
QSTP-2024 Rev. 1.0b

1

Quantum Secure Tunneling Protocol – QSTP 1.0
Revision 1.0b, October 19, 2024

John G. Underhill – john.underhill@protonmail.com

The Quantum Secure Tunneling Protocol (QSTP) is an authenticated three-party system,

designed to secure communication between a client and server using quantum-safe encryption

and certificate-based authentication. The protocol ensures secure key exchange, message

integrity, and confidentiality.

Contents Page

Foreword 2

1: Introduction 3

2: Scope 4

3: Terms and Definitions 7

4: Cryptographic Primitives 11

5: Protocol Description 13

6: Mathematical Description 19

7: QSTP API 28

8: Security Analysis 46

9: Conclusion 48

QSTP-2024 Rev. 1.0b

2

Foreword

This document is intended as the preliminary draft of a new standards proposal, and as a basis

from which that standard can be implemented. We intend that this serves as an explanation of

this new technology, and as a complete description of the protocol.

This document is the first revision of the specification of QSTP, further revisions may become

necessary during the pursuit of a standard model, and revision numbers shall be incremented

with changes to the specification. The reader is asked to consider only the most recent revision of

this draft, as the authoritative implementation of the QSTP specification.

The author of this specification is John G. Underhill, and can be reached at

john.underhill@protonmail.com

QSTP, the algorithm constituting the QSTP messaging protocol is patent pending, and is owned

by John G. Underhill and Quantum Resistant Cryptographic Solutions Corporation. The code

described herein is copyrighted, and owned by John G. Underhill and Quantum Resistant

Cryptographic Solutions Corporation.

QSTP-2024 Rev. 1.0b

3

1. Introduction

The Quantum Secure Tunneling Protocol (QSTP) is a cryptographic protocol designed to enable

secure communication between clients and servers. It leverages a key exchange process

authenticated by a root server, which signs the certificates of the participating servers and clients.

The protocol's design focuses on ensuring post-quantum security, protecting communications

even in the presence of quantum computing threats.

QSTP differs from traditional peer-to-peer tunneling protocols, such as Quantum Secure

Messaging Protocol (QSMP), by incorporating a root server for certificate management. This

server is responsible for signing the certificates that authenticate key exchanges between the

client and server.

The key goals of QSTP are:

1. Post-quantum security: The protocol is designed to withstand quantum-based attacks by

relying on secure cryptographic primitives.

2. Authenticated key exchange: The client and server engage in a secure key exchange

process, using certificates issued by the root server.

3. Confidentiality and Integrity: QSTP ensures that communication between the client and

server remains confidential and tamper-proof.

The following sections will outline the design, mathematical foundation, and security analysis of

QSTP, providing an in-depth review of the design and implementation of a QSTP crypto-system.

QSTP-2024 Rev. 1.0b

4

2. Scope

This document provides a comprehensive description of the QSTP secure tunneling protocol,

focusing on establishing encrypted and authenticated communication channels between two

hosts. It outlines the complete processes involved in key exchange, message authentication, and

the establishment of secure communication tunnels using the QSTP protocol.

The QSTP specification includes detailed descriptions of the following elements:

• Cryptographic Primitives: An in-depth look at the mathematical foundations and

quantum-resistant algorithms used in QSTP.

• Key Derivation Functions: The specific methods and algorithms used to generate secure

session keys from shared secrets.

• Client-to-Server Messaging Protocols: A step-by-step breakdown of the message

exchanges required to establish a secure communications stream between clients and

servers.

2.1 Application

QSTP is designed primarily for institutions and organizations that require secure communication

channels to handle sensitive information exchanged between remote terminals. It is ideally suited

for sectors where data confidentiality, integrity, and authenticity are paramount, including

financial institutions, government agencies, defense contractors, and enterprises managing

critical infrastructure.

The protocol is versatile enough to be applied in various settings, such as secure messaging,

VPNs, and other network communication systems where robust encryption and authentication

are essential. QSTP's design ensures that even if the cryptographic landscape changes due to

advancements in quantum computing, its security framework remains resilient and flexible.

Mandatory Protocol Components:

• The key exchange, message authentication, and encryption functions defined in this

document are integral to the construction of a QSTP communication stream. These

components MUST be implemented to ensure secure operations and protocol compliance.

Use of Keywords for Compliance:

• SHOULD: Indicates best practices or recommended settings that are not compulsory but

are strongly advised for optimal performance and security.

• SHALL: Denotes mandatory requirements that must be followed to ensure full

compliance with the QSTP protocol. Deviations from these guidelines result in non-

conformity and may compromise the protocol's effectiveness.

2.2 Protocol Flexibility and Use Cases

QSTP-2024 Rev. 1.0b

5

QSTP is engineered to be highly adaptable, supporting various deployment scenarios ranging

from simple client-server architectures to more complex multi-party distributed systems. This

flexibility makes it ideal for cloud-based infrastructures, secure messaging applications, VPNs,

and IoT networks that demand high-performance encryption and authentication.

Key use cases for QSTP include:

• Institutional Communications: Securely encrypting and authenticating sensitive data

exchanges between financial institutions, government agencies, and corporate networks.

• Internet of Things (IoT): Enabling secure communication for connected devices that

require lightweight, efficient, and scalable encryption protocols to protect data integrity.

• Secure Messaging Platforms: Providing end-to-end encryption for messaging services

that need to resist both classical and quantum attacks.

The protocol's ability to integrate with existing network infrastructure without requiring

extensive modifications ensures that organizations can transition to post-quantum security

seamlessly while maintaining high levels of operational efficiency.

2.3 Compliance and Interoperability

The QSTP protocol is designed to maintain strict compliance with its core cryptographic

principles while ensuring interoperability with other secure communication frameworks. To

guarantee that different QSTP implementations can interact securely, adherence to the standards

outlined in this document is crucial.

To facilitate future upgrades and adaptations, QSTP is structured to support modular

cryptographic components. This approach allows for the addition of new cryptographic

primitives or the enhancement of existing ones without disrupting the overall architecture. As

new advancements in cryptographic techniques emerge, QSTP can be easily updated to include

these innovations, maintaining its position as a state-of-the-art security protocol.

Key elements of compliance:

• Interoperability Standards: QSTP is developed to work seamlessly with other post-

quantum cryptographic standards, ensuring that its communication channels can operate

in diverse network environments.

• Modular Design: The protocol's flexible design allows for straightforward upgrades,

facilitating the incorporation of future cryptographic advancements with minimal impact

on existing deployments.

2.4 Recommendations for Secure Implementation

In addition to outlining the core requirements for QSTP's secure communication, this document

provides best practice recommendations to enhance implementation security, performance, and

reliability:

QSTP-2024 Rev. 1.0b

6

• Regular Cryptographic Updates: Institutions are advised to keep informed of

developments in post-quantum cryptography and to periodically update their

cryptographic algorithms to maintain compliance with industry standards.

• Security Audits and Assessments: Routine security assessments should be conducted to

identify potential vulnerabilities in the protocol implementation and to apply necessary

mitigations.

• Infrastructure Optimization: It is recommended to configure network infrastructure in

a way that supports QSTP's low-latency, high-throughput capabilities, ensuring that

performance remains consistent even under heavy loads.

These guidelines aim to help organizations maximize QSTP's security potential, ensuring that

their communication channels remain secure against both current and future threats.

2.5 Document Organization

This document is structured to provide a detailed, logical flow of information about the QSTP

protocol's operation and implementation. It includes the following key sections:

• Cryptographic Primitives: Detailed explanations of the mathematical algorithms that

form the foundation of QSTP's encryption and authentication processes.

• Key Exchange Mechanisms: Comprehensive breakdowns of how session keys are

established securely through QSTP's key exchange protocol.

• Message Authentication: Detailed descriptions of the techniques used to verify the

authenticity and integrity of messages exchanged within QSTP communications.

• Error Handling and Fault Tolerance: Guidelines on how to manage protocol errors and

disruptions while maintaining secure and stable communication channels.

• Implementation Examples: Practical examples, code snippets, and detailed use cases

demonstrating the integration of QSTP in various application contexts.

QSTP-2024 Rev. 1.0b

7

3.Terms and Definitions

3.1 Cryptographic Primitives

3.1.1 Kyber

The Kyber asymmetric cipher and NIST Post Quantum Competition winner.

3.1.2 McEliece

The McEliece asymmetric cipher and NIST Round 3 Post Quantum Competition candidate.

3.1.3 Dilithium

The Dilithium asymmetric signature scheme and NIST Post Quantum Competition winner.

3.1.5 SPHINCS+

The SPHINCS+ asymmetric signature scheme and NIST Post Quantum Competition winner.

