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Chapter 1: Introduction 

1.1 Abstract 

Secure Authenticated Tunnel Protocol, SATP, is a symmetric key secure channel protocol 

designed for environments in which asymmetric cryptography is impractical or 

undesired. The protocol constructs secure channels by combining a hierarchical 

symmetric key tree, deterministic domain separated key derivations, a server side 

validation mechanism derived from a long term secret, and a second stage user 

authentication procedure executed inside an encrypted tunnel. All encrypted traffic is 

protected by an authenticated encryption construction that binds timestamps, sequence 

numbers, and packet headers as associated data, which enforces replay and reordering 

resistance. The client erases its derived device key after session establishment, which 

provides a limited form of forward secrecy that protects past sessions after client 

compromise. The server, however, retains the ability to regenerate device keys from 

branch keys, which introduces structural security boundaries that must be examined 

carefully. 

This work constructs a formal, code aligned, and mathematically precise analysis of 

SATP. The evaluation reconstructs the protocol state machine from the specification and 

implementation, formalizes the complete key schedule, defines the authenticated 

encryption channel precisely, and proves confidentiality, integrity, server authentication, 

client authentication, and replay resistance under standard adversarial models. The 

analysis also characterizes the consequences of deterministic derivation, the hierarchical 

key structure, and the absence of asymmetric mixing. The result is a corrected and 



comprehensive cryptanalysis of SATP that reflects the protocol as implemented rather 

than an idealized variant. 

1.2 Problem Statement and Object of Study 

SATP seeks to provide an authenticated and confidential communication channel across 

an untrusted network using only symmetric cryptography. The server holds a root key 

for its deployment domain, branch keys derived from this root key, and device keys 

derived deterministically from branch keys and client identity strings. The client 

possesses only its own device key along with a user supplied passphrase. The 

cryptographic workflow begins with a Connect Request that identifies the client and 

provides a freshly generated session nonce. Both sides then derive, in a strictly 

deterministic and domain separated fashion, the session encryption keys and nonces. 

The server responds with a Connect Response that contains an encrypted validation 

value computed from the device key, the session nonce, and an additional server secret. 

The client verifies this value before accepting the tunnel. Only after this validation step 

does SATP perform a separate user authentication sequence inside the encrypted 

channel using a hardened memory cost function and a stored verifier. 

This report examines SATP exactly as defined by the SATP specification at 

/mnt/data/satp_specification.pdf and the C implementation at /mnt/data/satp.c, 

/mnt/data/satp.h, and the associated connection and key exchange modules. The object 

of study is therefore the full protocol state machine, the precise derivations of Kbr, Kc,i, 

Rk, Rn, Tk, and Tn, the format of every SATP packet, the server generated validation 

hash, the SCB based user authentication sequence, and the authenticated encryption 

channel that processes encrypted data. The goal is to analyze the protocol that actually 

exists, not an abstraction or simplified representation. 

1.3 Protocol Elements Under Analysis 

SATP consists of several interdependent components that collectively determine its 

security posture. The hierarchical key derivation mechanism determines the generation 

of all device keys and therefore governs trust distribution and compromise boundaries. 

The session key derivation procedure, which is driven by the client supplied nonce and 

the configuration string found in the implementation, determines the entropy and 

independence of each session. The server side validation mechanism integrates the 

session nonce, the derived device key, and a long term server secret, and forms the 

foundation of the first stage of authentication. After this, the passphrase based user 



authentication verifies the legitimacy of the client within the encrypted tunnel. The 

authenticated encryption mechanism ties these components together by binding 

timestamps, sequence numbers, and packet headers as mandatory associated data. All 

of these components must be analyzed together because security failures in any single 

component can propagate across the entire protocol. 

The implementation contains several details that impose specific security properties that 

must be included in the analysis. The derived device key is erased by the client 

immediately after session key expansion, but the server retains the ability to regenerate 

it using the branch key. Session nonces are supplied only by the client, which fixes the 

entropy source driving key separation. Timestamps and sequence numbers evolve 

monotonically on both sides and their correctness is required for successful decryption. 

These details are not optional enhancements but central elements that must be 

accounted for when determining confidentiality, integrity, authentication strength, and 

replay resistance. 

1.4 Security Goals and Adversarial Model 

The security goals of SATP include confidentiality of encrypted payloads, integrity and 

authenticity of all ciphertext and associated data, server authentication at the protocol 

level, client authentication at the user level, and replay resistance enforced through 

timestamp and sequence number binding. These goals must be evaluated with respect 

to an adversary that controls the network, can reorder, duplicate, modify, and delay 

packets arbitrarily, and can initiate interactions with honest parties at will. The adversary 

is allowed to compromise either a client or a server branch key. Client compromise 

reveals the passphrase and derived device key but not the unattenuated branch key. 

