream.

5.11 Flag Types

The following is a list of packet flag types used by QSMP:

Flag Name Numerical Value Flag Purpose

None 0x00 No flag was specified, the default value.

Connect Request 0x01 The key-exchange client connection
request flag.

Connect Response 0x02 The key-exchange server connection
response flag.

Connection Terminated 0x03 The connection is to be terminated.

Encrypted Message 0x04 The message has been encrypted by the

21

communications stream.

QSMP-2024 Rev. 1.3a

Exchange Request
Exchange Response
Establish Request
Establish Response

Keep Alive Request
Keep Alive Response

Remote Connected
Remote Terminated

Session Established
Establish Verify

Unrecognized Protocol

Asymmetric Ratchet Request
Asymmetric Ratchet Response

Symmetric Ratchet Request

Error Condition

Table 5.8: Packet header flag types.

5.12 Error Types

The following is a list of error messages used by QSMP:

Error Name

0x07

0x08

0x09

0x0A

0x0B
0x0C

0x0D

0x0E

0xOF
0x10
0x11
0x12

0x13

0x14

0xFF

Numerical Value

The key-exchange client exchange request
flag.

The key-exchange server exchange
response flag.

The key- exchange client establish request
flag.

The key- exchange server establish
response flag.

The packet contains a keep alive request.

The packet contains a keep alive
response.

The remote host has terminated the
connection.

The remote host has terminated the
connection.

The session is in the established state.
The session is in the verify state.
The protocol string is not recognized

The packet contains an asymmetric
ratchet request.

The packet contains an asymmetric
ratchet response.

The packet contains a symmetric ratchet
request.

The connection experienced an error.

Description

None

Authentication Failure

Bad Keep Alive
Channel Down

Connection Failure
Connect Failure

Decapsulation Failure

0x00
0x01

0x02
0x03
0x04

0x05

0x06

22

No error condition was detected.

The symmetric cipher had an
authentication failure.

The keep alive check failed.
The communications channel has failed.

The device could not make a connection
to the remote host.

The transmission failed at the KEX
connection phase.

The asymmetric cipher failed to
decapsulate the shared secret.

QSMP-2024 Rev. 1.3a

Establish Failure
Exstart Failure
Exchange Failure

Hash Invalid
Invalid Input
Invalid Request
Keep Alive Expired

Key Expired

Key Unrecognized
Packet Un-Sequenced
Random Failure
Receive Failure

Transmit Failure

Verify Failure
Unknown Protocol
Listener Failure

Accept Failure
Hosts Exceeded

Allocation Failure
Decryption Failure
Ratchet Failure

Table 5.9: Error type messages.

0x07

0x08

0x09

0x0A
0x0B
0x0C
0x0D

0x0E
0xOF
0x10
0x11
0x12
0x13

0x14
0x15
0x16
0x17

0x18

0x19
0Ox1A
0x1C

23

The transmission failed at the KEX
establish phase.

The transmission failed at the KEX
exstart phase.

The transmission failed at the KEX
exchange phase.

The public-key hash is invalid.
The expected input was invalid.
The packet flag was unexpected.

The keep alive has expired with no
response.

The QSMP public key has expired.

The key identity is unrecognized.

The packet was received out of sequence.
The random generator has failed.

The receiver failed at the network layer.

The transmitter failed at the network
layer.

The expected data could not be verified.
The protocol string was not recognized.
The listener function failed to initialize.

The socket accept function returned an
error.

The server has run out of socket
connections.

The server has run out of memory.
The decryption authentication has failed.
The ratchet operation has failed.

QSMP-2024 Rev. 1.3a

6. Duplex Protocol Operational Overview

During the device initialization phase, clients generate an asymmetric signature key-pair. This
pair consists of a private key, which the client uses to sign messages in the key exchange, and a
public key, which is shared with other hosts and used to verify a message signature. The public
key contains the asymmetric signature verification key, a key identity array, the protocol
configuration string, and the key expiration date.

These public/private signature keys, generated by the clients, function as the primary
authentication keys. The public verification keys can be distributed to other clients via a trusted
intermediary, such as a server using a directory service, to ensure secure distribution.

Within the Duplex protocol, participating clients are assigned roles during the connection stage
as either a listener, which accepts network connection requests, or a sender, which initiates the
connection request, but a device can be both, initiating or accepting a connection. For the
purposes of providing clarity, the listener shall be described in this process as the server, and the
sender as the client.

The sender begins the connection process, and if the listener recognizes the sender’s key-id as
valid, the key exchange sequence is initiated. During this exchange, the asymmetric cipher keys
and ciphertext are signed, verified, and mutually exchanged between the sender and listener. This
process results in the generation of a pair of shared secrets, which are used to key symmetric
cipher instances for both transmitting and receiving data in a set of secure communication
channels.

If an error occurs during the key exchange the affected sender or listener immediately sends an
error message to the other host, disconnects, and terminates the session. Error handling includes
checks for message synchronization, timing, expected message size during the key exchange,
authentication failures, packet expiration, and any internal errors triggered by cryptographic or
network operations integral to the key exchange and communication flow.

24

QSMP-2024 Rev. 1.3a

6.1 Connection Request

Create the message hash by hashing the packet header, local key-id, and configuration string.

KeylD e Config —m» Packet Header Message Hash

Create the signed hash inputing the signing key and message hash.

Message Hash —>{ Signing Key Signed Hash

Create the session cookie by hashing the local and remote verification keys, remote key-id, and configuration string.

Verification Key L 3w Verification Key R |—» KeyiD |- Config

The client sends the connect request to the server.

A

Key-1D Config Signed Hash | Connect Request :>

Figure 6.1: QSMP Duplex connection request.

1) The client initiates the key exchange operation by sending a connection request packet to the
server. This packet includes the server’s key identification array, the protocol configuration
string, and a signed hash of the message including the serialized packet header.

2) The packet header fields are verified by the server; message size, sequence number, flag, and
the timestamp, all of which are added to the message hash, the message hash is signed, and
this guarantees protection from replay attacks.

3) The client generates a hash of the protocol string, along with both the client’s and server’s
asymmetric signature verification keys, and the remote key ID, and stores this information in
the session cookie (sch) state value for later use in the key exchange. This ensures that the
correct verification keys and cryptographic parameters are referenced throughout the key
exchange process.

25

QSMP-2024 Rev. 1.3a

6.2 Connection Response

The server receives the connect request from the client.

A
r)l
Key-ID Config Signed Hash
Key Database Decision Eng!ne Connection Rejected
Accept | Decline

v

Verify the signed hash inputing the verification key and the signed message hash.

Signed Hash —p Verivication Key MessageHash

Create the message hash by hashing the packet header, key-id, and configuration string from the message.

KeylD | Config I—»| Packet Header

Message Hash Copy

Compare the signed hash with the local message hash

Message Hash Compare Message Hash Copy

Generate the asymmetric cipher keys.

Frivate Key
Public Key

<

Signing Key

Store Private Key

Generate
G 1

Create the message hash.

Packet Header

Message Hash

Sign the message hash.

Message Hash

Signed Hash

Create the session cookie by hashing the local and remote verification keys, key-id, and configuration string.

Session Cookie

Verification Key L || Verification Key R || KeyiD [Config

The server sends the connect response fo the client

A
r 1

Puii Key Signed Hash

Figure 6.2: QSMP server connection response.

26

QSMP-2024 Rev. 1.3a

1)

2)

3)

4)
S)

6)

7)
8)

9)

The server inspects the packet header for the correct flag, sequence number, expected
message size, and that the packet valid-time has not expired.

The server checks its database for a key matching the key identification array sent by the
client in the connect request message. The verification key is retrieved or the exchange is
aborted. If the key is not known to the server, the server sends a key unrecognized error
message to the client.

The server compares the configuration string contained in the message against its own
protocol string for a match. If the protocol configuration strings do not match, the server will
send an unknown protocol error to the client and close the connection.

The server verifies the key’s expiration time, and if all fields are valid, loads the key into
state. If the client’s key has expired, the server will send a key expired error message.

The server checks the signature of the client’s message hash using the client’s signature
verification key.

If the signature is authenticated, the server hashes the key-id, the config string, and the
serialized connect request packet header, and compares this hash to the signed hash it
received from the client for equivalence, as the final stage of verification of the message. In
any protocol failure occurs, the server notifies the client, closes the connection, and logs the
event, and the client is expected to close the connection, and pass the error up to the user
interface software, that can initiate actions or inform the user of the cause of the failure.
The server generates a public/private asymmetric cipher key-pair.

The server hashes the public encapsulation key and the serialized connect response packet
header, and signs the hash with its asymmetric signature signing key. The client has a copy of
the asymmetric signature verification key, that will be used to verify this signature.

The server stores the private asymmetric cipher key temporarily in its state.

10) The server hashes the key-id array, the configuration string, and the local and remote copies

of the signature verification keys, and stores the hash in its session cookie state value sch, for
use as a session cookie.

11) The server adds the public asymmetric encapsulation key, and the public key’s signed hash,

to the connect response message, and sends it to the client.

27

QSMP-2024 Rev. 1.3a

6.3 Exchange Request

The client receives the connect response from the server.

A
r 1

Verify the signature, input the verification key and the signed message hash.

Signed Hash —l‘ Verification Key MessageHash

Create the message hash by hashing the packet header, and encapsulation key from the message.

Encapsulation Key |—»| Packet Header Message Hash C

Compare the signed hash with the local message hash

Message Hash ‘W Message Hash Copy

Encapsulate the first shared secret.

Shared Secret
Ciphertext

Encapsulate
c= Epk(}

Create the message hash.

Packet Header

Generate the cipher key-pair.

Generate
pk.sk= G(h r

Sign the message hash.

Message Hash

The client sends the exchange request to the server.

A,
r 1

Ciphertext Public Key Slaned Message

Figure 6.3: QSMP client exchange request.

28

QSMP-2024 Rev. 1.3a

1)
2)

3)

4)

5)

6)

The client inspects the connect response packet header for the correct flag, sequence number,
expected message size, and that the valid-time has not expired.

The client uses the server's public signature verification key to validate the signature on the
message hash.

If the signature verification is successful, the client hashes the asymmetric cipher key and
connection response packet header and compares this hash to the signed hash received from
the server. If the signature verification fails, the client sends an authentication failure
message to the server and terminates the connection. Similarly, if the hash comparison fails,
the client sends a hash invalid error message and closes the connection.

Once the signature and hash have been successfully authenticated, the client uses the
asymmetric cipher key to encapsulate a shared secret, generating a ciphertext that will be sent
to the server. This ciphertext will be used by the server to decapsulate the shared secret,
which the client securely stores for later use in deriving the session keys.

The client generates a new asymmetric encapsulation key-pair, and stores the private key.
The client hashes the public key, the ciphertext, and the serialized exchange request packet
header, signing the hash using its private signing key.

The client adds the asymmetric ciphertext, the public encryption key, and the signed hash to
the exchange request packet, which is sent to the server to continue the key exchange
process.

29

QSMP-2024 Rev. 1.3a

6.4 Exchange Response

The server receives the exchange request from the client.

r)

Ciphertext Encapsulation Key Signed Hash

Verify the signature, input the verification key and the signed message hash.

Signed Hash —m Verification Key MessageHash

Create the message hash copy by hashing the packet header, ciphertext, and encapsulation key.

Ciphertext —» Encapsulation Key |—m Packet Header Message Hash Copy

Compare the signed hash with the generated message hash

Message Hash w— Message Hash Copy

Encapsulate the shared secret in ciphertext.

Shared Secret 1
Ciphertext

Encapsulate
Epk(r)

Create the message hash.