3.1.6 RCS

The wide-block Rijndael hybrid authenticated symmetric stream cipher.

3.1.7 SHA-3

The SHA3 hash function NIST standard, as defined in the NIST standards document FIPS-202;

SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

3.1.8 SHAKE

The NIST standard Extended Output Function (XOF) defined in the SHA-3 standard publication

FIPS-202; SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

3.1.9 KMAC

The SHA3 derived Message Authentication Code generator (MAC) function defined in NIST

special publication SP800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and

ParallelHash.

3.2 Network References

3.2.1 Bandwidth

The maximum rate of data transfer across a given path, measured in bits per second (bps).

3.2.2 Byte

Eight bits of data, represented as an unsigned integer ranged 0-255.

3.2.3 Certificate

QSTP-2024 Rev. 1.0b

8

A digital certificate, a structure that contains a signature verification key, expiration time, and

serial number and other identifying information. A certificate is used to verify the authenticity of

a message signed with an asymmetric signature scheme.

3.2.4 Domain

A virtual grouping of devices under the same authoritative control that shares resources between

members. Domains are not constrained to an IP subnet or physical location but are a virtual

group of devices, with server resources typically under the control of a network administrator,

and clients accessing those resources from different networks or locations.

3.2.5 Duplex

The ability of a communication system to transmit and receive data; half-duplex allows one

direction at a time, while full-duplex allows simultaneous two-way communication.

3.2.6 Gateway: A network point that acts as an entrance to another network, often connecting a

local network to the internet.

3.2.7 IP Address

A unique numerical label assigned to each device connected to a network that uses the Internet

Protocol for communication.

3.2.8 IPv4 (Internet Protocol version 4): The fourth version of the Internet Protocol, using 32-

bit addresses to identify devices on a network.

3.2.9 IPv6 (Internet Protocol version 6): The most recent version of the Internet Protocol,

using 128-bit addresses to overcome IPv4 address exhaustion.

3.2.10 LAN (Local Area Network)

A network that connects computers within a limited area such as a residence, school, or office

building.

3.2.11 Latency

The time it takes for a data packet to move from source to destination, affecting the speed and

performance of a network.

3.2.12 Network Topology

The arrangement of different elements (links, nodes) of a computer network, including physical

and logical aspects.

3.2.13 Packet

A unit of data transmitted over a network, containing both control information and user data.

3.2.14 Protocol

A set of rules governing the exchange or transmission of data between devices.

QSTP-2024 Rev. 1.0b

9

3.2.15 TCP/IP (Transmission Control Protocol/Internet Protocol)

A suite of communication protocols used to interconnect network devices on the internet.

3.2.16 Throughput: The actual rate at which data is successfully transferred over a

communication channel.

3.2.17 UDP (User Datagram Protocol)

A communication protocol that offers a limited amount of service when messages are exchanged

between computers in a network that uses the Internet Protocol.

3.2.18 VLAN (Virtual Local Area Network)

A logical grouping of network devices that appear to be on the same LAN regardless of their

physical location.

3.2.19 VPN (Virtual Private Network)

Creates a secure network connection over a public network such as the internet.

3.3 Normative References

The following documents serve as references for cryptographic components used by QSTP:

3.3.1 FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable Output

Functions: This standard specifies the SHA-3 family of hash functions, including SHAKE

extendable-output functions. https://doi.org/10.6028/NIST.FIPS.202

3.3.2 FIPS 203: Module-Lattice-Based Key Encapsulation Mechanism (ML-KEM): This

standard specifies ML-KEM, a key encapsulation mechanism designed to be secure against

quantum computer attacks. https://doi.org/10.6028/NIST.FIPS.203

3.3.3 FIPS 204: Module-Lattice-Based Digital Signature Standard (ML-DSA): This standard

specifies ML-DSA, a set of algorithms for generating and verifying digital signatures, believed

to be secure even against adversaries with quantum computing capabilities.

https://doi.org/10.6028/NIST.FIPS.204

3.3.4 NIST SP 800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and

ParallelHash: This publication specifies four SHA-3-derived functions: cSHAKE, KMAC,

TupleHash, and ParallelHash. https://doi.org/10.6028/NIST.SP.800-185

3.3.5 NIST SP 800-90A Rev. 1: Recommendation for Random Number Generation Using

Deterministic Random Bit Generators: This publication provides recommendations for the

generation of random numbers using deterministic random bit generators.

https://doi.org/10.6028/NIST.SP.800-90Ar1

3.3.6 NIST SP 800-108: Recommendation for Key Derivation Using Pseudorandom

Functions: This publication offers recommendations for key derivation using pseudorandom

functions. https://doi.org/10.6028/NIST.SP.800-108

QSTP-2024 Rev. 1.0b

10

3.3.7 FIPS 197: The Advanced Encryption Standard (AES): This standard specifies the

Advanced Encryption Standard (AES), a symmetric block cipher used widely across the globe.

https://doi.org/10.6028/NIST.FIPS.197

QSTP-2024 Rev. 1.0b

11

4. Cryptographic Primitives

QSTP relies on a robust set of cryptographic primitives designed to provide resilience against

both classical and quantum-based attacks. The following sections detail the specific

cryptographic algorithms and mechanisms that form the foundation of QSTP's encryption, key

exchange, and authentication processes.

4.1 Asymmetric Cryptographic Primitives

QSTP employs post-quantum secure asymmetric algorithms to ensure the integrity and

confidentiality of key exchanges, as well as to facilitate digital signatures. The primary

asymmetric primitives used are:

• Kyber: A lattice-based key encapsulation mechanism that provides secure, efficient key

exchange resistant to quantum attacks. Kyber is valued for its balance between

computational speed and cryptographic strength, making it suitable for scenarios

requiring rapid key generation and exchange.

• McEliece: A code-based cryptosystem that remains one of the most established post-

quantum algorithms. It leverages the difficulty of decoding general linear codes, offering

a high level of security even against advanced quantum decryption techniques.

• Dilithium: A lattice-based digital signature algorithm that offers fast signing and

verification processes while maintaining strong security guarantees against quantum

attacks.

• Sphincs+: A hash-based signature scheme known for its stateless nature, which provides

long-term security without reliance on specific problem structures, making it robust

against future advancements in cryptographic research.

These asymmetric primitives are selected for their proven resilience against quantum

cryptanalysis, ensuring that QSTP's key exchange and signature operations remain secure in the

face of evolving computational threats.

4.2 Symmetric Cryptographic Primitives

QSTP's symmetric encryption employs the Rijndael Cryptographic Stream (RCS), a stream

cipher adapted from the Rijndael (AES) algorithm to meet post-quantum security needs. Key

features of the RCS cipher include:

• Wide-Block Cipher Design: RCS extends the original AES design with a focus on

increasing the block size and number of transformation rounds, thereby enhancing its

resistance to differential and linear cryptanalysis.

• Enhanced Key Schedule: The key schedule in RCS is cryptographically strengthened

using Keccak, ensuring that derived keys are resistant to known attacks, including

algebraic-based and differential attacks.

• Authenticated Encryption with Associated Data (AEAD): RCS integrates with KMAC

(Keccak-based Message Authentication Code) to provide both encryption and message

QSTP-2024 Rev. 1.0b

12

authentication in a single operation. This approach ensures that data integrity is

maintained alongside confidentiality.

The RCS stream cipher's design is optimized for high-performance environments, making it

suitable for low-latency applications that require secure and efficient data encryption. It

leverages AVX/AVX2/AVX512 intrinsics and AES-NI instructions embedded in modern CPUs.

4.3 Hash Functions and Key Derivation

Hash functions and key derivation functions (KDFs) are essential to QSTP's ability to transform

raw cryptographic data into secure keys and hashes. The following primitives are used:

• SHA-3: SHA-3 serves as QSTP's primary hash function, providing secure, collision-

resistant hashing capabilities.

• SHAKE: QSTP employs the Keccak SHAKE XOF function for deriving symmetric keys

from shared secrets. This ensures that each session key is uniquely generated and

unpredictable, enhancing the protocol's security against key reuse attacks.

These cryptographic primitives ensure that QSTP's key management processes remain secure,

even in scenarios involving high-risk adversaries and quantum-capable threats.

QSTP-2024 Rev. 1.0b

13

5. Protocol Description

The QSTP key exchange is a three-party, one-way trust, client-server key exchange model in

which the client trusts the server based on certificate authentication facilitated by a root domain

security server. A single shared secret is securely exchanged between the server and client, and

used to create an encrypted tunnel. Designed for efficiency, the QSTP exchange is fast and

lightweight, while providing 256-bit post-quantum security, ensuring protection against future

quantum-based threats.