Server branch key compromise allows regeneration of device keys for that branch and 

therefore invalidates forward secrecy for all devices under it. 

The adversary is assumed to have full transcripts of past traffic, knowledge of client 

identity strings, configuration strings, timestamps, sequence counters, header flags, and 

all other values that appear in the clear. The cryptographic assumptions underlying the 

analysis include the pseudorandom behavior of SHAKE256 output when keyed by 

unknown inputs and the IND CCA and INT CTXT security of the AEAD primitive selected 

at compile time. No assumptions are made about secrecy of identity strings or any 

public configuration parameter. 

1.5 Method of Evaluation 



The analysis proceeds by reconstructing the protocol's state machine directly from the 

specification and source code. This reconstruction identifies every transition between 

unauthenticated, server authenticated, client authenticated, and established states, and 

identifies the precise cryptographic inputs and outputs used at each transition. The key 

hierarchy and derivation functions are modeled as explicit mathematical functions, with 

all domain separation and structural properties spelled out using the exact ordering, 

concatenation, and argument placement found in the specification. 

Security proofs are provided as standard reductions. For confidentiality, we show that 

any adversary who distinguishes the encryption of two chosen plaintexts under a fresh 

SATP session key can be converted to an adversary that distinguishes two messages 

under the underlying AEAD scheme, contradicting its IND CCA security. For integrity, we 

show that any adversary who constructs a new ciphertext that verifies under an honest 

key can be used to construct a forger against the AEAD primitive. For server 

authentication, we show that producing an accepted validation hash without the server 

secret and device key requires preimage control over SHAKE256. For replay resistance, 

we show that any successful replay attack must violate the monotonicity of timestamps 

and sequence numbers or the binding of associated data in the AEAD construction. 

Forward secrecy is evaluated by examining the erasure of device keys by the client and 

the reconstruction capability available to the server. 

All proofs are cross checked against the actual control flow of the code, including the 

precise format of associated data, the handling of derived keys, the ordering of bytes in 

the session nonce, the validation hash computation, and the SCB based user 

authentication sequence. 

1.6 Deliverables and Structure 

This document produces a complete cryptanalysis of SATP that is aligned with the 

normative specification and the real implementation. It delivers a precise and fully 

formal key schedule, a clear protocol state machine, a mathematically correct set of 

security reductions, an analysis of structural limitations that arise from the hierarchical 

key design, and a set of rigorously derived conclusions regarding the confidentiality, 

integrity, authentication, and replay properties of the protocol. 

The remainder of the report develops the protocol formally, analyzes the cryptographic 

constructions used in each stage, and proves the properties claimed above. Later 

chapters also identify structural features that limit forward secrecy and discuss 



operational considerations implied by deterministic derivation and asymmetric 

authority. The final chapter summarizes the results and outlines directions for hardening 

the protocol without altering its core architectural principles. 

 

Chapter 2: Problem Statement and Scope 

2.1 Overview of the Analytical Objective 

The objective of this analysis is to evaluate the security of SATP as it is actually defined 

by its specification and implemented in the provided C codebase. SATP is a symmetric 

key secure channel protocol designed to provide confidentiality, integrity, replay 

protection, server authentication, and user authentication without relying on asymmetric 

primitives. Its construction hinges on a layered symmetric key hierarchy, deterministic 

domain separated derivation functions, a validation mechanism that binds the device 

key to fresh session material, and an authenticated encryption channel that enforces 

strict replay semantics. 

In this chapter we formalize the exact problem the cryptanalysis addresses, establish the 

constraints imposed by the protocol's structure, and define the boundaries within which 

all subsequent proofs and evaluations operate. 

2.2 Core Elements Requiring Analysis 

SATP is composed of multiple interacting components. Each of these components is 

security relevant and must be analyzed together, since a flaw in any one of them can 

compromise the full system. 

The analysis focuses on the following protocol elements: 

• Hierarchical key structure, consisting of a root key Kroot, branch keys Kbr, and 

per device keys Kc,i, all derived through SHAKE256 with explicit domain 

separation fields. 

• Session key derivation, where both peers compute (Rk, Rn, Tk, Tn) from (Kc,i, 

cfgs, Nh), with Nh provided solely by the client. 

• Server validation mechanism, in which the server authenticates itself using 

Hc = SHAKE256(Nh, Kc,i, STc) 

and transmits it through an encrypted and authenticated Connect Response. 