Packet Header

Message Hash
Decapsulate the clients shared secret.
Ciphertext Shared Secret 2

Combine the two shared secrets and the session cookie and generate the session keys.

Shared Secret 1
Session Key Tx

Shared Secret 2
Session Key Rx

Sign the message hash.

Decapsulate
g3, opt = -Epyy

Signing Key

Message Hash

Signed Hash

The server sends the exchange response to the client.

J
r 1

Ciphertext Signed Hash

30

QSMP-2024 Rev. 1.3a

Figure 6.4: QSMP server exchange response.

D
2)
3)
4)
5)
6)
7)

8)

The server inspects the packet header for the correct flag, sequence number, expected
message size, and that the valid-time has not expired.

The server verifies the signature of the hash of the message and packet header using the
client’s signature verification key.

The server hashes the public key, cipher-text, and serialized exchange request header, and
verifies the hash for equivalence to the one contained in the signed hash.

The server uses the stored asymmetric cipher private key to decapsulate the first shared
secret.

The server uses the public key sent by the client to generate a new shared secret and
encapsulate it in ciphertext.

The two shared secrets and the session cookie are used to key a KDF, which derives the two
symmetric session keys (¢£x and rx) on the server.

The symmetric cipher instances are keyed with the session keys, raising both the transmit and
receive channels of the encrypted tunnel.

The cipher-text and exchange response header are hashed, the hash is signed by the server’s
private asymmetric signature key, and these are sent back to the client in an exchange
response packet.

31

QSMP-2024 Rev. 1.3a

6.5 Establish Request

The client receives ihe exchange response from the server.

XL

I Exchange Response > Ciphertext Signed Hash

Verify the signature, input the verification key and the signed message hash.

Signed Hash —)[Verivication Key] MessageHash

Create the message hash copy by hashing the packet header and ciphertext.

Ciphertext | Packet Header Message Hash Caopy

Compare the signed hash with the generaied message hash

Message Hash —W Message Hash Copy

Decapsulate the servers shared secret.
Ciphertext Shared Secret 2

Combine the two shared secrets and the session cookie and generate the session keys.

Shared Secret 1

Session Key Tx
Shared Secret 2

Session Key Rx

EncryptMAC the session cookie. adding the cipheriext, and establish request header to the MAC.

Packet Header

Encrypt/MAC
ot = Byizcn 2

Decapsulate
25 = -Egueoy

Session Cookie

Ciphertext

!

The client sends the establish request to the server.

—

Figure 6.5: QSMP client establish request.

32

QSMP-2024 Rev. 1.3a

1)
2)
3)
4)
S)
6)

7)

The client inspects the packet header for the correct flag, sequence number, expected
message size, and that the valid-time has not expired.

The client extracts the asymmetric ciphertext and the signed hash of the ciphertext. It uses the
server’s public verification key to verify the signature on the hash, ensuring its authenticity.
The client hashes the ciphertext and the serialized exchange response header, and compares
the generated hash with the signed hash. If the hashes match, the client confirms the integrity
of the data.

The client decapsulates the shared secret from the ciphertext.

The client combines this shared secret with the previously stored shared secret and the
session cookie to key a KDF which derives the (x and #x) symmetric session keys.

The session keys are used to initialize the transmit and receive symmetric cipher instances,
establishing both transmit and receive channels of the encrypted tunnel.

The client encrypts the session cookie with the zx instance of the symmetric ciphers, and adds
the serialized establish request header to the additional data of the AEAD stream cipher
(RCS).

33

QSMP-2024 Rev. 1.3a

6.6 Establish Response

The server receives the establish request from the client.

I Establish Request > Ciphertext

MAC and decrypt the cipherext sent by the client.

Packet Header

MAC/Decrypt
SC" = -Eyept, sh)

Session Cookie Copy

Ciphertext

Compare the message with the session cookie for eguivalence.

Session Cookie Compare Session Cookie Copy

Hash the session cooki

Session Cookie [——» Message Hash

Encrypt/MAC the message hash, adding the cipheriext and establish response header to the MAC.

e.

Packet Header

Encrypt/MAC
cot = Ekujmh. zh)

Message Hash Ciphertext

The server sends the establish response to the client.

J
r 1

Cipheriest Signed Hash

Figure 6.6: QSMP server establish response.

1) The server inspects the packet header for the correct flag, sequence number, expected
message size, and that the valid-time has not expired.

2) The server decrypts the ciphertext using the 7x cipher instance, adding the serialized
establish request packet header as additional data.

3) The message is compared to the session cookie for equivalence. If the decryption
succeeds and the message equals the session cookie, the session cookie is hashed.

QSMP-2024 Rev. 1.3a

4) The hashed session cookie is encrypted using the #x cipher instance, adding the serialized
establish response packet header to the cipher MAC.

5) The message is sent to the client, and the tunnel interface is changed to the active state on
the server.

35

QSMP-2024 Rev. 1.3a

6.7 Establish Verify

The client receives the establish response from the server.

—

Establish Response > Ciphertext

MAC and decrypt the cipheriext sent by the server.

Packet Header

MAC/Decrypt

hsch = -Eyept, oh)

Ciphertext Message Hash
Hash the session cookie.

Session Cookie |——» Session Cookie Hash

Compare the message with the session cookie hash for equivalence.

Session Cookie Hash —@' Message Hash

Figure 6.7: QSMP client establish request.

1) The client inspects the packet header for the correct flag, sequence number, expected
message size, and that the valid-time has not expired.

2) The client decrypts the ciphertext using the rx instance of the cipher, adding the serialized
established request packet header to the cipher MAC.

3) The client hashes the session cookie, and compares it to the decrypted message for
equivalence.

4) If the hashes are equal, the tunnel state is changed to active, and the encrypted tunnel
interfaces are now ready to process data.

36

QSMP-2024 Rev. 1.3a

6.8 Asymmetric Ratchet

The [optional] asymmetric ratchet mechanism in QSMP injects new entropy by periodically re-
keying the symmetric ciphers. This process involves combining a hash of the original session
key with new keying material obtained through an asymmetric key exchange.

When the primary key exchange operation establishes the encrypted tunnel, the primary session
keys for both the receive and transmit channels are hashed, and this hash is stored in a persistent
ratchet state. This ratchet state forms the foundation for future re-keying operations.

Upon invocation of the asymmetric ratchet function, the initiator generates a new asymmetric
cipher key pair and transmits the public key to the remote host over the existing encrypted
tunnel. Before transmission, the public key is hashed, and this hash is signed using the initiator's
private signature key to ensure its authenticity.

The receiving host verifies the signature using the initiator's public signature verification key. If
the signature is valid, the host hashes the received public key and compares it to the signed hash
as an additional validation step. Upon successful verification, the host uses the verified public
key to generate a new shared secret and corresponding ciphertext. This shared secret is then
hashed, along with the hash of the original session key, and used to key the KDF and derive a
new set of session keys, which are used to re-key the transmit and receive channels of the
symmetric cipher instances.

The receiving host hashes the new ciphertext and signs the hash using its private signature key,
sending this signed hash and ciphertext back to the initiator. The initiator then verifies the
signature using its stored copy of the receiving host’s public signature verification key. If the
signature and hash checks are successful, the initiator decrypts the ciphertext to obtain the shared
secret, which is then added to a KDF with the initial session key hash to create new symmetric
session keys for both transmit and receive channels.

The persistent ratchet key state is updated by hashing these new session keys, preparing it for the
next invocation of the ratchet mechanism. This process can be initiated by either the sender or
the receiver, allowing either party to enhance the security of the communication stream.

The asymmetric ratchet can be triggered by the hosting software under various conditions, such
as after a specific amount of data has been transmitted, when starting a new session with
persistent keys, or even after each individual message exchange. This dynamic mechanism
provides robust forward security, ensuring that an adversary cannot derive previous keys from
the current key, and predictive resistance, preventing future keys from being derived from the
current state alone.

37

QSMP-2024 Rev. 1.3a

6.9 Symmetric Ratchet

The [optional] symmetric ratchet mechanism in QSMP periodically updates the symmetric
session keys using a randomly generated token. This process introduces new entropy into the
encrypted stream and ensures that even if the current session keys are compromised, past keys
remain secure.

The initiator of the symmetric ratchet generates a random token and transmits it over the
encrypted channel. After sending the encrypted key, the initiator hashes this token together with
the persistent ratchet key, which itself is a hash of the initial session key stored in the ratchet
state. The combined hash of the random token and the ratchet key is added to the key derivation
function and used to derive a new set of session keys. These derived session keys are used to re-
key the symmetric cipher instances for both the transmit and receive channels, ensuring forward
secrecy.

On the receiving end, the receiver decrypts the random token, then hashes it along with the
ratchet key from its own persistent state. The resulting hash is used to key the KDF and derive
the new symmetric session keys, which are then applied to re-key the transmit and receive
channels.

This symmetric ratchet mechanism offers strong forward secrecy, it ensures that the knowledge
of the current state alone is not sufficient to determine any of the previous session keys. This
continuous re-keying process prevents attackers from gaining insight into past communications,
even if they manage to compromise the current session key.

38

QSMP-2024 Rev. 1.3a

7: Simplex Protocol Operational Overview

The Simplex exchange is a one-way-trust client-server key exchange model in which the client
trusts the server, and a single shared secret is securely exchanged between them. Designed for
efficiency, the Simplex exchange is fast and lightweight, while providing 256-bit post-quantum
security, ensuring protection against future quantum-based threats.

This protocol is versatile and can be used in a wide range of applications, such as client
registration on networks, secure cloud storage, hub-and-spoke model communications,
commodity trading, and electronic currency exchange—essentially, any scenario where an
encrypted tunnel using strong quantum-safe cryptography is required.

The server in this model is built as a multi-threaded communications platform capable of
generating a uniquely keyed encrypted tunnel for each connected client. With a lightweight state
footprint of less than 4 kilobytes per client, a single server instance has the capability to handle
potentially hundreds of thousands of simultaneous connections. The cipher encapsulation keys
utilized during each key exchange are ephemeral and unique, ensuring that every key exchange
remains secure and independent from previous key exchanges.

The server distributes a public signature verification key to its clients. This key is used to
authenticate the server's public cipher encapsulation key during the key exchange process. The
server's public verification key can be shared with clients through various secure methods,
including during a registration event, pre-embedding in client software, or via other secure
distribution channels.

39

QSMP-2024 Rev. 1.3a

7.1 Connection Request

Create the session cookie by hashing the verification key, key-id, and configuration string.

Verification Key |—» KeylD [Config

The client sends the connect request message to the server.

1
f |

Key-ID Config [connect Request :>

Figure 7.1: QSMP Simplex connection request.

1) The client begins the key exchange operation by sending a connect request packet to the
server. This packet contains the server’s key identification array and the protocol
configuration string.

2) The client hashes the configuration string, the key identification array, and its signature
verification key. This combined hash is stored in the session cookie state value (sch) and is
used as a unique session identifier. This approach ensures that the session's cryptographic
parameters are referenced and that the session state is uniquely identifiable.

3) The client adds the key-id and the configuration string, and sends the connection request to
the server.

40

QSMP-2024 Rev. 1.3a

7.2 Connection Response

The server receives the connect request from the client.

A
r 1
Connect Request > Key-1D Config
Key Database Decision Eng!ne Connection Rejected
Accept | Decline

!

Store Private Key

Generate the asymmetric cipher keys.

Private Key
Public Key

Generate
Gk n

Create the message hash.

Packet Header

Message Hash

Signing Key

Sign the message hash.

Message Hash

Signed Hash

Create the session cookie by hashing the verification key, key-id, and configuration string.

Verification Key —» KeylD | Config

The server sends the connect response to the client.