This protocol is versatile and can be used in a wide range of applications, such as client

registration on networks, secure cloud storage, hub-and-spoke model communications,

commodity trading, and electronic currency exchange; essentially, any scenario where an

encrypted tunnel using strong, quantum-safe cryptography is required.

The server in this model is built as a multi-threaded communications platform capable of

generating a uniquely keyed encrypted tunnel for each connected client. With a lightweight state

footprint of less than 4 kilobytes per client, a single server instance has the capability to handle

potentially hundreds of thousands of simultaneous connections. The cipher encapsulation keys

utilized during each key exchange are ephemeral and unique, ensuring that every key exchange

remains secure and independent from previous key exchanges.

The root domain security server (RDS) distributes a public signature verification certificate to

every client in its domain. This certificate is used to authenticate an QSTP application server

(QAS) public certificate. The server's certificate is used to verify signed messages from the

server to the client.

5.1 Root Certificate Generation

Figure 5.1: QSTP root certificate creation.

QSTP-2024 Rev. 1.0b

14

The root security server generates a root certificate that is distributed to every client on the

network. The root server stores the private signing key, which it uses to sign application server

certificates. The application server certificate is hashed, and the hash is signed by the root

asymmetric signing key, with the signature populating the csig field of the severs certificate. The

client uses the asymmetric signature verification key embedded in the root certificate to verify a

server certificate’s authenticity.

5.2 Connection Request

Figure 5.2: QSTP connection request.

1) The client inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The client begins the key exchange operation by sending a connect request packet to the

server. This packet contains the server certificate serial number and the protocol

configuration string.

3) The client hashes the root certificate and the application server’s certificate. This hash is

stored in the session cookie state value (sch) and is used as a unique session identifier. This

approach ensures that the correct certificates are referenced and that the session state is

uniquely identifiable between different root-server pairings.

4) The client adds the application server’s certificate serial number and the configuration string

to the message, and sends the connection request to the server.

QSTP-2024 Rev. 1.0b

15

5.3 Connection Response

Figure 5.3: QSTP server connection response.

1) The server inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The server checks its database for a key that matches the certificate serial number provided in

the request. If the verification key is not found, the server sends an unknown certificate error

message to the client, aborts the key exchange, logs the event, and tears down the session.

3) The server compares the protocol configuration string sent by the client with its own stored

protocol string to ensure compatibility.

4) The server verifies the expiration time of the certificate. If all these fields are validated

successfully, the server loads the signature key into its active state.

5) The server generates a new public/private asymmetric cipher keypair. It hashes the public

encapsulation key and the serialized connection response packet header, and signs this hash

with its private signing key.

6) The server adds the public asymmetric encapsulation key and the signed hash of the public

key to the connect response message and sends it to the client to continue the key exchange

process.

QSTP-2024 Rev. 1.0b

16

5.4 Exchange Request

Figure 5.4: QSTP client exchange request.

1) The client inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The client uses the server’s signature verification key to verify the signature on the hash of

the asymmetric encapsulation key and serialized packet header. If the signature verification

fails, the client sends an authentication failure message to the server and terminates the

connection.

3) If the signature is successfully verified, the client hashes the asymmetric cipher key and

serialized header, and compares this hash to the signed hash in the server's connection

QSTP-2024 Rev. 1.0b

17

response message. If the hash check fails, the client sends a hash invalid error message and

closes the connection.

4) The client uses the asymmetric cipher key to encapsulate a shared secret, creating the

ciphertext.

5) The shared secret is combined with the session cookie to key the KDF, which generates the

symmetric cipher keys and nonces used to key the transmit and receive symmetric cipher

instances.

6) The cipher rx and tx symmetric instances are initialized and ready to transmit and receive

data.

7) The asymmetric ciphertext is then included in the exchange request packet, which the client

sends to the server.

5.5 Exchange Response

Figure 5.5: QSTP server exchange response.

1) The server inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The server uses its stored asymmetric cipher private key to decapsulate the shared secret

from the ciphertext.

3) The decapsulated shared secret is combined with the session cookie to derive the two

symmetric session keys and nonces.

QSTP-2024 Rev. 1.0b

18

4) These derived session keys are used to initialize the symmetric cipher instances, activating

both the transmit and receive channels of the encrypted tunnel.

5.6 Establish Verify

Figure 5.6: QSTP client establish request.

1) The client inspects the packet header for the correct flag, sequence number, expected

message size, and that the valid-time has not expired.

2) The client verifies that the encrypted tunnel is now active and fully operational. If the packet

contains an error flag, indicating that an issue occurred during the tunnel setup, the client

immediately initiates a connection teardown.

3) The client should then handle the error according to its predefined procedures, ensuring the

user or application is informed of the failure.

QSTP-2024 Rev. 1.0b

19

6. Mathematical Description

Mathematical Symbols

← ↔ → -Assignment and direction symbols

:=, !=, ?= -Equality operators; assign, not equals, evaluate

C -The client host, initiates the exchange

S -The server host, listens for a connection

G(λ, r) -The asymmetric cipher key generation with parameter set and random source

-Esk -The asymmetric cipher decapsulation function and secret key

Epk -The asymmetric cipher encapsulation function and public key

Ssk -Sign data with the secret signature key

Vpk -Verify a signature the public verification key

cfg -The protocol configuration string

cprrx -A receive channels symmetric cipher instance

cprtx -A transmit channels symmetric cipher instance

cpt -The symmetric ciphers cipher-text

cpta -The asymmetric ciphers cipher-text

-Ek -The symmetric decryption function and key

Ek -The symmetric encryption function and key

H -The hash function (SHA3)

k, mk -A symmetric cipher and MAC key

KDF -The key expansion function (SHAKE)

kid -The public keys unique identity array

Mmk -The MAC function and key (KMAC)

pk, sk -Asymmetric public and secret keys

pvk -Public signature verification key

sch -A hash of the configuration string and and asymmetric verification-keys

sec -The shared secret derived from asymmetric encapsulation and decapsulation

spkh -The signed hash of the asymmetric public encapsulation-key

QSTP-2024 Rev. 1.0b

20

Key Exchange Sequence

Preamble

The client retains a copy of the root server’s public certificate. This certificate is used to validate

the application server’s certificate. The server certificate contains a signature field (csig), that has

a hash of the server certificate, signed by the root authentication server. When the client first

connects to an application server, the server sends its root signed certificate to the client. The

client verifies the signature in the certificate signature field using the root server’s validation key.

The client hashes the certificate, and compares it to the signed hash for equivalency. The server’s

certificate is further checked for a valid expiration time (which is checked every time a key

exchange between the client and server is initiated), as well as for a matching protocol set, and

QSTP protocol version fields. Once the server certificate has been verified, it is cached by the

client, and used to validate messages signed by the application server.

The key exchange sequence begins with the client verifying the validity of the server's public

signature verification key. The client checks the expiration date of this key, and if it is found to

be invalid or expired, the client initiates a re-authentication session with the server. During this

session, a new key is distributed over an encrypted channel, and the client verifies the new key's

certificate using the designated authentication authority or scheme implemented by the server

and client software.

9.1 Connect Request

The client sends a connection request with its configuration string, and asymmetric public

signature key serial number. The serial number is a multi-part 16-byte certificate identification

array, used to match the intended target to the corresponding key.

The configuration string defines the cryptographic protocol set being used; this must match both

implementations configuration settings. The client stores a hash of the configuration string, the

serial number, and of the server’s public asymmetric signature verification-key, which is used as

a session cookie during the exchange.

Where:

• rcert is the serialized root certificate.

• scert is the serialized server certificate.

sch ← H(rcert || scert)

The client sends the key identity string, and the configuration string to the server.

C{ serial, cfg } → S

Certificate Serial Number

QSTP-2024 Rev. 1.0b

21

The certificate serial number is a 16-byte array that acts as a public asymmetric serial number

and device identification string. It is used to match the target server to its corresponding

cryptographic key, ensuring that the correct key is used during the exchange.

Configuration String

The configuration string (cfg) specifies the cryptographic protocol set being used in the key

exchange process. For the exchange to proceed successfully, the configuration strings used by

both the client and server must match, indicating that they are using the same cryptographic

parameters.

Session Cookie

To securely manage the state of the key exchange, the client generates a session cookie hash by

hashing a combination of the root server’s public certificate and the server public certificate. This

session cookie (sch) serves as an identifier for the session, helping to ensure that the correct

certificates are referenced in the exchange. The server has this cookie stored in its state, whereas

the client generates the cookie when a key is initialized. The cookie will be unique to every root

and application server certificate pairing.