• User authentication sequence, performed after raising the tunnel, using a 

passphrase hardened by the SCB key derivation function and a stored verifier. 

This stage governs transition to the fully established state. 

• Authenticated encryption channel, driven by the chosen AEAD primitive and 

binding the timestamp, sequence number, and header flag as mandatory 

associated data. 

• Replay and ordering constraints, enforced by monotonic timestamps and 

sequence counters that are validated at every decryption attempt. 

• Connection and authentication state machine, which determines how an 

endpoint transitions from unauthenticated, to server authenticated, to client 

authenticated, and finally to established. 

These elements define the cryptographic behavior of the protocol and therefore form 

the scope of the formal analysis. 

2.3 Problem Definition within the SATP Architecture 

SATP attempts to solve a practical and well defined problem: establish a mutually 

authenticated encrypted tunnel between a client and an authoritative server using only 

symmetric cryptography. The constraints imposed on the design shape the 

cryptographic questions the analysis must answer. 

The protocol is inherently asymmetric. The server occupies a privileged position because 

it can regenerate any device key derived from the branch key, while the client has access 

only to its own derived device key and user passphrase. The handshake is thus driven 

entirely by a client supplied nonce, after which the server authenticates itself through 

the validation hash and completes a symmetric expansion that both sides compute 

identically. Authentication of the user occurs only after a secure tunnel has been 

created. 

Given this structure, the precise problem under evaluation is as follows: 

1. Determine whether the session keys derived from (Kc,i, cfgs, Nh) provide 

confidentiality and integrity at the AEAD layer. 

2. Determine whether the server validation hash guarantees that only a legitimate 

server can produce an acceptable Connect Response. 



3. Determine whether the user authentication process provides binding of the 

passphrase to the established session. 

4. Determine whether timestamps and sequence numbers prevent replay and 

reordering under a network adversary. 

5. Determine what forward secrecy is achieved, and under what compromise 

assumptions it fails, given the hierarchical nature of key derivation. 

6. Determine whether the implementation enforces the security assumptions 

required by the specification. 

These questions represent the core of the protocol’s intended security behavior. 

2.4 Adversarial Model and Environmental Constraints 

The adversarial model used in this cryptanalysis is consistent with established models for 

secure channel protocols. The adversary controls the network, observes all traffic, and 

can replay, drop, modify, or reorder packets without limitation. The adversary can also 

initiate its own SATP sessions with either party and interleave protocol runs arbitrarily. 

Two additional types of compromise are explicitly included, because SATP’s structure 

makes them unavoidable aspects of security evaluation: 

• Client compromise, in which the adversary learns the device key and the 

passphrase after the client has completed past sessions. 

• Branch key compromise, in which the adversary learns the server’s branch key 

and can reconstruct all device keys under that branch. 

We assume the adversary does not break the cryptographic assumptions of the 

primitives. Specifically, SHAKE256 is modeled as a pseudorandom function when keyed 

by unknown inputs, and the AEAD primitive is assumed IND CCA and INT CTXT secure. 

This adversarial model allows us to evaluate SATP’s security at the level where protocol 

correctness and implementation alignment are decisive. 

2.5 Analytical Scope and Excluded Domains 

The scope of the cryptanalysis is determined strictly by the SATP specification and the 

behavior of the C implementation. The analysis includes every code path involved in: 

• key derivation, 



• handshake and validation, 

• user authentication, 

• AEAD encryption and decryption, 

• replay checks, 

• session state transitions. 

Several topics are explicitly outside the scope of this document. These include physical 

side channel vulnerabilities, key storage hygiene beyond what the protocol requires, 

selection of user passphrases, integration concerns in higher level systems, resilience to 

denial of service, and the security of unrelated cryptographic primitives. SATP does not 

attempt to provide forward secrecy against server compromise and therefore such 

properties are not analyzed, except where structurally relevant to session derivation. 

Finally, the scope does not include hypothetical variants of SATP, extensions to multi 

party communication, or substitutions of alternative primitives. The analysis concerns 

the SATP that exists, not a design space of possible alternatives. 

2.6 Analytical Commitments for Later Chapters 

The remainder of the report builds upon the problem and scope articulated here. Later 

chapters will: 

• Model SATP's key derivation functions as explicit algebraic objects and prove 

their domain separation and collision resistance properties under SHAKE256 

assumptions. 

• Define the authenticated encryption channel formally and show how 

confidentiality and integrity reduce to the underlying AEAD guarantees. 

• Provide proofs for server authentication and replay resistance, structured as 

adversarial experiments aligned with the specification and code. 

• Analyze forward secrecy properties and show precisely when session 

confidentiality survives a given compromise event. 