J
r 1

Public Key Signed Hash | Connect Response >

Figure 7.2: QSMP server connection response.

1) The server inspects the packet header for the correct flag, sequence number, expected
message size, and that the valid-time has not expired.

2) The server checks its database for a key that matches the key identification array provided in
the request. If the verification key is not found, the server sends an unknown key error
message to the client, aborts the key exchange, logs the event, and tears down the session.

3) The server compares the protocol configuration string sent by the client with its own stored
protocol string to ensure compatibility.

41

QSMP-2024 Rev. 1.3a

4) The server verifies the expiration time of the key. If all these fields are validated
successfully, the server loads the key into its active state.

5) The server hashes the configuration string, the key identification array, and its signature
verification key, and stores this combined hash in its session cookie state value (sch).

6) The server generates a new public/private asymmetric cipher key pair. It hashes the public
encapsulation key and the serialized connection response packet header, and signs this hash
with its private signing key.

7) The server adds the public asymmetric encapsulation key and the signed hash of the public
key to the connect response message and sends it to the client to continue the key exchange
process.

42

QSMP-2024 Rev. 1.3a

7.3 Exchange Request

The client receives the connect response from the server.

X

I Connect Response > Encapsulation Key Slgnea;‘lﬁssage

Verify the signed hash inputing the verification key and the signed message hash.

Signed Hash —)| Verification Key MessageHash

Create the message hash by hashing the packet header and encapsulation key.

Encapsulation Key |—m| Packet Header Message Hash Copy

Compare the signed hash with the local message hash

Message Hash w’ Message Hash Copy

Encapsulate the shared secret in cipheriext

Shared Secret
Ciphertext

Combine the shared secret and the session cookie and generaie the session keys.

Encapsulate
Eck(r)

Shared Secret Session Key Tx

Session Cookie Session Key Rx

The client sends the exchange request to the server.

"

Figure 7.3: QSMP client exchange request.

I

1) The client inspects the packet header for the correct flag, sequence number, expected
message size, and that the packet valid-time has not expired.

2) The client uses the server’s signature verification key to verify the signature on the hash of
the asymmetric encapsulation key and serialized packet header. If the signature verification
fails, the client sends an authentication failure message and terminates the connection.

3) If the signature is successfully verified, the client hashes the asymmetric cipher key and
serialized header, and compares this hash to the signed hash in the server's response message.

43

QSMP-2024 Rev. 1.3a

4)
5)
6)

7)

If the hash check fails, the client sends a hash invalid error message and closes the
connection.

The client uses the asymmetric cipher key to encapsulate a shared secret, creating the
ciphertext.

The shared secret is combined with the session cookie to key the KDF, which generates the
symmetric cipher keys and nonces used to key the transmit and receive cipher instances.

The cipher rx and #x symmetric instances are initialized and ready to transmit and receive
data.

The asymmetric ciphertext is added to the exchange request packet, which the client sends to
the server.

44

QSMP-2024 Rev. 1.3a

7.4 Exchange Response

The server receives the exchange request from the client.

——

Exchange Request > Ciphertext

Decapsulaie the clienis shared secret.

Ciphertext Shared Secret

Combine the two shared secreis and ihe session cookie and generaie the session keys.

Shared Secret Session Key Tx

The server sends the exchange response to the client.

—

Flag Exchange Response

Figure 7.4: QSMP server exchange response.

Decapsulate
88 = 'E:uku; cpt)

1) The server inspects the packet header for the correct flag, sequence number, expected
message size, and that the valid-time has not expired.

2) The server uses its stored asymmetric cipher private key to decapsulate the shared secret
from the ciphertext.

3) The decapsulated shared secret is combined with the session cookie to derive the two
symmetric session keys and nonces.

4) These derived session keys are used to initialize the symmetric cipher instances, activating
both the transmit and receive channels of the encrypted tunnel.

45

QSMP-2024 Rev. 1.3a

7.5 Establish Verify

The client receives the exchange response from the server.

———

I Exchange Response > Flag

Figure 7.5: QSMP client establish request.

1) The client inspects the packet header for the correct flag, sequence number, expected
message size, and that the valid-time has not expired.

2) The client verifies that the encrypted tunnel is now active and fully operational. If the packet
contains an error flag, indicating that an issue occurred during the tunnel setup, the client
immediately initiates a connection teardown.

3) The client should then handle the error according to its predefined procedures, ensuring the
user or application is informed of the failure.

46

QSMP-2024 Rev. 1.3a

Mathematical Symbols

— o >

Epk
S sk

g
CPIix
CPrix
cpt
cpta

k, mk
KDF
kid
Mk
pk, sk
pvk
sch

sec

spkh

-Assignment and direction symbols

-Equality operators; assign, not equals, evaluate

-The client host, initiates the exchange

-The server host, listens for a connection

-The asymmetric cipher key generation with parameter set and random source
-The asymmetric decapsulation function and secret key

-The asymmetric encapsulation function and public key

-Sign data with the secret signature key

-Verify a signature the public verification key

-The protocol configuration string

-A receive channels symmetric cipher instance

-A transmit channels symmetric cipher instance

-The symmetric ciphers cipher-text

-The asymmetric ciphers cipher-text

-The symmetric decryption function and key

-The symmetric encryption function and key

-The hash function (SHA3)

-A symmetric cipher or MAC key

-The key expansion function (SHAKE)

-The public keys unique identity array

-The MAC function and key (KMAC)

-Asymmetric public and secret keys

-Public signature verification key

-A hash of the configuration string and and asymmetric verification-keys
-The shared secret derived from asymmetric encapsulation and decapsulation

-The signed hash of the asymmetric public encapsulation-key

47

QSMP-2024 Rev. 1.3a

8 QSMP Duplex Formal Description

Duplex Key Exchange Sequence
Preamble:

The Duplex key exchange is designed to facilitate secure communication in a peer-to-peer
architecture. Each client in the network has a unique signature verification key, which is shared
with other clients to authenticate communications.

These signature verification keys can be exchanged using a host lookup system, where a client
queries a server that maintains a database of clients on its network. Upon receiving a request, the
server checks the client's authorization status and, if approved, returns information about the
target client, including its public signature verification key. This key can then be cached on the
querying client for as long as the key expiration time remains valid.

Additionally, the server could act as a central point of authentication by signing client
verification keys, thereby enhancing the trustworthiness of key exchanges.

In the Duplex architecture, since one node must initiate the connection while the other must
accept it, the initiator is designated as the client, and the recipient of the request is referred to as
the server within the key exchange context.

8.1 Connect Request

The client initiates the connection by sending a connection request to the server, which includes
its configuration string and signature verification-key identity string.

The key identity (kid) is a multi-part, 16-byte array that serves as both a device and key
identification array. This identifier is used to link the intended target with its corresponding
cryptographic key, ensuring that the correct signature verification key is used during the secure
exchange.

The configuration string (cfg) specifies the set of cryptographic protocols being utilized in the
key exchange process. For the exchange to proceed successfully, the configuration strings of
both the client and server must match exactly, indicating they are using the same protocol
parameters.

To maintain the integrity and state of the key exchange, the client generates a session cookie by
hashing a combination of the configuration string, the key identity, and the public asymmetric
signature verification keys from both the client and the server:

sch < H(cfg || kid || pvka || pvkb)
Where:

e cfgis the configuration string.

48

QSMP-2024 Rev. 1.3a

e kid is the key identity.
e pvka is the client's public verification key.
e pvkb is the server's public verification key.

This session cookie (sch) serves as a unique identifier for the session, ensuring secure reference
to the cryptographic parameters throughout the key exchange.

The client serializes the connection request packet header (sk), including the protocol flag,
message size, sequence number, and the timestamp. The serialized header is added to a hash
along with the key id and configuration string. The client signs the hash with its asymmetric
signing key, and adds this to the packet message along with the kid and cfg arrays.

shm «— Ss(H(kid || cfg || sh))

The client then transmits the connection request to the server to begin the key exchange
operation:

C{ kid|| cfe || shm } — S

8.2 Connect Response

The server processes the client's connection request and responds with either an error message or
a connect response packet. If any error occurs during the key exchange, the server generates an
error packet and sends it to the remote host, triggering a teardown of both the key exchange and
the network connection on both ends.

Key Verification and Configuration Check

The server checks the connect request packet header, including the sequence number, message
size, protocol flag, and valid-time timestamp. This check is done at each step of the exchange,
verifying inbound packets for correctness of the expected flag, message size, creation time, and
sequence number. The UTC timestamp is tested for a valid-time threshold; if the local time is
different from the packet creation time by more than the threshold (default is 60 seconds) the
packet is rejected, and the exchange is torn down. This mechanism protects the exchange from
replay attacks and packet header tampering. Serialized packet headers are either added to the
hash of a message and signed, or added to the additional data of the authenticated stream cipher
(RCS) to guarantee authenticity.

The server verifies that it has the requested asymmetric signature verification key that matches
the client's host using the key identity array (kid). It then checks that its protocol configuration is
compatible with that of the client.

The server verifies the message signature, then hashes the message, which is compared to the
hash signed by the client for equivalence.

Where:

49

QSMP-2024 Rev. 1.3a

e shm is the signed message hash received from the client.
e /im is the hashed message signed by the client.

e /im’ is the message hashed by the server.

e m is the packet message : kid || cfg || sh

Vopk(shm) < (true 7= hm : 0)
hm" — H(kid || cfg || sh)
hm ?=hm:m:0

The server creates a session cookie by hashing the configuration string, the key identity, and both
the public signature verification keys:

Where:

e cfgis the configuration string.

e kid is the key identity.

e pvka is the client's public verification key.
e pvkb is the server's public verification key.

sch < H(cfg || kid || pvkb || pvka)

This hash acts as a unique session identifier for the exchange, and is added to the KDF as an
input when the session keys are generated.

Asymmetric Key Generation and Signing

The server generates a new asymmetric cipher key pair and securely stores the private key. It
then hashes the public encapsulation key and the serialized outbound packet header, and signs
this hash using its private asymmetric signature key.

Key generation and signing steps are as follows:

Generate the public (pk) and private (sk) asymmetric encryption keys.

pk, sk — G(A, r)

Create a hash of the public key and serialized connection response packet header (sh).
pkh «— H(pk || sh)

Sign the hashed public key using the server's private signature key.

spkh «— Ss(pkh)

The server then sends the connection response message to the client, which contains the signed
hash of the public asymmetric encapsulation key (spk#) and a copy of the public key:

S{spkh | pk}— C

50

QSMP-2024 Rev. 1.3a

8.3 Exchange Request

The client processes the connect response message from the server and proceeds with the next
steps in the key exchange. This phase involves verifying the server's public key, encapsulating a
shared secret, and authenticating the message.

Signature Verification and Hash Check

The client checks the connect response packet header, the flag, expected message size, the valid-
time timestamp, and the sequence number.

The client verifies the server's signature on the hashed public key and serialized packet header. It
then generates its own hash of the received public key and serialized header and compares it to
the one included in the server's message. If the hashes match, the client proceeds with the key

exchange. If the hashes do not match, the key exchange is aborted, and the session is terminated.

The client verifies the hash of the public key using the server's public verification key. If the
hash is valid, the process continues; otherwise, the exchange fails.

Vo(H(pk || sh)) < (true 2= pk : 0)

Once the public key is verified, the client uses it to encapsulate a shared secret. The client
generates a ciphertext (c¢pta) and encapsulates the shared secret (seca) using the public key.

cpta = Epk(seca)

The client stores the shared secret (seca), which will be combined with another shared secret and
the session cookie to derive the symmetric session keys later in the exchange.