The client then sends the key certificate serial number (ser) and the protocol configuration string

(cfg) to the server to initiate the connection:

C{ ser, cfg } → S

9.2 Connect Response

The server responds with either an error message, or a response packet. Any error during the key

exchange will generate an error-packet sent to the remote host, which will trigger a tear down of

the session and network connection on both sides.

The server first checks that it has the requested asymmetric signature verification key

corresponding to that host using the serial number array, then verifies that it has a compatible

protocol configuration.

The server stores a hash of the configuration string, key id, and the public signature verification-

key, to create the session cookie hash.

sch ← H(cfg || serial || pvk)

The server generates an asymmetric encryption key-pair, stores the private key, hashes the public

encapsulation key, and signs the hash of the public encapsulation key and the serialized connect

response packet header using the asymmetric signing key. The public signature verification key

QSTP-2024 Rev. 1.0b

22

can itself be enveloped by a ‘chain of trust’ model, like X.509, using a signature verification

extension to this protocol.

pk, sk ← G(λ, r)

pkh ← H(pk)

spkh ← Ssk(pkh)

The server sends a connect response message containing a signed hash of the public asymmetric

encapsulation-key, and a copy of that key.

S{ spkh, pk } → C

Key Verification and Protocol Check

The server begins by verifying that it has the correct certificate that corresponds to the client's

request, by comparing the certificate serial number in the request to the server’s certificate serial

number.

It then checks that its protocol configuration matches the one specified by the client.

Asymmetric Key Generation and Signing

The server generates a new asymmetric encryption key pair and securely stores the private key. It

hashes the public encapsulation key and the serialized connect response packet header, and signs

this hash using its private asymmetric signature key. The signature provides a cryptographic

guarantee that the public asymmetric cipher key has not been tampered with during transmission.

Key generation and signing steps:

Generate the public (pk) and private (sk) asymmetric encryption keys.

pk, sk ← G(λ, r)

Create a hash of the public asymmetric encapsulation key, the session cookie, and the serialized

connect response packet header (sh).

pkh ← H(pk || sch || sh)

Sign the hashed public cipher key using the server's private signature key.

spkh ← Ssk(pkh)

Server Response

QSTP-2024 Rev. 1.0b

23

The server sends a connect response message back to the client, containing the signed hash of the

public asymmetric encapsulation key (spkh) and a copy of the public key:

S{ spkh, pk } → C

9.3 Exchange Request

The client verifies the signature of the hash, generates its own hash of the asymmetric cipher

public key, cookie, and packet header, and compares it with the hash contained in the message.

If the hash matches, the client uses the public-key to encapsulate a shared secret.

Signature Verification and Hash Check

The client begins by verifying the signature of the hash using the server's public verification key.

It generates its own hash of the server's public key and compares it to the hash contained in the

server's message. If the hashes match, the client proceeds to encapsulate the shared secret. If the

hashes do not match, the key exchange is aborted.

The client uses the server's public verification key to check the signature of the public key hash.

If the verification is successful, the process continues; otherwise, the key exchange fails.

Vpk(H(pk)) ← (true ?= pk : 0)

The public encapsulation key and connect response packet header are hashed, and the hash is

compared with signed hash received from the server. Once the packet header and public key are

verified, the client uses the server's public key to encapsulate a shared secret.

The client generates a ciphertext (cpt) and encapsulates the shared secret (sec) using the server's

public key.

cpt, sec ← Epk(r)

The client combines the shared secret and the session cookie to derive the session keys and two

unique nonces for the communication channels.

The Key Derivation Function (KDF) generates two session keys (k1, k2) and two nonces (n1, n2)

using the shared secret (sec) and the session cookie (sch).

k1, k2, n1, n2 ← KDF(sec || sch):

Cipher Initialization

The receive and transmit channel ciphers are then initialized using the derived keys and nonces.

QSTP-2024 Rev. 1.0b

24

Initializes the receive channel cipher with key k2 and nonce n2.

cprrx(k2, n2)

Initializes the transmit channel cipher with key k1 and nonce n1.

cprtx(k1, n1)

Client Transmission

The client sends the ciphertext to the server as part of the exchange request.

The client transmits the encapsulated shared secret to the server.

C{ cpt } → S

9.4 Exchange Response

The server processes the client's exchange request by decapsulating the shared secret, deriving

the session keys, and confirming the secure communication channel.

Shared Secret Decapsulation

The server decapsulates the shared secret from the ciphertext received from the client.

The server uses its private asymmetric key to decapsulate the shared secret (sec) from the

received ciphertext (cpt).

sec ← -Esk(cpt)

Session Key Derivation

The server combines the decapsulated shared secret and the session cookie hash to derive two

session keys and two unique nonces for the communication channels.

The Key Derivation Function (SHAKE) generates two symmetric session keys (k1, k2) and two

nonces (n1, n2) using the shared secret (sec) and the session cookie (sch).

k1, k2, n1, n2 ← KDF(sec || sch)

Cipher Initialization

The server initializes the symmetric ciphers for the receive and transmit channels.

QSTP-2024 Rev. 1.0b

25

Initializes the receive channel cipher with key k1 and nonce n1.

cprrx(k1, n1)

Initializes the transmit channel cipher with key k2 and nonce n2.

cprtx(k2, n2)

Server Response

The server sets the packet flag to exchange response, indicating that the encrypted channels have

been successfully established. It then sends this notification back to the client to confirm the

secure communication channel.

The server sends an exchange response flag to the client, confirming that the secure tunnel is

established.

S{ f } → C

The server updates its operational state to session established, indicating that it is now ready to

securely process data over the encrypted channels.

9.5 Establish Verify

In the final step of the key exchange sequence, the client verifies the status of the encrypted

tunnel based on the server's exchange response.

Client Verification

The client inspects the flag of the exchange response packet received from the server. If the flag

indicates an error state, the client immediately tears down the tunnel to prevent any further data

transmission. This ensures that no data is sent over an insecure or compromised connection.

If the flag does not indicate an error state, the client confirms that the tunnel is successfully

established and in an operational state.

Operational State

Once the verification is complete and the tunnel is confirmed, the client updates its internal state

to session established, indicating that the secure communication channels are fully operational.

The client is now ready to process data over the encrypted tunnel.

QSTP-2024 Rev. 1.0b

26

9.6 Transmission

During the transmission phase, either the client or server sends messages over the established

encrypted tunnel using the RCS stream cipher's MAC, AEAD (Authenticated Encryption with

Associated Data), and encryption functions. This process ensures the integrity and confidentiality

of the transmitted data.

Message Serialization and Encryption

The transmitting host (client or server) starts by serializing the packet header, which includes

critical details such as the message size, timestamp, protocol flag, and sequence number. This

serialized header is then added to the symmetric cipher’s associated data parameter, which adds

metadata authentication to the encryption process.

The message encryption process is as follows:

1. Encrypt the Message: The plaintext message is encrypted using the symmetric

encryption function of the RCS stream cipher. The symmetric encryption function (Ek) is

applied to the plaintext message (m) to produce the ciphertext (cpt).

cpt ← Ek(m)

2. Update the MAC State: The serialized packet header is added to the MAC (Message

Authentication Code) state through the additional-data parameter of the RCS cipher.

The MAC function (Mmk) is updated with the serialized packet header (sh) and the

ciphertext (cpt) to produce the MAC code (mc).

mc ← Mmk(sh, cpt)

3. Append the MAC Code: The MAC code is appended to the end of the ciphertext,

ensuring that any tampering with the data during transmission will be detected.

Packet Decryption and Verification

Upon receiving the packet, the recipient host deserializes the packet header and adds it to the

MAC state along with the received ciphertext. The MAC computation is then finalized and

compared with the MAC code that was appended to the ciphertext. The packet timestamp is

compared to the UTC time, if the time is outside of a tolerance threshold, the packet is rejected

and the session is torn down.

1. Generate the MAC Code: Add the serialized packet header to the cipher AEAD. Add

the ciphertext and generate the MAC code.

mc` ← Mmk(sh, cpt)

Compare the MAC tag copy with the MAC tag appended to the ciphertext.

mc` ?= mc

If the MAC check fails, indicating potential data tampering or corruption, the decryption

function returns an empty message array and an error status. The application shall handle

this error accordingly.

QSTP-2024 Rev. 1.0b

27

2. Decrypt the Ciphertext: If the MAC code matches, the ciphertext is considered

authenticated, and the message is decrypted.

The ciphertext (cpt) is decrypted back into the plaintext message (m) if the MAC

verification succeeds.

m ← -Ek(cpt)

This process ensures that the transmitted data remains confidential and tamper-evident, providing

both encryption and authentication to protect the integrity of the communication. Any errors

during decryption signal an immediate response to prevent the further exchange of potentially

compromised data.

QSTP-2024 Rev. 1.0b

28

7: QSTP API

7.1 Definitions and Shared API

Header:

qstp.h

Description:

The QSTP header contains shared constants, types, and structures, as well as function calls

common to both the QSTP server and client implementations.

Structures:

The QSTP_ERROR_STRINGS is a static string-array containing QSTP error descriptions,

used in the error reporting functionality.

Data Set Purpose

QSTP_ERROR_STRINGS A string array of readable error descriptions.

Table 7.1a QSTP error strings.

The QSTP_CONFIG_STRING is a static string containing the readable QSTP configuration

string.

Data Set Purpose

QSTP_CONFIG_STRING The QSTP configuration string.

Table 7.1b QSTP configuration string.

The qstp_packet contains the QSTP packet structure.

Data Name Data Type Bit Length Function

flag Uint8 0x08 The packet flag

msglen Uint32 0x20 The packets message length

sequence Uint64 0x40 The packet sequence number

utctime Uint64 0x40 The UTC packet creation time

message Uint8 Array Variable The packets message data

Table 7.1c QSTP packet structure.

The qstp_server_certificate contains the QSTP server public certification state.

QSTP-2024 Rev. 1.0b

29

Data Name Data Type Bit Length Function

csig Uint8 Array Variable The certificates root signed hash

issuer Uint8 Array 0x0200 The certificates issuer identity

rootser Uint8 Array 0x80 The root certificate serial number

serial Uint8 Array 0x80 The certificate serial number

verkey Uint8 Array Variable The asymmetric signatures verification key

expiration Uint64 0x40 The certificate expiration time

algorithm Uint8 0x10 The algorithm identifier

version Uint8 0x10 The QSTP version number

Table 7.1d QSTP server public certificate structure.

The qstp_server_signature_key contains the QSTP server signature key state.

Data Name Data Type Bit Length Function

schash Uint8 Array 0x0200 The certificate token hash

issuer Uint8 Array 0x0200 The certificates issuer identity

sigkey Uint8 Array Variable The server certificate signing key

serial Uint8 Array 0x80 The certificate serial number

verkey Uint8 Array Variable The asymmetric signatures verification key

expiration Uint64 0x40 The certificate expiration time

algorithm Uint8 0x10 The algorithm identifier

version Uint8 0x10 The QSTP version number

Table 7.1e QSTP server public certificate structure.

The qstp_keep_alive_state contains the QSTP keep alive state.

Data Name Data Type Bit Length Function

target Struct Variable The target host socket structure

etime Uint64 0x40 The keep alive epoch time

seqctr Uint64 0x40 The keep alive packet sequence number

recd Boolean 0x08 The keep alive response received status

Table 7.1f QSTP keep alive state structure.

Enumerations:

The qstp_messages enumeration defines the network messages.

Enumeration Purpose

QSTP-2024 Rev. 1.0b

30

qstp_messages_none No message was specified

qstp_messages_accept_fail The socket accept failed

qstp_messages_listen_fail The listener socket could not connect

qstp_messages_bind_fail The listener socket could not bind to the address

qstp_messages_create_fail The listener socket could not be created

qstp_messages_connect_success The server connected to a host

qstp_messages_receive_fail The socket receive function failed

qstp_messages_allocate_fail The server memory allocation request has failed

qstp_messages_kex_fail The key exchange has experienced a failure

qstp_messages_disconnect The server has disconnected the client

qstp_messages_disconnect_fail The server has disconnected the client due to an error

qstp_messages_socket_message The server has had a socket level error

qstp_messages_queue_empty The server has reached the maximum number of connections

qstp_messages_listener_fail The server listener socket has failed

qstp_messages_sockalloc_fail The server has run out of socket connections

qstp_messages_decryption_fail The message decryption has failed

qstp_messages_keepalive_fail The keepalive function has failed

qstp_messages_keepalive_timeout The keepalive period has been exceeded

qstp_messages_connection_fail The connection failed or was interrupted

qstp_messages_invalid_request The function received an invalid request

Table 7.1g QSTP messages enumeration.

The qstp_errors enumeration is a list of the QSTP error code values.

Enumeration Purpose

qstp_error_none No error was detected

qstp_error_accept_fail The socket accept function returned an error

qstp_error_authentication_failure The symmetric cipher had an authentication failure

qstp_error_bad_keep_alive The keep alive check failed

qstp_error_channel_down The communications channel has failed

qstp_error_connection_failure The device could not make a connection to the remote host

qstp_error_connect_failure The transmission failed at the KEX connection phase

qstp_error_decapsulation_failure The asymmetric cipher failed to decapsulate the shared secret

qstp_error_decryption_failure The decryption authentication has failed

qstp_error_establish_failure The transmission failed at the KEX establish phase

qstp_error_exchange_failure The transmission failed at the KEX exchange phase

qstp_error_hash_invalid The public-key hash is invalid

QSTP-2024 Rev. 1.0b

31

qstp_error_hosts_exceeded The server has run out of socket connections

qstp_error_invalid_input The expected input was invalid

qstp_error_invalid_request The packet flag was unexpected

qstp_error_keep_alive_expired The keep alive has expired with no response

qstp_error_keepalive_timeout The decryption authentication has failed

qstp_error_key_expired The QSTP public key has expired

qstp_error_key_unrecognized The key identity is unrecognized

qstp_error_keychain_fail The ratchet operation has failed

qstp_error_listener_fail The listener function failed to initialize

qstp_error_memory_allocation The server has run out of memory

qstp_error_message_time_invalid The packet has valid time expired

qstp_error_packet_unsequenced The packet was received out of sequence

qstp_error_random_failure The random generator has failed

qstp_error_receive_failure The receiver failed at the network layer

qstp_error_signature_failure The signing function has failed

qstp_error_transmit_failure The transmitter failed at the network layer

qstp_error_verify_failure The expected data could not be verified

qstp_error_unknown_protocol The protocol string was not recognized

qstp_error_verify_failure The expected data could not be verified

Table 7.1h QSTP errors enumeration.

The qstp_flags enum contains the QSTP packet flags.

Enumeration Purpose

qstp_flag_none No flag was specified

qstp_flag_connect_request The QSTP key-exchange client connection request flag

qstp_flag_connect_response The QSTP key-exchange server connection response flag

qstp_flag_connection_terminate The connection is to be terminated

qstp_flag_encrypted_message The message has been encrypted flag

qstp_flag_exstart_request The QSTP key-exchange client exstart request flag

qstp_flag_exstart_response The QSTP key-exchange server exstart response flag

qstp_flag_exchange_request The QSTP key-exchange client exchange request flag

qstp_flag_exchange_response The QSTP key-exchange server exchange response flag

qstp_flag_establish_request The QSTP key-exchange client establish request flag

qstp_flag_establish_response The QSTP key-exchange server establish response flag

qstp_flag_keep_alive_request The packet contains a keep alive request

qstp_flag_remote_connected The remote host is connected flag

QSTP-2024 Rev. 1.0b

32

qstp_flag_remote_terminated The remote host has terminated the connection

qstp_flag_session_established The exchange is in the established state

qstp_flag_session_establish_verify The exchange is in the established verify state

qstp_flag_unrecognized_protocol The protocol string is not recognized

qstp_flag_asymmetric_ratchet_request The host has received an asymmetric key ratchet request

qstp_flag_symmetric_ratchet_request The host has received a symmetric key ratchet request

qstp_flag_transfer_request The host has received a transfer request

Qst p_flag_error_condition The connection experienced an error

Table 7.1i QSTP flags enumeration.

The qstp_configuration_sets enumeration defines the QSTP configuration sets.