Asymmetric Key Generation and Signing

The client generates its own asymmetric encryption key pair and securely stores the private key.
It then creates a hash of its public encapsulation key, the ciphertext and the serialized outbound
packet header, and signs this hash using its private asymmetric signature key.

Key generation and signing steps:

Generate the client's public (pk) and private (sk) asymmetric encryption keys.

pk, sk — G(A, 1)

Hash the client's public key and the ciphertext.

kch < H(pk || cpta || sh)

Sign the hashed value using the client's private signature key.

51

QSMP-2024 Rev. 1.3a

skch «— Se(kch)

The client sends an exchange request message back to the server. This message contains the
signed hash of its public asymmetric encapsulation key and ciphertext, the ciphertext itself, and a
copy of the public encapsulation key:

C{ cpta || pk || skch } — S

8.4 Exchange Response

The server processes the exchange request from the client, verifying the integrity of the message,
decapsulating the shared secret, and establishing the symmetric session keys for the secure
communication channel.

Signature Verification and Hash Check

The server checks the exchange request packet header, the flag, expected message size, the
valid-time timestamp and sequence number.

The server verifies the signature of the hash included in the client's message. It then generates its
own hash of the client's public key and the ciphertext, comparing this hash with the one provided
in the message signature. If the hashes match, the server continues with the key exchange;
otherwise, the process is terminated, and the key exchange is aborted.

The server uses the client's public verification key to verify the hash of the public key, ciphertext
and serialized exchange request packet header. If the verification is successful, the process
continues; otherwise, the server halts the exchange.

Vp(H(pk || cpta || sh)) < (true ?7=pk || cpta : 0)

Shared Secret Decapsulation

The server decapsulates the first shared secret received from the client. The server uses its
private asymmetric key to decapsulate the shared secret (seca) from the ciphertext (cpta)
provided by the client.

seca < -Ex(cpta):

This shared secret (seca) is securely stored for use in generating the session keys.

Generation of Second Shared Secret

The server generates a new ciphertext and a second shared secret using the client's public

encapsulation key. The server generates a second ciphertext (cptb) and shared secret (secb) using
the client's public key.

52

QSMP-2024 Rev. 1.3a

cptb «— Epk(sech)

Session Key Derivation

The server combines the two shared secrets (seca and sech) with the session cookie (sch) to
derive two symmetric session keys and two unique nonces, one for each communication channel.
The key expansion function generates two symmetric keys (k/, £2) and two nonces (n/, n2) for
the transmit and receive channels of the communication stream.

kl, k2, nl, n2 < KDF(seca, secb, sch)

Cipher Initialization

The symmetric cipher instances for the receive and transmit channels are then initialized with the
derived session keys and nonces.

Initializes the receive channel cipher with key &/ and nonce n1.
cprx(kl, nl)

Initializes the transmit channel cipher with key 42 and nonce n2.
cprx(k2, n2)

Hash and Signature of Ciphertext

To complete the exchange response, the server hashes the newly generated ciphertext and signs
the hash to ensure its integrity and authenticity before sending it back to the client.

cpth «— H(cptb || sh)
scph <— Ss(cpth)

The server sends the cipher-text, and the signed hash of the ciphertext and serialized header to
the client.

S{ cpth, scph } — C

8.5 Establish Request
In the final phase of the key exchange process, the client completes the establishment of the
encrypted communication channel by validating the received data, decapsulating the shared

secret, and generating the symmetric session keys.

Signature Verification and Hash Check

53

QSMP-2024 Rev. 1.3a

The client checks the exchange response packet header, the flag, expected message size, the
valid-time timestamp and sequence number.

The client verifies the server's signature on the hash of the ciphertext and serialized exchange
response packet header. It generates its own hash of the ciphertext and compares it with the one
provided by the server. If the hashes match, the client proceeds to decapsulate the shared secret;
otherwise, the key exchange is aborted.

The client verifies the hash of the server's ciphertext (cptb) using the server's public verification
key. If the verification is successful, the client continues; otherwise, it terminates the exchange.

Vo(H(eptb || sh)) < (true 7= cptb : 0):
Shared Secret Decapsulation
The client decapsulates the second shared secret from the ciphertext received from the server.

The client uses its private asymmetric key to decapsulate the second shared secret (sech) from
the server's ciphertext (cptb).

sechb «— -Eg(cptb)
Session Key Derivation

The client combines both shared secrets (seca and sech) with the session cookie (sch) to generate
the session keys and nonces for the secure communication channels.

The key derivation function produces two symmetric session keys (k/ and £2) and two unique
nonces (n/ and n2) for the receive and transmit channels.

kl, k2, nl, n2 = KDF(seca, secb, sch)

Cipher Initialization

The client initializes the symmetric ciphers for both communication channels.
Initializes the receive channel cipher with key &2 and nonce n2.

cprx(k2, n2)

Initializes the transmit channel cipher with key £/ and nonce n/.

cpr(kl, nl)

Establish Request Message

54

QSMP-2024 Rev. 1.3a

Once the symmetric channels are successfully initialized, the client sends a copy of the session
cookie through the encrypted tunnel to the server, signaling that both encrypted channels of the
tunnel are now active and that the tunnel is in its operational state.

hsch < H(sch || sh)

The establish request packet header is serialized and added to the additional data of the transmit
instance of the authenticated cipher (RCS). The session cookie is encrypted and sent to the
server.

cpt «<— Ex(hsch, sh)

In the event of an error during this process, the client sends an error message to the server, which
causes the key exchange to abort and the connection to be terminated on both ends.

The client sends the establish request to the server, indicating the successful establishment of the
encrypted tunnel.

C{cpt} —S

8.6 Establish Response

Strictly speaking, this step is not mandatory. If an error occurs during the final stage of the key
exchange and the session keys do not match between the hosts, the first message sent will fail
symmetric authentication, causing the tunnel to close automatically. However, in the interest of
good design and ensuring the secure establishment of the tunnel, the tunnel state should still be
explicitly confirmed. This approach prevents the risk of allowing the cipher’s MAC function to
process messages when the tunnel has not been properly confirmed.

Server Response Verification

The server checks the establish request packet header, the flag, expected message size, the valid-
time timestamp and sequence number.

The server adds the serialized establish request packet header to the additional data of the
receive instance of the authenticated stream cipher, and decrypts the session cookie.

hsch < -Ex(cpt, sh)

The decrypted session cookie is compared to the local session cookie for equivalence. If the
hashes are equal, the server hashes the session cookie.

hhsch «— H(hsch)

55

QSMP-2024 Rev. 1.3a

The server adds the serialized establish response packet header to the additional data of the
transmit cipher instance, and encrypts the hashed session cookie.

cpt < Ex(hhsch, sh)

Once the server sends the establish response, it sets its internal state to "session established,"
signaling that the encrypted tunnel is fully operational and ready to process data transmissions.

S{cpt} —C

8.7 Establish Verify

In the final step of the key exchange sequence, the client verifies the status of the encrypted
tunnel based on the server's response.

Client Verification

The client checks the establish response packet header, the flag, expected message size, the
valid-time timestamp and sequence number.

If the flag does not indicate an establish response, the client identifies that the tunnel is in an
error state as specified by the message. In such cases, the client initiates a teardown of the tunnel
on both sides to ensure that no data is transmitted over an insecure connection.

Operational State

The client adds the serialized establish response packet header to the additional data of the
receive instance of the authenticated stream cipher. The client decrypts the session cookie,
hashes its own session cookie, and compares the two hashes for equivalence.

hhsch — -Ex(cpt, sh)

hhsch™ < H(hsch)

hhsch® 7= hhsch (true : 0):

If the two hashes are equal the encrypted tunnel is in the up state, and ready to transmit and
receive data.

8.8 Transmission

56

QSMP-2024 Rev. 1.3a

During message transmission, either the client or server initiates the process of securely sending
data over the encrypted tunnel. This involves encrypting the message, updating the message
authentication code (MAC), and preparing the packet for secure delivery.

Message Serialization and Encryption

The transmitting host, whether it is the client or server, first serializes the packet header, which
includes details such as the message size, timestamp, protocol flag, and sequence number. This
serialized header is then added to the symmetric cipher's associated data parameter to ensure that
it is securely integrated into the encryption process.

The host proceeds to encrypt the message using the RCS (Rijndael Cryptographic Stream)
stream cipher’s Authenticated Encryption with Associated Data (AEAD) functions. The
encryption process generates a ciphertext, which is then passed through the MAC function to

produce a verification code.

The plaintext message (m) is encrypted using the symmetric encryption function (Ex) to generate
the ciphertext (cpt).

cpt «<— Ex(m)

The MAC code (mc) is calculated by updating the MAC function with the serialized packet
header (s/) and the ciphertext (cp?).

mc «<— Muk(sh, cpt)

The MAC code is appended to the end of the ciphertext, ensuring that any tampering with the
data during transmission will be detected.

Packet Decryption and Verification

Upon receiving the packet, the host deserializes the packet header and adds it to the MAC state,
along with the received ciphertext. The host then finalizes the MAC computation and compares
the output code with the MAC code appended to the ciphertext. If the codes match, the ciphertext
is authenticated and can be safely decrypted.

If the MAC verification succeeds, the ciphertext (cpt) is decrypted back into the plaintext
message (m).

m «— -Ex(cpt)

The packet timestamp is compared to the UTC time, if the time is outside of a tolerance
threshold, the packet is rejected and the session is torn down.

If the MAC check fails, the decryption function returns an empty message array and an error
signal, indicating that the message was either corrupted or tampered with.

57

QSMP-2024 Rev. 1.3a

This process guarantees the integrity and confidentiality of the transmitted data, allowing the
application to handle any errors in a controlled manner.

9 QSMP Simplex Formal Description

Simplex Key Exchange Sequence
Preamble

The Simplex key exchange sequence begins with the client verifying the validity of the server's
public signature verification key. The client checks the expiration date of this key, and if it is
found to be invalid or expired, the client initiates a re-authentication session with the server.
During this session, a new key is distributed over an encrypted channel, and the client verifies
the new key's certificate using the designated authentication authority or scheme implemented by
the server and client software.

9.1 Connect Request

The client initiates the connection process by sending a connection request to the server that
includes its configuration string and asymmetric public signature key identity.

Key Identity

The key identity (kid) 1s a multi-part, 16-byte array that acts as a public asymmetric verification
key and device identification string. It is used to match the target server to its corresponding
cryptographic key, ensuring that the correct key is used during the exchange.

Configuration String

The configuration string (cfg) specifies the cryptographic protocol set being used in the key
exchange process. For the exchange to proceed successfully, the configuration strings used by
both the client and server must match, indicating that they are using the same cryptographic
parameters.

Session Cookie

To securely manage the state of the key exchange, the client generates a session cookie by
hashing a combination of the configuration string, the key identity, and the server public
asymmetric signature verification key:

sch «— H(cfg || kid || pvk)

Where:

58

QSMP-2024 Rev. 1.3a

e cfg is the configuration string.
e kid is the key identity.
e pvkis the server's public signature verification key.

This session cookie (sch) serves as a unique identifier for the session, helping to ensure that the
cryptographic parameters are consistently referenced throughout the exchange.

The client then sends the key identity string (kid) and the configuration string (cfg) to the server
to initiate the connection:

Clkid, cfg} — S

9.2 Connect Response

The server processes the client's connection request and responds with either an error message or
a connect response packet. If any error occurs during the key exchange, the server generates an
error packet and sends it to the remote host, which triggers a teardown of the session and
network connection on both sides.

Key Verification and Protocol Check

The server begins by verifying that it has the appropriate asymmetric signature verification key
that corresponds to the client's request, using the key-identity array (kid).

It then checks that its protocol configuration matches the one specified by the client. To securely
manage the state of the exchange, the server creates a session cookie by hashing the
configuration string, the key identity, and the public signature verification key:
sch — H(cfg || kid || pvk)
Where:

e cfgis the configuration string.

e kid is the key identity.

e pvkis the server's public signature verification key.

This session cookie (sch) serves as a unique identifier for the session, helping maintain the
integrity of the key exchange.

Asymmetric Key Generation and Signing
The server generates a new asymmetric encryption key pair and securely stores the private key. It

hashes the public encapsulation key and the serialized connect response packet header, and signs

59

QSMP-2024 Rev. 1.3a

this hash using its private asymmetric signature key. The signature provides a cryptographic
guarantee that the public asymmetric cipher key has not been tampered with during transmission.

Key generation and signing steps:

Generate the public (pk) and private (sk) asymmetric encryption keys.

pk, sk — G(\, r)

Create a hash of the public key and serialized connect response packet header (sh).

pkh «— H(pk || sh)

Sign the hashed public key using the server's private signature key.

spkh «— Ssk(pkh)

The public signature verification key itself can be enveloped and signed using a 'chain of trust'
model, such as X.509, to ensure further authentication through a signature verification extension
to the protocol.

Server Response

The server sends a connect response message back to the client, containing the signed hash of the
public asymmetric encapsulation key (spkh) and a copy of the public key itself:

S{ spkh, pk } — C

9.3 Exchange Request

The client processes the server's connect response and initiates the next steps of the key
exchange by verifying the received data, encapsulating a shared secret, and preparing the session
keys.

Signature Verification and Hash Check

The client begins by verifying the signature of the hash using the server's public verification key.
It then generates its own hash of the server's public key and compares it to the hash contained in
the server's message. If the hashes match, the client proceeds to encapsulate the shared secret. If

the hashes do not match, the key exchange is aborted.

The client uses the server's public verification key to check the hash of the public key. If the
verification is successful, the process continues; otherwise, the key exchange fails.

60

QSMP-2024 Rev. 1.3a

Vp(H(pk)) < (true 7= pk : 0)
The public encapsulation key and connect response packet header are hashed, and the hash is
compared with signed hash received from the server. Once the packet header and public key are

verified, the client uses the server's public key to encapsulate a shared secret.

The client generates a ciphertext (cpt) and encapsulates the shared secret (sec) using the server's
public key.

cpt, sec «— Epk(sec)

The client combines the shared secret and the session cookie to derive the session keys and two
unique nonces for the communication channels.

The Key Derivation Function (KDF) generates two session keys (k1, £2) and two nonces (n/, n2)
using the shared secret (sec) and the session cookie (sch).

kl, k2,nl, n2 «— KDF(sec || sch):

Cipher Initialization

The receive and transmit channel ciphers are then initialized using the derived keys and nonces.
Initializes the receive channel cipher with key k2 and nonce n2.

cprx(k2, n2)

Initializes the transmit channel cipher with key k7 and nonce n/.

cprx(kl, nl)

Client Transmission

The client sends the ciphertext to the server as part of the exchange request.

The client transmits the encapsulated shared secret to the server.

C{cpt} —S

9.4 Exchange Response

The server processes the client's exchange request by decapsulating the shared secret, deriving
the session keys, and confirming the secure communication channel.

61

QSMP-2024 Rev. 1.3a

Shared Secret Decapsulation
The server decapsulates the shared secret from the ciphertext received from the client.

The server uses its private asymmetric key to decapsulate the shared secret (sec) from the
received ciphertext (cpt).

sec < -Es(cpt)
Session Key Derivation

The server combines the decapsulated shared secret and the session cookie hash to derive two
session keys and two unique nonces for the communication channels.

The Key Derivation Function (KDF) generates two symmetric session keys (k/, k2) and two
nonces (n1, n2) using the shared secret (sec) and the session cookie (sch).

kl,k2,nl, n2 «— KDF(sec || sch)

Cipher Initialization

The server initializes the symmetric ciphers for the receive and transmit channels.

Initializes the receive channel cipher with key &/ and nonce n/.

cprx(kl, nl)

Initializes the transmit channel cipher with key 42 and nonce n2.

cprx(k2, n2)

Server Response

The server sets the packet flag to "exchange response", indicating that the encrypted channels
have been successfully established. It then sends this notification back to the client to confirm the

secure communication channel.

The server sends an exchange response flag to the client, confirming that the secure tunnel is
established.

S{f}—-C

The server updates its operational state to session established, indicating that it is now ready to
securely process data over the encrypted channels.

62

QSMP-2024 Rev. 1.3a

9.5 Establish Verify

In the final step of the key exchange sequence, the client verifies the status of the encrypted
tunnel based on the server's exchange response.

Client Verification

The client inspects the flag of the exchange response packet received from the server. If the flag
indicates an error state, the client immediately tears down the tunnel to prevent any further data
transmission. This ensures that no data is sent over an insecure or compromised connection.

If the flag does not indicate an error state, the client confirms that the tunnel is successfully
established and in an operational state.

Operational State

Once the verification is complete and the tunnel is confirmed, the client updates its internal state
to session established, indicating that the secure communication channels are fully operational.
The client is now ready to process data over the encrypted tunnel.

9.6 Transmission

During the transmission phase, either the client or server sends messages over the established
encrypted tunnel using the RCS stream cipher's MAC, AEAD (Authenticated Encryption with
Associated Data), and encryption functions. This process ensures the integrity and confidentiality
of the transmitted data.

Message Serialization and Encryption

The transmitting host (client or server) starts by serializing the packet header, which includes
critical details such as the message size, timestamp, protocol flag, and sequence number. This
serialized header is then added to the symmetric cipher’s associated data parameter, which adds
metadata authentication to the encryption process.

The message encryption process is as follows:

1. Encrypt the Message: The plaintext message is encrypted using the symmetric
encryption function of the RCS stream cipher. The symmetric encryption function (Ex) is
applied to the plaintext message (m) to produce the ciphertext (cpr).
cpt «— Ex(m)

2. Update the MAC State: The serialized packet header is added to the MAC (Message
Authentication Code) state through the additional-data parameter of the RCS cipher.

63

QSMP-2024 Rev. 1.3a

The MAC function (M) is updated with the serialized packet header (s/) and the
ciphertext (cpt) to produce the MAC code (mc).
mc «— Mnk(sh, cpt)

Append the MAC Code: The MAC code is appended to the end of the ciphertext,
ensuring that any tampering with the data during transmission will be detected.

Packet Decryption and Verification

Upon receiving the packet, the recipient host deserializes the packet header and adds it to the
MAC state along with the received ciphertext. The MAC computation is then finalized and
compared with the MAC code that was appended to the ciphertext. The packet timestamp is
compared to the UTC time, if the time is outside of a tolerance threshold, the packet is
rejected and the session is torn down.

1.

Generate the MAC Code: Add the serialized packet header to the cipher AEAD. Add
the ciphertext and generate the MAC code.

mc " «— Mmk(sh, cpt)

Compare the MAC tag copy with the MAC tag appended to the ciphertext.

mc” 7= mc

If the MAC check fails, indicating potential data tampering or corruption, the decryption
function returns an empty message array and an error status. The application shall handle
this error accordingly.

Decrypt the Ciphertext: If the MAC code matches, the ciphertext is considered
authenticated, and the message is decrypted.

The ciphertext (cpf) is decrypted back into the plaintext message (m) if the MAC
verification succeeds.

m «— -Ex(cpt)

This process ensures that the transmitted data remains confidential and tamper-evident, providing
both encryption and authentication to protect the integrity of the communication. Any errors
during decryption signal an immediate response to prevent the further exchange of potentially
compromised data.

64

QSMP-2024 Rev. 1.3a

10: QSMP API

10.1 Definitions and Shared API
Header:

gsmp.h

Description:

The QSMP header contains shared constants, types, and structures, as well as function calls
common to both the QSMP server and client implementations.

Structures:

The QSMP_ERROR_STRINGS is a static string-array containing QSMP error descriptions,
used in the error reporting functionality.

Data Set Purpose

QSMP_ERROR_STRINGS
Table 10.1a QSMP error strings.

A string array of readable error descriptions.

The QSMP_CONFIG_STRING is a static string containing the readable QSMP configuration
string.

Data Set Purpose

QSMP_CONFIG_STRING
Table 10.1b QSMP configuration string.

The QSMP configuration string.

The qsmp_packet contains the QSMP packet structure.

Data Name Data Type Bit Length Function

flag Uint8 0x08 The packet flag

msglen Uint32 0x20 The packets message length
sequence Uint64 0x40 The packet sequence number
utctime Uint64 0x40 The UTC packet creation time
message Uint8 Array Variable The packets message data

Table 10.1c QSMP packet structure.

The qsmp_client key contains the QSMP client key state.

65

QSMP-2024 Rev. 1.3a
Data Name Data Type | Bit Length Function
expiration Uint64 0x40 The expiration time, in seconds from epoch
config Uint8 Array Variable The primitive configuration string
keyid Uint8 Array Variable The key identity string
verkey Uint8 Array Variable The asymmetric signatures verification-key

Table 10.1d QSMP client key structure.

The qsmp_keep_alive_ state contains the QSMP keep alive state.

Data Name Data Type | Bit Length Function

target Struct Variable The target host socket structure

etime Uint64 0x40 The keep alive epoch time

seqctr Uint64 0x40 The keep alive packet sequence number
recd Boolean 0x08 The keep alive response received status

Table 10.1e QSMP keep alive state structure.

Enumerations:

The qsmp_configuration enumeration defines the cryptographic primitive configuration.

Enumeration

Purpose

gsmp_configuration_none

No configuration was specified

gsmp_configuration sphincs_mceliece | The Sphincs+ and McEliece configuration

gsmp_configuration_dilithium kyber | The Dilithium and Kyber configuration

gsmp_configuration dilithium_ntru The Dilithium and NTRU configuration

gsmp_configuration falcon kyber The Falcon and Kyber configuration

gsmp_configuration falcon ntru

The Falcon and NTRU configuration

Table 10.1f QSMP configuration enumeration.

The qsmp_errors enumeration is a list of the QSMP error code values.

Enumeration

Purpose

gsmp_error_none

No error was detected

gsmp_error_authentication failure The symmetric cipher had an authentication failure

gsmp_error bad |

keep_alive

The keep alive check failed

gsmp_error_channel down

The communications channel has failed

gsmp_error_connection_failure

The device could not make a connection to the remote host

gsmp_error_connect_failure

The transmission failed at the KEX connection phase

66

QSMP-2024 Rev. 1.3a

gsmp_error_decapsulation_failure
gsmp_error_establish_failure
gsmp_error_exstart_failure
gsmp_error_exchange failure
gsmp_error_hash_invalid
gsmp_error_invalid_input
gsmp_error_invalid request
gsmp_error_keep alive expired
gsmp_error_key expired
gsmp_error_key unrecognized
gsmp_error_packet unsequenced
gsmp_error_random_failure
gsmp_error_receive_failure
gsmp_error_transmit_failure
gsmp_error_verify failure
gsmp_error_unknown_protocol
gsmp_error accept_fail
gsmp_error_hosts_exceeded
gsmp_error memory_allocation
gsmp_error_decryption
gsmp_error_keepalive timeout

gsmp_error_ratchet fail

Table 10.1g QSMP errors enumeration.

The asymmetric cipher failed to decapsulate the shared secret
The transmission failed at the KEX establish phase
The transmission failed at the KEX exstart phase
The transmission failed at the KEX exchange phase
The public-key hash is invalid

The expected input was invalid

The packet flag was unexpected

The keep alive has expired with no response

The QSMP public key has expired

The key identity is unrecognized

The packet was received out of sequence

The random generator has failed

The receiver failed at the network layer

The transmitter failed at the network layer

The expected data could not be verified

The protocol string was not recognized

The socket accept function returned an error

The server has run out of socket connections

The server has run out of memory

The decryption authentication has failed

The decryption authentication has failed

The ratchet operation has failed

The qsmp_flags enum contains the QSMP packet flags.