Enumeration Purpose

qstp_configuration_set_none No configuration set was

specified

qstp_configuration_set_dilithium1_kyber1_rcs256_shake256 The Dilithium-S1/Kyber-

S1/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_dilithium3_kyber3_rcs256_shake256 The Dilithium-S3/Kyber-

S3/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_dilithium5_kyber5_rcs256_shake256 The Dilithium-S5/Kyber-

S5/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_dilithium5_kyber6_rcs512_shake512 The Dilithium-S5/Kyber-

S6/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_dilithium1_mceliece1_rcs256_shake256 The Dilithium-S1/McEliece-

S1/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_dilithium3_mceliece3_rcs256_shake256 The Dilithium-S3/McEliece-

S3/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_dilithium5_mceliece5_rcs256_shake256 The Dilithium-S5/McEliece-

S5a/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_dilithium5_mceliece6_rcs256_shake256 The Dilithium-S5/McEliece-

S6/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_dilithium5_mceliece7_rcs256_shake256 The Dilithium-S5/McEliece-

S7/RCS-256/SHAKE-256

algorithm set

QSTP-2024 Rev. 1.0b

33

qstp_configuration_set_sphincsplus1f_mceliece1_rcs256_shake256 The SPHINCS+-S1F/McEliece-

S1/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_sphincsplus1s_mceliece1_rcs256_shake256 The SPHINCS+-S1S/McEliece-

S1/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_sphincsplus3f_mceliece3_rcs256_shake256 The SPHINCS+-S3F/McEliece-

S3/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_sphincsplus3s_mceliece3_rcs256_shake256 The SPHINCS+-S3S/McEliece-

S3/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_sphincsplus5f_mceliece5_rcs256_shake256 The SPHINCS+-S5F/McEliece-

S5a/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_sphincsplus5s_mceliece5_rcs256_shake256 The SPHINCS+-S5S/McEliece-

S5a/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_sphincsplus5f_mceliece6_rcs256_shake256 The SPHINCS+-S5F/McEliece-

S5b/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_sphincsplus5s_mceliece6_rcs256_shake256 The SPHINCS+-S5S/McEliece-

S5b/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_sphincsplus5f_mceliece7_rcs256_shake256 The SPHINCS+-S5F/McEliece-

S5c/RCS-256/SHAKE-256

algorithm set

qstp_configuration_set_sphincsplus5s_mceliece7_rcs256_shake256 The SPHINCS+-S5S/McEliece-

S5c/RCS-256/SHAKE-256

algorithm set

Table 7.1j QSTP configuration set enumeration.

Constants:

Constant Name Value Purpose

QSTP_CONFIG_DILITHIUM_KYBER N/A Sets the

asymmetric

cryptographic

primitive-set to

Dilithium/Kyber

QSTP_CONFIG_DILITHIUM_MCELIECE N/A Sets the

asymmetric

cryptographic

primitive-set to

QSTP-2024 Rev. 1.0b

34

Dilithium/McElie

ce

QSTP_CONFIG_SPHINCS_MCELIECE N/A Sets the

asymmetric

cryptographic

primitive-set to

Sphincs+/McEliec

e

QSTP_SERVER_PORT 32119 The default server

port address

QSTP_ASYMMETRIC_CIPHER_TEXT_SIZE Variable The byte size of

the asymmetric

cipher-text array

QSTP_ASYMMETRIC_PRIVATE_KEY_SIZE Variable The byte size of

the asymmetric

cipher private-key

array

QSTP_ASYMMETRIC_PUBLIC_KEY_SIZE Variable The byte size of

the asymmetric

cipher public-key

array

QSTP_ASYMMETRIC_SIGNING_KEY_SIZE Variable The byte size of

the asymmetric

signature signing-

key array

QSTP_ASYMMETRIC_VERIFICATION_KEY_SIZE Variable The byte size of

the asymmetric

signature

verification-key

array

QSTP_ASYMMETRIC_SIGNATURE_SIZE Variable The byte size of

the asymmetric

signature array

QSTP_ACTIVE_VERSION 1 The QSTP active

version

QSTP_CERTIFICATE_ALGORITHM_SIZE 1 The algorithm

type size

QSTP_CERTIFICATE_DESIGNATION_SIZE 1 The size of the

certificate

designation field

QSTP_CERTIFICATE_EXPIRATION_SIZE 16 The certificate

expiration date

length

QSTP_CERTIFICATE_HASH_SIZE 32 The size of the

certificate the

QSTP-2024 Rev. 1.0b

35

certificate hash in

bytes

QSTP_CERTIFICATE_ISSUER_SIZE 32 The maximum

certificate issuer

string length.

QSTP_CERTIFICATE_LINE_LENGTH 64 The line length of

the printed MPDC

certificate

QSTP_CERTIFICATE_DEFAULT_PERIOD 31536000 The default

certificate validity

period in

milliseconds

QSTP_CERTIFICATE_DEFAULT_DURATION_DAYS 365 The default

number of days a

public key

remains valid

QSTP_CERTIFICATE_DEFAULT_DURATION_SECO

NDS

31536000 The number of

seconds a public

key remains valid

QSTP_CERTIFICATE_LINE_LENGTH 64 The line length of

the printed QSTP

public key

QSTP_CERTIFICATE_MAXIMUM_PERIOD 63072000 The maximum

certificate validity

period in

milliseconds

QSTP_CERTIFICATE_MINIMUM_PERIOD 86400 The minimum

certificate validity

period in

milliseconds

QSTP_CERTIFICATE_SERIAL_SIZE 16 The certificate

serial number

field length

QSTP_CERTIFICATE_SERIAL_ENCODED_SIZE 32 The hex encoded

certificate serial

number string

length

QSTP_CERTIFICATE_SIGNED_HASH_SIZE Variable The line length of

the printed QSTP

public key

QSTP_CERTIFICATE_TIMESTAMP_SIZE 8 The key

expiration

timestamp size

QSTP_CERTIFICATE_VERSION_SIZE 1 The version id

size

QSTP-2024 Rev. 1.0b

36

QSTP_CONNECTIONS_INIT 1000 The initial QSTP

connections queue

size

QSTP_CONNECTIONS_MAX 50000 The maximum

number of

connections

QSTP_CONNECTION_MTU 1500 The QSTP packet

buffer size

QSTP_KEEPALIVE_TIMEOUT 120000 The keep alive

timeout in

milliseconds (2

minutes)

QSTP_MACTAG_SIZE 32 The mac key size

QSTP_NONCE_SIZE 32 The size of the

symmetric cipher

nonce

QSTP_PACKET_ERROR_SEQUENCE 0xFF000000000000

00

The packet error

sequence number

QSTP_PACKET_ERROR_SIZE 1 The packet error

message size

QSTP_PACKET_FLAG_SIZE 1 The packet flag

size

QSTP_PACKET_HEADER_SIZE 21 The QSTP packet

header size

QSTP_PACKET_MESSAGE_LENGTH_SIZE 4 The size of the

packet message

length

QSTP_PACKET_MESSAGE_MAX 0x3D090000 The maximum

message size used

during the key

exchange (1 GB)

QSTP_PACKET_REVOCATION_SEQUENCE 0xFF The revocation

packet sequence

number

QSTP_PACKET_SEQUENCE_SIZE 8 The size of the

packet sequence

number

QSTP_PACKET_SEQUENCE_TERMINATOR 0xFFFFFFFF The sequence

number of a

packet that closes

a connection

QSTP_PACKET_TIME_THRESHOLD 60 The maximum

number of

seconds a packet

is valid

QSTP-2024 Rev. 1.0b

37

QSTP_SECRET_SIZE 32 The size of the

shared secret for

each channel

QSTP_CLIENT_PORT 32118 The default client

port address

QSTP_SERVER_PORT 32119 The default server

port address

QSTP_ROOT_PORT 32120 The default root

port address

QSTP_SYMMETRIC_KEY_SIZE 32 The Simplex 256-

bit symmetric

cipher key size

QSTP_STORAGE_PATH_MAX 260 The maximum

path size

QSTP_ROOT_CERTIFICATE_SIZE Variable The root

certificate length

QSTP_ROOT_SIGNATURE_KEY_SIZE Variable The root signature

key size

QSTP_SERVER_CERTIFICATE_SIZE Variable A server

certificate length

QSTP_SERVER_SIGNATURE_KEY_SIZE Variable A server signing

key length

Table 7.1k QSTP constants.

The qstp_connection_state contains the QSTP connection state.

Data Name Data

Type

Bit Length Function

target Struct 0x440 The target host socket structure

rxcpr Struct Variable The receive channel cipher state

txcpr Struct Variable The transmit channel cipher state

rxseq Uint64 0x40 The receive channels packet sequence number

txseq Uint64 0x40 The transmit channels packet sequence number

cid Uint32 0x20 The connections instance count

exflag Uint8 0x08 The KEX position flag

receiver bool 0x08 The hosts receiver status

Table 7.1l QSTP connection state structure.