Enumeration

Purpose

gsmp_flag none

gsmp_flag connect request
gsmp_flag connect response
gsmp_flag connection_terminate
gsmp_flag encrypted message
gsmp_flag exstart request
gsmp_flag exstart response
gsmp_flag exchange request
gsmp_flag exchange response

gsmp_flag establish request

No flag was specified

The QSMP key-exchange client connection request flag
The QSMP key-exchange server connection response flag
The connection is to be terminated

The message has been encrypted flag

The QSMP key-exchange client exstart request flag

The QSMP key-exchange server exstart response flag
The QSMP key-exchange client exchange request flag
The QSMP key-exchange server exchange response flag
The QSMP key-exchange client establish request flag

67

QSMP-2024 Rev. 1.3a

gsmp_flag establish response
gsmp_flag keep alive request
gsmp_flag remote connected
gsmp_flag remote terminated
gsmp_flag session_established
gsmp_flag session establish verify
gsmp_flag unrecognized protocol
gsmp_flag asymmetric_ratchet request
gsmp_flag symmetric_ratchet request
gsmp_flag transfer request

gsmp_flag error condition
Table 10.1h QSMP flags enumeration.

The QSMP key-exchange server establish response flag
The packet contains a keep alive request

The remote host is connected flag

The remote host has terminated the connection

The exchange is in the established state

The exchange is in the established verify state

The protocol string is not recognized

The host has received an asymmetric key ratchet request
The host has received a symmetric key ratchet request
The host has received a transfer request

The connection experienced an error

Constants:
Constant Name Value Purpose
QSMP_CONFIG DILITHIUM KYBER N/A Sets the asymmetric cryptographic

QSMP_CONFIG _DILITHIUM _MCELIECE | N/A

QSMP_CONFIG_DILITHIUM NTRU

QSMP_CONFIG_SPHINCS MCELIECE

QSMP_SERVER_PORT
QSMP_CONFIG_SIZE

QSMP_CONFIG_STRING

QSMP_CIPHERTEXT SIZE

QSMP_PRIVATEKEY SIZE

QSMP_ PUBLICKEY SIZE

QSMP_SIGNKEY SIZE

QSMP_VERIFYKEY SIZE

primitive-set to Dilithium/Kyber

Sets the asymmetric cryptographic
primitive-set to Dilithium/McEliece

N/A Sets the asymmetric cryptographic
primitive-set to Dilithium/NTRU
N/A Sets the asymmetric cryptographic

primitive-set to Sphincs+/McEliece

0x1315 The default server port address

0x30 The size of the protocol configuration
string

Variable The QSMP cryptographic primitive
configuration string

Variable The byte size of the asymmetric
cipher-text array

Variable The byte size of the asymmetric cipher
private-key array

Variable The byte size of the asymmetric cipher
public-key array

Variable The byte size of the asymmetric
signature signing-key array

Variable The byte size of the asymmetric

signature verification-key array

68

QSMP-2024 Rev. 1.3a

QSMP_SIGNATURE_SIZE
QSMP_PUBKEY ENCODING SIZE
QSMP_PUBKEY STRING SIZE

QSMP_HASH_SIZE
QSMP_HEADER_SIZE
QSMP_KEEPALIVE STRING
QSMP_KEEPALIVE_TIMEOUT

QSMP_KEYID SIZE
QSMP_MACKEY SIZE
QSMP_MACTAG SIZE
QSMP_SRVID SIZE
QSMP_TIMESTAMP_SIZE
QSMP_MESSAGE_MAX

QSMP_PKCODE SIZE
QSMP_PUBKEY DURATION DAYS

QSMP_PUBKEY DURATION_SECONDS
QSMP_PUBKEY LINE LENGTH
QSMP_SECRET SIZE

QSMP_SIGKEY ENCODED SIZE
QSMP_SEQUENCE TERMINATOR

QSMP_CONNECT _REQUEST SIZE
QSMP_EXSTART REQUEST SIZE
QSMP_EXCHANGE REQUEST SIZE
QSMP_ESTABLISH REQUEST SIZE

QSMP_CONNECT_RESPONSE SIZE

Variable

Variable

Variable

0x20
0x13
0x14
0x18750

0x10
0x20
0x20
0x08
0x08
Variable

0x20
0x223

Variable

0x40

0x20

Variable
0xFFFFFFFF

Variable

Variable

Variable

Variable

Variable

69

The byte size of the asymmetric
signature array

The byte size of the encoded QSMP
public-key

The string size of the serialized QSMP
client-key structure

The size of the hash function output
The QSMP packet header size
The keep alive string size

The keep alive timeout in milliseconds
(5 minutes)

The QSMP key identity size

The size of the mac function output
The QSMP server identity size
The key expiration timestamp size

The maximum message size used
during the key exchange

The size of the session token hash

The number of days a public key
remains valid

The number of seconds a public key
remains valid

The line length of the printed QSMP
public key

The size of the shared secret for each
channel

The secret signature key size

The sequence number of a packet that
closes a connection

The key-exchange connect stage
request packet size

The key-exchange exstart stage request
packet size

The key-exchange exchange stage
request packet size

The key-exchange establish stage
request packet size

The key-exchange connect stage
response packet size

QSMP-2024 Rev. 1.3a

QSMP_EXCHANGE RESPONSE SIZE Variable The key-exchange exchange stage
response packet size
QSMP_ESTABLISH RESPONSE SIZE Variable The key-exchange establish stage

response packet size
Table 10.11 QSMP constants.

The qsmp_connection_state contains the QSMP connection state.

Data Name Data Bit Length Function
Type
target Struct 0x440 The target host socket structure
rxepr Struct Variable The receive channel cipher state
txcpr Struct Variable The transmit channel cipher state
rxseq Uint64 0x40 The receive channels packet sequence number
txseq Uint64 0x40 The transmit channels packet sequence number
instance Uint32 0x20 The connections instance count
exflag Uint8 0x08 The KEX position flag
rtcs Uint8 0x40 The ratchet key
receiver bool 0x08 The hosts receiver status
mode enum 0x08 The QSMP mode

Table 10.1j QSMP connection state structure.

Functions:

Asymmetric Ratchet

Run the asymmetric ratchet and update the session keys (duplex mode).
void gsmp duplex send asymmetric ratchet request (gsmp connection state* cns)

Symmetric Ratchet

Run the symmetric ratchet and update the session keys (duplex mode).
void gsmp duplex send symmetric ratchet request (gsmp connection state* cns)

Connection Close

Close the network connection between hosts.
void gsmp connection close(gsmp_ connection state* cns, gsmp errors err, bool
notify)

Decode Public Key

Decode a public key string and populate a client key structure.
void gsmp decode public key(gsmp client key* pubk, const char
enck [QSMP_PUBKEY STRING SIZE])

70

QSMP-2024 Rev. 1.3a

Encode Public Key

Encode a public key structure and copy to a string.
void gsmp encode public key(char enck[QSMP PUBKEY STRING SIZE], const
gsmp client key* pubk)

Deserialize Signature Key

Decode a secret signature key structure and copy to an array.
void gsmp deserialize signature key(gsmp server key* prik, const uint8 t
serk[QSMP_SIGKEY ENCODED SIZE])

Serialize Signature Key

Encode a secret key structure and copy to a string.
void gsmp serialize signature key(uint8 t serk[QSMP SIGKEY ENCODED SIZE],
const gsmp_ server key* prik)

Connection Dispose

Reset the connection state.
void gsmp connection close(gsmp_ connection state* cns)

Decrypt Packet

Decrypt a message and copy it to the message output.
gsmp_errors gsmp decrypt packet (gsmp connection state* cns, uint8 t* message,
size t* msglen, const gsmp packet* packetin)

Encrypt Packet

Encrypt a message and copy it to a packet.
gsmp _errors gsmp encrypt packet(gsmp connection state* cns, gsmp packet*
packetout, const uint8 t* message, size t* msglen)

Generate Key Pair

Generate a QSMP key-pair, generates the public and private asymmetric signature keys.
void gsmp generate keypair(gsmp client key* pubkey, gsmp server key* prikey,
const uint8 t keyid[QSMP KEYID SIZE])

Packet Clear

Clear a packet's state, resetting the structure to zero.
void gsmp packet clear (gsmp packet* packet)

Error To String

Return a pointer to a string description of an error code.
const char* gsmp error to string(gsmp errors error)

Error Message

Populate a packet structure with an error message.
void gsmp packet error message (gsmp_ packet* packet, gsmp errors error)

Header Deserialize

Deserialize a byte array to a packet header.
void gsmp packet header deserialize (const uint8 t* header, gsmp packet*
packet)

71

QSMP-2024 Rev. 1.3a

Header Serialize

Serialize a packet header to a byte array.
void gsmp packet header serialize (const gsmp packet* packet, uint8 t* header)

Log Error

Log the message, socket error, and string description.
void gsmp log error (const gsmp messages emsg, Jsc_socket exceptions err,
const char* msq)

Log Message

Log the message.
void gsmp log message (const gsmp messages emsq)

Log Write

Log the message, and string description.
void gsmp log write(const gsmp messages emsg, const char* msg)

Packet Clear

Clear a packet's state.
size t gsmp packet clear(const gsmp packet* packet)

Packet To Stream

Serialize a packet to a byte array.
size t gsmp packet to stream(const gsmp packet* packet, uint8 t* pstream)

Stream To Packet

Deserialize a byte array to a packet.
void gsmp stream to packet (const uint8 t* pstream, gsmp packet* packet)

10.2 Server API

Header:

gsmpserver.h

Description:

Functions used to implement the QSMP server.

Structures:

The qsmp_server key contains the QSMP server key structure.

Data Name Data Type Bit Length Function

72

QSMP-2024 Rev. 1.3a

expiration Uint64 0x40 The expiration time, in seconds
from epoch

config Uint8 Array 0x180 The primitive configuration
string

keyid Uint8 Array 0x80 The key identity string

sigkey Uint8 Array Variable The asymmetric signature
signing-key

verkey Uint8 Array Variable The asymmetric signature
verification-key

Table 10.2a QSMP key structure.

Functions:

Broadcast

Broadcast a message to all connected hosts.
void gsmp server broadcast (const uint8 t* message, size t msglen)

Pause

Pause the server, suspending new joins.
void gsmp server pause ()

Quit
Quit the server, closing all connections.
void gsmp server quit()

Resume

Resume the server listener function from a paused state.
void gsmp server resume ()

Listen IPv4
Run the IPv4 networked key exchange function. Returns the connected socket and the QSMP

server connection state.
gsmp _errors gsmp server listen ipv4 (gsmp server key* prik, void
(*receive callback) (gsmp server connection state*, const char*, size t))

Listen IPv6
Run the IPv6 networked key exchange function. Returns the connected socket and the QSMP

server state.
gsmp_errors gsmp_ server listen ipv6 (gsmp server key* prik, void
(*receive callback) (gsmp server connection state*, const char*, size t))

10.3 Client API

73

QSMP-2024 Rev. 1.3a

Header:
gsmpclient.h

Description:

Functions used to implement the QSMP client.

Structures:

The gsmp kex client state contains the QSMP server state structure.

Data Name Data Type Bit Length Function

rxcpr RCS state Variable The receive channel cipher state

txcpr RCS state Variable The transmit channel cipher
state

config Uint8 Array 0x180 The primitive configuration
string

keyid Uint8 Array 0x80 The key identity string

pkhash Uint8 Array 0x20 The session token hash

prikey Uint8 Array Variable The asymmetric cipher private
key

pubkey Uint8 Array Variable The asymmetric cipher public
key

mackey Uint8 Array 0x20 The intermediate mac key

token Uint8 Array 0x100 The session token

verkey Uint8 Array Variable The asymmetric signature
verification-key

exflag enum gsmp_flags The KEX position flag

expiration Uint64 0x40 The expiration time, in seconds
from epoch

rxseq Uint64 0x40 The receive channels packet
sequence number

txseq Uint64 0x40 The transmit channels packet

sequence number

Table 10.3 QSMP client state structure.

Functions

Decode Public Key

74

QSMP-2024 Rev. 1.3a

Decode a public key string and populate a client key structure.
bool gsmp client decode public key(gsmp client key* clientkey, const char
input [QSMP PUBKEY STRING SIZE])

Send Error

Send an error code to the remote host.
void gsmp client send error (const gsc_socket* sock, gsmp errors error)

Connect IPv4
Run the IPv4 networked key exchange function. Returns the connected socket and the QSMP

client state.

gsmp_errors gsmp client connect ipv4 (gsmp kex client state* ctx, gsc socket*
sock, const gsmp client key* ckey, const gsc ipinfo ipv4 address* address,
uintlé_t port)

Connect IPv6
Run the IPv6 networked key exchange function. Returns the connected socket and the QSMP

client state.

gsmp_errors gsmp client connect ipv6 (gsmp kex client state* ctx, gsc socket*
sock, const gsmp client key* ckey, const gsc ipinfo ipv6 address* address,
uintl6é_t port)

Connection Close

Close the remote session and dispose of resources.
void gsmp client connection close(gsmp kex client state* ctx, const
gsc_socket* sock, gsmp errors error)

Decrypt Packet

Decrypt a message and copy it to the message output.
gsmp _errors gsmp client decrypt packet (gsmp kex client state* ctx, const
gsmp_packet* packetin, uint8 t* message, size t* msglen)

Encrypt Packet

Encrypt a message and build an output packet.
gsmp errors gsmp client encrypt packet (gsmp kex client state* ctx, const
uint8 t* message, size t msglen, gsmp packet* packetout)

75

QSMP-2024 Rev. 1.3a

11: Security Analysis

QSMP is designed to protect against a range of threats, including both classical and quantum
attacks. This section provides a detailed analysis of its security features, highlights potential
attack vectors, and describes how the protocol mitigates these risks.

11.1 Post-Quantum Cryptography

QSMP utilizes cryptographic primitives that are specifically designed to withstand the
computational power of quantum computers. It implements the asymmetric ciphers Kyber and
McEliece, and the signature schemes Dilithium and Sphincs+. These algorithms are
recommended by the NIST Post-Quantum Cryptography standardization process in the case of
the signature schemes, and the Kyber cipher. We added McEliece, the third round candidate for
its excellent long-term security potential.

e Quantum Resistance: The cryptographic algorithms employed in QSMP are chosen to
resist attacks by quantum computers, particularly Shor's algorithm, which can break
classical encryption methods like RSA and ECC.

e Algorithm Flexibility: QSMP’s design supports multiple post-quantum algorithms,
which enhances its adaptability. In the event that a vulnerability is discovered in one
algorithm, the protocol can easily switch to another secure alternative.

11.2 Forward Secrecy and Predictive Resistance

QSMP incorporates robust mechanisms to ensure that past and future communications remain
secure, even if a key i1s compromised.

e Forward Secrecy: The use of ephemeral asymmetric keys in both SIMPLEX and
DUPLEX exchanges ensures that each session’s key is independent of previous keys.
This means that even if an attacker gains access to the current session’s keys, they cannot
decrypt any previous session data.

e Predictive Resistance: The asymmetric ratcheting mechanism ensures that future a state
cannot be derived from the current key state. This prevents attackers from calculating or
predicting future session keys, even if they have access to the current keys on a long
running tunnel implementation.

11.3 Ratcheting Mechanism

QSMP uses both asymmetric and symmetric ratcheting to inject new entropy into the encrypted
communication channel, enhancing its security.

o Asymmetric Ratchet: Periodically re-keys the symmetric encryption using new
asymmetric key exchanges, providing a higher level of security. This approach ensures
that even if an attacker gains access to one set of keys, they cannot compute the next set
of keys.

76

QSMP-2024 Rev. 1.3a

o Symmetric Ratchet: Provides a lightweight method for continuously re-keying the
encryption stream based on hash values derived from current session keys. This
technique is efficient and allows for quick recovery if a key compromise is detected.

11.4 Man-in-the-Middle (MITM) Attack Mitigation
QSMP implements strong authentication techniques to counter MITM attacks.

o Digital Signatures: Messages are signed using the sender’s private key, and these
signatures are verified by the recipient using the sender’s public key. This method
prevents attackers from tampering with or spoofing messages.

e Public Key Authentication: The protocol’s use of signature verification keys ensures
that attackers cannot impersonate another party, as they cannot forge the digital
signatures without the corresponding private key.

11.5 Replay Attack Prevention

To prevent replay attacks, QSMP employs a valid-time timestamp, nonce values, and sequence
numbers for each message.

e Timestamp: Each packet during the key exchange and during tunnel operation has a low
resolution (seconds) timestamp added to the packet header. The packet header itself is
added to signature hashes during the key exchange, and to the additional data field of the
symmetric cipher during tunnel exchanges. This guarantees that the packet header has not
been altered, and that the packet cannot exceed a timeout threshold (60 seconds by
default) or the packet is discarded.

e Sequence Numbers: Sequence numbers are included with each message to prevent
replay attacks, ensuring that old messages cannot be resent to gain unauthorized access.
These are added to the MAC AAD input of the sessions symmetric stream cipher (RCS).

o Message Size: During the key exchange, the packet flag and message size are checked on
each message, if the message size is not exactly what is expected by that stage of the
exchange, the key exchange is aborted and the connection is torn down.

11.6 Resistance to Key Compromise

QSMP’s use of ephemeral keys and ratcheting provides resilience against key compromise,
ensuring that a breach of one key does not affect other sessions.

o Ephemeral Key Generation: Each session generates a new ephemeral key pair, meaning
that even if one session’s key is compromised, it does not compromise other sessions.

o Key Expiry and Replacement: Keys have defined expiration times, which are checked
upon every use, prompting regular re-authentication and generation of new keys, which
mitigates risks associated with long-term key reuse.

11.7 Error Handling and Security Considerations

77

QSMP-2024 Rev. 1.3a

Effective error handling is a critical part of QSMP’s security strategy, ensuring minimal
information is leaked to attackers.

e Error Codes and Logging: Error messages are intentionally limited to only a
nondescript packet flag value to prevent attackers from gaining insights into the
protocol’s state or operation, which could aid in crafting more sophisticated attacks.

e Session Tear-Down on Error: When a critical error is detected (e.g., signature
mismatch or decryption failure), the session is immediately terminated, logged, and
further communication is halted to prevent exploitation.

Potential Attack Vectors and Mitigations

Attack Vector Description QSMP Mitigation

Quantum Attacks | Exploitation of quantum Uses post-quantum algorithms like
algorithms to break classical | Kyber, McEliece, SPHINCS+, and
cryptosystems. Dilithium.

Man-in-the- An attacker intercepts and Digital signatures and public key

Middle (MITM) manipulates communication | verification are used.
between two parties.

Replay Attacks Re-sending a previously Session tokens, timestamps, and

captured message to gain
unauthorized access.

sequence numbers prevent replays.

Key Compromise

Access to encryption keys by
adversaries due to theft or
malware.

Ephemeral keys and symmetric and
asymmetric key ratcheting provide
forward secrecy.

Side-Channel

Attacks exploiting

Components are written to be timing

Attacks information from hardware neutral, including support functions,

or software leakage. asymmetric, and symmetric primitives.
Cryptographic Forcing the use of weaker Protocol negotiation ensures only post-
Downgrade cryptographic algorithms. quantum algorithms are used. The key
Attacks exchanges themselves do not support

handshake negotiations.

Denial-of-Service
(DoS) Attacks

Overloading the server with
requests to disrupt
communications.

Error handling and session timeout
mechanisms mitigate this risk.

Summary

The security architecture of QSMP is robust and forward-looking, integrating post-quantum
cryptography, ratcheting techniques, strong authentication, and comprehensive error handling to
guard against a wide range of classical and quantum threats. By employing these techniques,
QSMP ensures that it remains resilient in the face of evolving attack vectors and advances in
computational capabilities.

78

QSMP-2024 Rev. 1.3a

12: Design Decisions

QSMP has been carefully crafted with several strategic design choices to ensure robust security
and adaptability for future developments in cryptography and network protocols. This section
outlines the rationale behind the key design decisions that shape QSMP's implementation.

12.1 Networking Protocol Considerations

While the accompanying example code for QSMP is built upon the Transport Control Protocol
(TCP), it is important to note that the choice of networking protocol is considered to operate at a
layer beneath the QSMP protocol itself. QSMP could utilize TCP, UDP, or even a custom IP
stack to transport packets.

Layered Flexibility: The flexibility to use different transport protocols allows for future
enhancements that may include custom IP stack implementations with features such as
windowing controls, packet buffers, and other advanced networking controls tailored to
specific use cases.

Example Simplicity: The current implementation using TCP was intentionally kept
simple to provide clarity for those studying or adopting QSMP. This choice aligns with
common practices in many widely-used VPN software implementations, which also use
TCP to avoid the complexities associated with custom IP stacks.

12.2 Protocol Negotiation

QSMP intentionally omits protocol negotiation for a number of reasons, despite the relative ease
of implementation.

Security Integrity: Protocol negotiation is often misused to reduce the security level of
communications to the lowest common denominator, which undermines the integrity of
the protocol suite. By avoiding this, QSMP maintains a consistent security posture across
all implementations.

Current Algorithm Support: QSMP supports three asymmetric configurations:
Dilithium-Kyber, Dilithium-McEliece, and SphincsPlus-McEliece. The parameter sets
corresponding to NIST 128, 192, and 256-bit security (S1, S3, and S5) are implemented,
allowing for granular security controls via the different parameter sets. Although
additional asymmetric algorithms sets may be added in the future, the current structure
already offers robust security without the need for protocol negotiation.

12.3 Signature Chaining

QSMP does not implement signature chaining directly but allows for this functionality to be
integrated via secondary protocols such as X.509.

Optional Feature: Signature chaining is not a core feature of QSMP since the protocol is
designed as a standalone secure tunneling system. However, for implementations where

79

QSMP-2024 Rev. 1.3a

additional layers of authentication are required, signature chaining can be added using
existing standards. This would be done by enveloping the QSMP verification key in a
secondary authentication scheme like X.509.

o Integration with Existing Systems: Public keys can be distributed using X.509 or other
"web of trust" mechanisms. This additional authentication step can provide greater
assurance in key-exchange processes when necessary.

12.4 Compact Packet Headers

QSMP’s packet headers were designed to be highly efficient, significantly smaller than standard
SSH-2 protocol headers, with a size of just 21 bytes.

o Optimization for Efficiency: By eliminating unnecessary fields and limiting integer
sizes to ranges that reflect realistic use cases, the protocol reduces overhead and increases
efficiency for real-time applications like SSH.

e Scalable Design: The use of a single byte for flags and a 32-bit unsigned integer for the
message size parameter ensures scalability without exceeding the requirements of most
use cases, where payload sizes typically remain below 4 GB. This could however be
easily changed with just a couple small adjustments to the QSMP header file.