Functions:

QSTP-2024 Rev. 1.0b

38

Configuration From String

Convert a configuration string to an enumeration member.
qstp_configuration_sets qstp_configuration_from_string(const char* config)

Configuration To String

Convert a configuration enumeral to a configuration string.
const char* qstp_configuration_to_string(qstp_configuration_sets cset)

Connection Close

Close the network connection between hosts.
void qstp_connection_close(qstp_connection_state* cns, qstp_errors err, bool

notify)

Connection State Dispose

Reset the connection state to zero.
void qstp_connection_state_dispose(qstp_connection_state* cns)

Decrypt Packet

Decrypt a message and copy it to the message output.
qstp_errors qstp_decrypt_packet(qstp_connection_state* cns, uint8_t* message,

size_t* msglen, const qstp_network_packet* packetin)

Encrypt Packet

Encrypt a message and build an output packet.
qstp_errors qstp_encrypt_packet(qstp_connection_state* cns,

qstp_network_packet* packetout, const uint8_t* message, size_t msglen)

Error To String

Return a pointer to a string description of an error code.
const char* qstp_error_to_string(qstp_errors error)

Connection Dispose

Reset the connection state.
void qstp_connection_close(qstp_connection_state* cns)

Decrypt Packet

Decrypt a message and copy it to the message output.
qstp_errors qstp_decrypt_packet(qstp_connection_state* cns, uint8_t* message,

size_t* msglen, const qstp_packet* packetin)

Encrypt Packet

Encrypt a message and copy it to a packet.
qstp_errors qstp_encrypt_packet(qstp_connection_state* cns, qstp_packet*

packetout, const uint8_t* message, size_t* msglen)

Header Create

Populate a packet header and set the creation time.
void qstp_header_create(qstp_network_packet* packetout, qstp_flags flag,

uint64_t sequence, uint32_t msglen)

QSTP-2024 Rev. 1.0b

39

Header Validate

Validate a packet header and timestamp.
qstp_errors qstp_header_validate(qstp_connection_state* cns, const

qstp_network_packet* packetin, qstp_flags flag, uint64_t sequence, uint32_t

msglen)

Get Error Description

Get the error string description.
const char* qstp_get_error_description(qstp_messages emsg)

Header Deserialize

Deserialize a byte array to a packet header.
void qstp_packet_header_deserialize(const uint8_t* header, qstp_packet*

packet)

Header Serialize

Serialize a packet header to a byte array.
void qstp_packet_header_serialize(const qstp_packet* packet, uint8_t* header)

Log Error

Log the message, socket error, and string description.
void qstp_log_error(const qstp_messages emsg, qsc_socket_exceptions err,

const char* msg)

Log Message

Log the message.
void qstp_log_message(const qstp_messages emsg)

Log Write

Log the message, and string description.
void qstp_log_write(const qstp_messages emsg, const char* msg)

Packet Clear

Clear a packet's state.
size_t qstp_packet_clear(const qstp_packet* packet)

Packet Error Message

Populate a packet structure with an error message.
void qstp_packet_error_message(qstp_network_packet* packet, qstp_errors

error)

Packet Set UTC Time

Sets the local UTC seconds time in the packet header.
void qstp_packet_set_utc_time(qstp_network_packet* packet)

Packet Time Valid

Checks the local UTC seconds time against the packet sent time for validity within the packet

time threshold.
bool qstp_packet_time_valid(const qstp_network_packet* packet)

QSTP-2024 Rev. 1.0b

40

Packet Set UTC Time

Sets the local UTC seconds time in the packet header.
void qstp_packet_set_utc_time(qstp_network_packet* packet)

Packet To Stream

Serialize a packet to a byte array.
size_t qstp_packet_to_stream(const qstp_packet* packet, uint8_t* pstream)

Root Certificate Compare

Compare two root certificates for equivalence.
bool qstp_root_certificate_compare(const qstp_root_certificate* a, const

qstp_root_certificate* b)

Root Certificate Decode

Copy a root certificate structure to a file.
bool qstp_root_certificate_decode(qstp_root_certificate* root, const char*

enck, size_t enclen)

Roor Certificate Deserialize

Deserialize a root certificate
void qstp_root_certificate_deserialize(qstp_root_certificate* root, const

uint8_t input[QSTP_ROOT_CERTIFICATE_SIZE])

Root Certificate Encode

Encode a root certificate into a readable string
size_t qstp_root_certificate_encode(char* enck, size_t enclen, const

qstp_root_certificate* root)

Root Certificate Encoded Size

Get the root encoding string size.
size_t qstp_root_certificate_encoded_size()

Root Certificate Extract

Extract the root certificate from the server key.
void qstp_root_certificate_extract(qstp_root_certificate* root, const

qstp_root_signature_key* kset)

Root Certificate Hash

Hash a root certificate
void qstp_root_certificate_hash(uint8_t output[QSTP_CERTIFICATE_HASH_SIZE],

const qstp_root_certificate* root)

Root Certificate Serialize

Serialize a root certificate to an array.
void qstp_root_certificate_serialize(uint8_t

output[QSTP_ROOT_CERTIFICATE_SIZE], const qstp_root_certificate* root)

Root Certificate Sign

Sign a server certificate.

QSTP-2024 Rev. 1.0b

41

size_t qstp_root_certificate_sign(qstp_server_certificate* cert, const

qstp_root_certificate* root, const uint8_t* rsigkey)

Root Certificate Verify

Verify a certificate is signed by the root.
bool qstp_root_certificate_verify(const qstp_root_certificate* root, const

qstp_server_certificate* cert)

Root Certificate To File

Copy a root certificate structure to a file.
bool qstp_root_certificate_to_file(const qstp_root_certificate* root, const

char* fpath)

Root File To Certificate

Copy a certificate from a file to a root certificate structure.
bool qstp_root_file_to_certificate(qstp_root_certificate* root, const char*

fpath)

Root File To Key

Copy a root key from a file to a root key structure.
bool qstp_root_file_to_key(qstp_root_signature_key* kset, const char* fpath)

Root Get Issuer

Get the root certificate issuer name.
void qstp_root_get_issuer(char issuer[QSTP_CERTIFICATE_ISSUER_SIZE])

Root Key Deserialize

Deserialize a root signature key.
void qstp_root_key_deserialize(qstp_root_signature_key* kset, const uint8_t

input[QSTP_ROOT_SIGNATURE_KEY_SIZE])

Root Get Issuer

Get the root certificate issuer name.
void qstp_root_get_issuer(char issuer[QSTP_CERTIFICATE_ISSUER_SIZE])

Root Key To File

Copy a root key structure to a file.
bool qstp_root_key_to_file(const qstp_root_signature_key* kset, const char*

fpath)

Root Key Serialize

Serialize a root key to an array.
void qstp_root_key_serialize(uint8_t serk[QSTP_ROOT_SIGNATURE_KEY_SIZE],

const qstp_root_signature_key* kset)

Server Certificate Compare

Compare two server certificates for equivalence.
bool qstp_server_certificate_compare(const qstp_server_certificate* a, const

qstp_server_certificate* b)

QSTP-2024 Rev. 1.0b

42

Server Certificate Deserialize

Deserialize a server stream to a certificate structure.
void qstp_server_certificate_deserialize(qstp_server_certificate* cert, const

uint8_t input[QSTP_SERVER_CERTIFICATE_SIZE])

Server Certificate Encode

Encode a public server certificate into a readable string.
size_t qstp_server_certificate_encode(char* enck, size_t enclen, const

qstp_server_certificate* cert)

Server Certificate Encoding Size

Get the encoding size of a server certificate.
size_t qstp_server_certificate_encoded_size()

Server Certificate Extract

Extract the server certificate from the server key.
void qstp_server_certificate_extract(qstp_server_certificate* cert, const

qstp_server_signature_key* kset)

Server Certificate Hash

Hash a server certificate.
void qstp_server_certificate_hash(uint8_t output[QSTP_CERTIFICATE_HASH_SIZE],

const qstp_server_certificate* cert)

Server Root Certificate Hash

Hash the root and server certificates.
void qstp_server_root_certificate_hash(uint8_t

rshash[QSTP_CERTIFICATE_HASH_SIZE], const qstp_root_certificate* root, const

qstp_server_certificate* cert)

Server Certificate To File

Copy a server certificate structure to a file.
bool qstp_server_certificate_to_file(const qstp_server_certificate* cert,

const char* fpath)

Server File To Certificate

Copy a serialized certificate from a file to a server certificate structure.
bool qstp_server_file_to_certificate(qstp_server_certificate* cert, const

char* fpath)

Server File To Key

Copy a key from a file to a server key structure.
bool qstp_server_file_to_key(qstp_server_signature_key* kset, const char*

fpath)

Server Get Issuer

Get the server certificate issuer name.
void qstp_server_get_issuer(char issuer[QSTP_CERTIFICATE_ISSUER_SIZE])

QSTP-2024 Rev. 1.0b

43

Server Key Deserialize

Deserialize a server signature to a key structure.
void qstp_server_key_deserialize(qstp_server_signature_key* kset, const

uint8_t input[QSTP_SERVER_SIGNATURE_KEY_SIZE])

Server Key Serialize

Serialize a server key structure to an array.
void qstp_server_key_serialize(uint8_t

output[QSTP_SERVER_SIGNATURE_KEY_SIZE], const qstp_server_signature_key*

kset)

Server Key To File

Copy a server key structure to a file.
bool qstp_server_key_to_file(const qstp_server_signature_key* kset, const

char* fpath)

Server Version From String

Copy a server key structure to a file.
uint8_t qstp_version_from_string(const char* sver, size_t sverlen

Server Version To String

Convert the version number to a hexidecimal string.
void qstp_version_to_string(char* sver, uint8_t version)

Server Get Issuer

Get the server certificate issuer name.
void qstp_server_get_issuer(char issuer[QSTP_CERTIFICATE_ISSUER_SIZE])

Stream To Packet

Deserialize a byte array to a packet.
void qstp_stream_to_packet(const uint8_t* pstream, qstp_packet* packet)

7.2 Server API

Header:

server.h

Description:

Functions used to implement the QSTP server.