12.5 Dual-Channel Communication System

QSMP employs a two-channel communication system, with each channel independently keyed,
to maximize security.

e 512-bit Secure Tunnel: The duplex mode creates a 512-bit secure encrypted tunnel.
Combined with an aggressive choice of asymmetric protocols and parameter sets, this
will likely never be broken.

o Separate Key Generation: Each host independently generates the keys for the channels
it uses to transmit data. This practice is a significant enhancement over protocols that use
a single shared secret for both transmit and receive channels.

e Avoiding Security Shortcuts: While some protocols opt for single key exchanges to
simplify operations, QSMP deliberately avoids these shortcuts to ensure the highest level
of security.

12.6 Post-Quantum Authenticated Stream Cipher (RCS)

QSMP uses the RCS (Rijndael Cryptographic Stream) cipher, which is based on a wide-block
transformation (256-bit) of the Rijndael cipher (AES) and includes several enhancements.

e Advanced Features: RCS utilizes cSHAKE for round key generation, KMAC for
authentication, and features 22 transformation rounds compared to the AES-256 14
rounds. It also has a 512-bit secure option used by the duplex mode, utilizing 30 rounds
of encryption

e Forward-Thinking Security: The decision to use RCS over more established ciphers
like AES or ChaCha reflects a proactive stance toward post-quantum security. QSMP

80

QSMP-2024 Rev. 1.3a

chooses stronger cryptographic primitives now to mitigate future risks posed by advances
in quantum computing and future cryptanalytic breakthroughs.

12.7 Long-Term Security Vision

QSMP is designed with the future of computing technology in mind, anticipating the significant
advances that are almost certain to arise.

e Future-Proofing: The protocol prioritizes long-term security by employing
cryptographic techniques that are resilient not just against current threats but also those
that may emerge as quantum computing evolves.

e Focus on Strong Security: QSMP's design aims to keep sensitive data secure for
decades to come, ensuring that it remains robust in the face of unknown future
developments in cryptography and computer capabilities.

Summary of Design Principles

The decisions that guide QSMP's design emphasize security, adaptability, and efficiency. By
focusing on post-quantum cryptographic techniques, dual-channel communication, and
streamlined packet structures, QSMP aims to provide the highest possible security in a protocol
that is both versatile and forward-compatible. The absence of protocol negotiation and the choice
to employ RCS over older ciphers highlight QSMP’s commitment to proactive defense against
emerging threats, ensuring that it remains a resilient solution for secure messaging in the
quantum era.

81

QSMP-2024 Rev. 1.3a

13. Cryptanalysis of the QSMP Encrypted-Tunneling Protocols

13.1 Methodological Framework

The evaluation follows the CK-model for authenticated key-exchange (AKE) and the ACCE
paradigm for tunnel protocols. Adversarial capabilities include adaptive chosen-ciphertext
queries to the KEM, adaptive chosen-message queries to the signature or hash functions, full
control of the network, revealed long-term keys, and immediate or delayed quantum
computation. Security goals are:

e Mutual authentication (DUPLEX) / server authentication (SIMPLEX)
o Explicit key confirmation
o IND-CCA confidentiality and INT-CTXT integrity of application data
e Forward secrecy (FS) and post-compromise security (PCS)
e Replay, reflection and downgrade resilience

Throughout, we write H() for SHA-3, KDF() for SHAKE, Epk/-Esk for the chosen IND-CCA
KEM, Ssk/Vpk for the EUF-CMA signature, and RCS||[KMAC for the AEAD stream cipher as
specified in §§4—7. QSMP specification

13.2 Cryptanalysis of the SIMPLEX Protocol

Property
Authentication

Key-secrecy /
IND-CCA

Forward secrecy

Predictive
resistance / PCS

Argument
Client verifies spkh « Ssk (H(pk || sh)) with
the server’s static vpk (Fig. 7.2) ensuring the
encapsulation key is bound to the certified
identity. Any MITM would need to forge an
EUF-CMA signature.
Session key k = KDF (sec || sch) where sec —
-Esk (cpt) and sch is a hash of public,
authenticated values (cfg, kid, Vpk). Since E is
IND-CCA and all inputs to KDF are
independently uniform, the result is
pseudorandom.
The server’s KEM key-pair (pk, sk) is freshly
generated per handshake and sk is erased after
use (Fig. 7.2 step 6). Even a future compromise
of the static signing key cannot recover sec.
Optional symmetric ratchet (§6.9) re-keys with 5
— H(ratchet key || random token); an
attacker who learns the current state cannot
compute previous or future keys without
breaking SHA-3.

82

Result
Provably secure
under EUF-CMA of
Dilithium /
SPHINCS+.

Secure assuming
IND-CCA of Kyber /
McEliece and PRF-
security of SHAKE.

Full FS provided
ephemeral key erasure
is enforced.

Achieved if ratchet
invoked with
sufficient entropy.

QSMP-2024 Rev. 1.3a

Replay &
reflection

KCI & UKS

Downgrade

32-bit UTC field + monotonically increasing 64- = Secure within At-
bit sequence is authenticated as AEAD-AAD; window; recommend
packets outside £4¢ or out-of-order are dropped At <60 s.

(§5.11, §11.5).

The client possesses no long-term secret, hence Not vulnerable.
key-compromise impersonation does not apply.
Unknown-key-share is excluded because sch

binds both identities into the key derivation.

Protocol string cfg is hashed into sch; mismatch ~ Not vulnerable.
aborts (§7.2). No negotiated fallback exists.

Observations & Potential Weaknesses

1. Single-factor authentication: Only the server is authenticated; client impersonation
towards the server is prevented by enforcement of kid lookup but no cryptographic
proof. This is acceptable for the intended one-way-trust settings but must be highlighted
in deployments that require mutual trust.

2. Validity of UTC field: Devices with inaccurate clocks may experience false-positive
replays; implement secure time-sync or widen At cautiously.

3. RCS dependence: Security of data phase reduces to confidentiality/integrity of
RCS+KMAC, which lacks broad academic scrutiny (§11.6). A conservative profile offers
AES-GCM as an alternative while RCS undergoes peer review.

13.3 Cryptanalysis of the DUPLEX Protocol

Unlike SIMPLEX, DUPLEX realizes a full two-party AKE with n = 2 independent KEM
executions and explicit key confirmation.

Property
Mutual
authentication

Key-secrecy /
IND-CCA

Forward
secrecy

Argument
Both sides sign {kid, cfg, pk, cpt,
sh} with their private signing keys
(Figs. 6.1-6.4). EUF-CMA
unforgeability = adversary cannot
inject or swap keys.
Session keys derived as k = KDF (seca
| secb || sch) where seca originates
from pk_s, sech from pk_c. Adversary
must break both KEM instances or the
KDF.
Both sides generate fresh (pk, sk) pairs
per run and erase sk (§6.4 step 4, §6.3
step 5). Compromise of any static
signing key yields no session plaintext.

83

Result
Secure given
Dilithium/SPHINCS+ EUF-
CMA.

256-bit min-entropy (Kyber-
512) — 512-bit aggregate;
resistant even if one KEM is
later weakened.

Full FS.

QSMP-2024 Rev. 1.3a

Post-
compromise
security

Explicit key
confirmation

KCI/PFS

Reflection
attacks

Downgrade &
cross-protocol

Optional asymmetric ratchet (§6.8)
injects a new KEM secret authenticated
over RCS; reveals after compromise
cannot roll back state.

Client sends Enc_k_tx (sch) and
expects H (sch) back (Figs. 6.5-6.7).
Attack failing to derive correct keys is
detected before data transfer — ACCE
property.

Even if an attacker steals one party’s
static signing key, they cannot
impersonate the other party because a
valid signature from both sides is
required; session keys remain unique
by fresh KEMs.

Nonces pk_C # pk_s and asymmetric
roles in message flow disallow packet
reflection loops.

Same binding of ¢fg into sch as
SIMPLEX; combined KEMs of
differing strengths still yield >
min(security levels) bits.

Observations & Potential Weaknesses

PCS achievable with frequent
ratcheting.

Secure.

Not vulnerable.

Secure.

Not vulnerable.

1. Aggregate-KDF robustness: Current construction concatenates seca || secb || sch. A
provably secure combiner (e.g., XOR of independent HKDF outputs) would formalize
resistance if one KEM degenerates.

2. Side-channel leakage: Both Kyber and Dilithium constant-time reference
implementations MUST be used; mixing McEliece (large-key) requires memory-safe
decoding to avoid timing leaks.

3. Asymmetric ratchet signature replay: The ratchet relies on signed hash of the new pk;
ensure pk is unique per epoch or include a monotone counter to avoid replay of old

ratchet keys.

13.4 Comparative Security Summary

Dimension SIMPLEX DUPLEX
Authentication Server-only Mutual
Session-key entropy 256 bits (single KEM) 512 bits (dual KEM)
Handshake RTT 2 4
Forward secrecy v (ephemeral) v
Post-compromise Sym-ratchet (optional) Sym + Asym ratchets (optional)

84

QSMP-2024 Rev. 1.3a

Suits Client < Server, low latency Peer-to-Peer, high assurance

DUPLEX attains strictly stronger security at the cost of one extra KEM, signature and RTT. For
deployments where server authentication suffices and latency dominates, SIMPLEX is adequate;
otherwise DUPLEX is preferred.

13.5 Tamarin-Prover Model
It captures both protocol variants as separate roles and proves session-key secrecy and explicit
authentication in the CK adversary model.

Symbol Meaning
G S Client and Server principals
pk & sk Public / private KEM key-pair
Sig(-) Post-quantum EUF-CMA signature
Enc(-) / Dec(-) IND-CCA KEM encapsulate / decapsulate
KDF(+) SHAKE-based key-derivation function

XS xS Ephemeral KEM secrets for C and S
SK Agreed session key

13.5.1 SIMPLEX handshake

1. C—S: cfg kid, pk

2. S— C: cpt=Enc(pks, vy °), Sig(H(cfglpkslcpt))
3. C: y s« Dec(sks, cpt)

4. Bothsides: SK = KDF(_y sIH(cfglkidlpks))

Verified properties

e Auth S : [If Caccepts, then S previously sent Sig(-).
e SK-Secrecy: Adv cannot distinguish SK from random unless breaking IND-CCA or
EUF-CMA.

13.5.2 DUPLEX handshake

C—S: cfg kid, pk

S— C: cpt: = Enc(pk,, y_*), Sig(H(cfglpklcpti))

C—S: pk c cpt: = Enc(pk_c, y_°), Sig(H(cfglpk clcptz))

Both sides: _x s «— Dec(sk, cpt1); __°¢ «— Dec(sk _c, cpt2)

SK = KDF(_y_ sl _y_clH(cfglkidlpkpk c))

Key-confirmation: C sends MACSK)(H(cfg)), S replies HMMAC).

AN e

Verified properties

85

QSMP-2024 Rev. 1.3a

e Mutual-Auth: Both parties agree on the peer’s identity and on SK.
e SK-Secrecy: Adv must break at least one IND-CCA KEM and one EUF-CMA signature
to distinguish SK.

e Forward Secrecy: Ephemeral secrets 7y s, y_°are erased; compromise of static keys
after the session leaks no plaintext.

13.5.3 Model assumptions

o Hash and KDF are treated as random oracles.

o RCS+KMAC data phase is abstracted as an authenticated channel once SK is established.
o Ephemeral secret-key erasure is idealized (-- [LtkErase]- events).

o Time-based replay defense is modelled by a non-repeating sequence number seq € IN.

These assumptions match the informal security arguments in §§ 13.2-13.3 and provide machine-

checked confirmation that both QSMP handshakes meet their stated goals under standard
cryptographic hardness conjectures.

86