Functions:

Expiration Check

QSTP-2024 Rev. 1.0b

44

Check the expiration status of a server key.
bool qstp_server_expiration_check(const qstp_server_signature_key* kset)

Key Generate

Generate a signature key.
void qstp_server_key_generate(qstp_server_signature_key* kset, const char

issuer[QSTP_CERTIFICATE_ISSUER_SIZE], uint32_t exp)

Pause

Pause the server, suspending new joins.
void qstp_server_pause()

Quit

Quit the server, closing all connections.
void qstp_server_quit()

Resume

Resume the server listener function from a paused state.
void qstp_server_resume()

Listen IPv4

Run the IPv4 networked key exchange function. Returns the connected socket and the QSTP

server connection state.
qstp_errors qstp_server_start_ipv4(qsc_socket* source, const

qstp_server_signature_key* kset,void

(*receive_callback)(qstp_connection_state*, const char*, size_t), void

(*disconnect_callback)(qstp_connection_state*))

Listen IPv6

Run the IPv6 networked key exchange function. Returns the connected socket and the QSTP

server state.
qstp_errors qstp_server_start_ipv6(qsc_socket* source, const

qstp_server_signature_key* kset, void

(*receive_callback)(qstp_connection_state*, const char*, size_t), void

(*disconnect_callback)(qstp_connection_state*))

7.3 Client API

Header:
client.h

Description:

Functions used to implement the QSTP client.

Functions

QSTP-2024 Rev. 1.0b

45

Connect IPv4

Run the IPv4 networked key exchange function. Returns the connected socket and the QSTP

client state.
qstp_errors qstp_client_connect_ipv4(const qstp_root_certificate* root, const

qstp_server_certificate* cert, const qsc_ipinfo_ipv4_address* address,

uint16_t port, void (*send_func)(qstp_connection_state*), void

(*receive_callback)(qstp_connection_state*, const char*, size_t))

Connect IPv6

Run the IPv6 networked key exchange function. Returns the connected socket and the QSTP

client state.
qstp_errors qstp_client_connect_ipv6(const qstp_root_certificate* root, const

qstp_server_certificate* cert, const qsc_ipinfo_ipv6_address* address,

uint16_t port, void (*send_func)(qstp_connection_state*), void

(*receive_callback)(qstp_connection_state*, const char*, size_t))

QSTP-2024 Rev. 1.0b

46

8. Security Analysis

The security analysis of QSTP focuses on evaluating its robustness against various cryptographic

attacks, ensuring its reliability in real-world scenarios. The analysis primarily covers the key

exchange, encryption, and message authentication mechanisms.

8.1 Key Exchange Security

The QSTP key exchange relies on public-key cryptography and certificates signed by a trusted

root server. Key elements of the security model include:

1. Asymmetric Key Signatures: The server's public certificate Cₛᵣᵥ is signed by the root

server using Sₛᵣₒₒₜ, ensuring that an authenticated party has control over the key exchange.

This process prevents man-in-the-middle (MITM) attacks, as the client can verify the

authenticity of the server’s public certificate using the root server’s public key Pₛᵣₒₒₜ.

2. Shared Secret Generation: The client generates a shared secret key using the server’s

public asymmetric cipher key. Since the operation uses ephemeral asymmetric cipher

keys it provides forward secrecy. Even if an attacker compromises a later session key,

past communications remain secure.

3. Replay and Timing Attacks: The use of nonces (Nₛ) in each key exchange session

prevents replay attacks. Since the nonces are unique for each session, an attacker cannot

reuse old messages or signatures. Additionally, the timestamps included in packet headers

help mitigate timing attacks.

4. Quantum-Resistant Algorithms: The use of post-quantum primitives means that QSTP

can provide long-term security against quantum computing attacks. This makes QSTP

future-proof against quantum adversaries.

8.2 Symmetric Key Encryption

QSTP uses symmetric-key encryption to secure communication between the client and server

once the shared secret key is established. The symmetric encryption algorithm RCS is designed

to provide:

1. Confidentiality: The encryption ensures that unauthorized parties cannot read the

plaintext message. The security of the encryption depends on the strength of the chosen

algorithm and key length.

2. Authenticated Encryption: QSTP applies authenticated encryption with associated data

(AEAD) to ensure both confidentiality and integrity. The encryption and MAC generation

processes are integrated, meaning an attacker cannot alter the ciphertext without being

detected.

3. Resistance to Known Attacks: By using an AEAD symmetric cipher (RCS), QSTP

provides security against attacks such as chosen-ciphertext attacks (CCA), ciphertext

manipulation, and differential cryptanalysis.

QSTP-2024 Rev. 1.0b

47

8.3 Message Authentication and Integrity

The Message Authentication Code (MAC) by RCS ensures the integrity of transmitted messages.

The key points of MAC security include:

1. MAC Forgery Resistance: Since the MAC is computed over the encrypted message C

using the session key, an adversary cannot forge a valid MAC without access to the

session key. This prevents unauthorized modifications to the ciphertext or message.

2. Tamper Detection: Any attempt to modify the message will result in a MAC mismatch

upon verification, triggering an error. This mechanism ensures that the recipient can trust

that the message has not been tampered with.

3. Protection Against Replay Attacks: The inclusion of nonces and sequence numbers and

timestamps in each message ensures that even if a message is intercepted, it cannot be

replayed. Each message has unique associated data, which is used in the MAC

computation.

8.4 Forward Secrecy

QSTP provides forward secrecy through its key exchange mechanism. Even if a long-term

private key (such as Sₛᵣᵥ or Sₗᵢ) is compromised in the future, previous session keys and encrypted

communications remain secure. The ephemeral session key kₛₑₛₛᵢₒₙ is unique to each

communication session, preventing retrospective decryption.

8.5 Resistance to Quantum Attacks

As quantum computing continues to advance, traditional public-key algorithms like RSA and

ECC become vulnerable to quantum attacks. QSTP's use of post-quantum cryptographic

primitives in its key exchange and encryption mechanisms ensures that it is resistant to quantum

adversaries. Algorithms such as lattice-based or code-based cryptography (e.g., Kyber,

McEliece) are designed to withstand quantum attacks, providing future-proof security.

QSTP-2024 Rev. 1.0b

48

9. Conclusion

The QSTP (Quantum Secure Tunneling Protocol) offers a robust framework for secure

communication between a client and server, leveraging a trusted root server for certificate

signing and authentication. Key aspects of QSTP include:

• Security Foundation: QSTP provides strong security guarantees through its use of post-

quantum asymmetric cryptography for the key exchange, authenticated encryption for

data transmission, and authenticated symmetric encryption for message integrity.

• Post-Quantum Resilience: The integration of post-quantum cryptographic algorithms

ensures that QSTP is resistant to attacks from future quantum adversaries, offering long-

term security.

• Key Exchange: The protocol’s reliance on certificates signed by a root server strengthens

its security model, enabling clients to verify the authenticity of the server’s public key.

The sever also signs messages, enabling client’s to verify messages emanating from the

server.

• Authentication and Confidentiality: QSTP achieves both confidentiality and message

integrity through authenticated encryption, protecting against various cryptographic

attacks, including man-in-the-middle, replay, and ciphertext manipulation.

• Forward Secrecy: The use of ephemeral keys in each session provides forward secrecy,

ensuring that even if private keys are compromised in the future, previous

communications remain secure.

QSTP is a well-designed protocol that aligns with modern cryptographic standards and ensures

secure communication in an era where post-quantum threats are a growing concern. Its careful

design around authentication, encryption, and key exchange makes it a solid candidate for secure

communications in environments requiring high levels of security, such as financial institutions,

government agencies, and post-quantum cryptographic applications.