• Reconcile theoretical properties with implementation details to confirm or refute 

fidelity between specification and code. 



This chapter thus establishes the analytical environment and scope required for the 

formal treatment of SATP that follows. 

 

Chapter 3: Model and Assumptions 

This chapter defines the analytical model used throughout the cryptanalysis. All notation 

and terminology are compatible with the SATP specification and the C implementation. 

The goal is to provide a complete, Word compatible foundation for the security proofs 

that follow, without relying on specialized fonts or mathematical typesetting. 

3.1 Participants and Identity Model 

SATP involves two parties: a client device and a server. The client is assigned an identity 

string "ID(c,i)". The server maintains three long term values: the root key "Kroot", the 

branch key "Kbr", and the server secret "STc". The branch key is derived from the root 

key, and the device key "Kc,i" is derived from the branch key and the client identity. 

The client stores only its own device key and the user passphrase. The server can 

recompute any device key from the branch key and the corresponding identity string. All 

identities are public values. Only the keys and secrets listed above are intended to 

remain confidential. 

Both peers maintain internal state variables such as timestamps, sequence numbers, 

connection state flags, and session keys. These variables change according to the state 

machine defined in the SATP implementation. 

3.2 Hierarchical Key Structure 

SATP uses a deterministic key hierarchy. 

1. The server derives the branch key using: 

Kbr = SHAKE256( Kroot , Ddom , Dbr ) 

2. The device key is derived using: 

Kc,i = SHAKE256( Kbr , ID(c,i) ) 

The values Ddom and Dbr are domain separation fields that ensure uniqueness across 

deployments. 



This hierarchy is asymmetric. The client knows only Kc,i. The server can reconstruct any 

Kc,i for any authorized identity string. This structural asymmetry determines the 

consequences of compromise events. For example, compromise of a branch key allows 

the attacker to regenerate all device keys derived under that branch. 

3.3 Session Key Derivation 

Both peers derive the same four session values from the device key, a configuration 

string, and a fresh client generated nonce "Nh". These values are: 

Rk = receive direction key 

Rn = receive direction nonce 

Tk = transmit direction key 

Tn = transmit direction nonce 

The derivation is: 

(Rk , Rn , Tk , Tn) = SHAKE256( Kc,i , cfgs , Nh ) 

The derivation is fully deterministic. No randomness is contributed by the server. All 

security of session separation depends on the uniqueness of Nh. The analysis therefore 

assumes the client generates Nh with high entropy and that the adversary cannot force 

nonce reuse. 

In the security model, the function above behaves as a pseudorandom function keyed 

by the unknown device key. 

3.4 Server Validation Hash 

The server authenticates itself to the client by computing the validation hash: 

Hc = SHAKE256( Nh , Kc,i , STc ) 

This value is encrypted and authenticated under the session keys during the Connect 

Response packet. The client decrypts the value and verifies it by recomputing Hc locally. 

The model assumes that an adversary cannot produce a valid Hc without knowing both 

Kc,i and STc. Any successful forgery would imply either breaking SHAKE256 or forging a 

valid AEAD ciphertext tag, both of which are outside the adversary's abilities under the 

security assumptions. 

3.5 User Authentication Under Encryption 



Once the tunnel is raised, the client performs a second authentication step. The client 

uses its passphrase to compute a hardened value using the SCB key derivation 

mechanism. The server stores a reference value for each client and checks the client's 

proof. 

All authentication messages are themselves encrypted under the session keys. The 

model assumes SCB behaves as a one way, memory hard function. The analysis does not 

require internal details of SCB, because this stage does not influence the confidentiality 

or integrity of the tunnel. It affects only whether the server accepts the user as 

authenticated. 

3.6 Authenticated Encryption Channel 

SATP uses an AEAD construction to protect all encrypted packets. The encryption 

function takes: 

• Key (either Rk or Tk) 

• Nonce (either Rn or Tn) 

• Associated data (timestamp, sequence number, and header flag) 

• Plaintext payload 

The AEAD scheme outputs ciphertext and an authentication tag. Decryption verifies the 

tag, checks the associated data, and rejects any packet with mismatched timestamp or 

sequence number. 

The security model assumes the AEAD primitive satisfies standard IND-CCA 

confidentiality and INT-CTXT integrity. All later proofs reduce SATP security properties to 

these primitive guarantees. 

3.7 Replay, Timestamp, and Ordering Rules 

Each encrypted SATP packet includes: 

• A timestamp 

• A sequence number 

• A header flag identifying the packet type 



All three values are included as associated data in the AEAD operation. Any modification 

to them results in authentication failure. 

The implementation requires timestamps to be monotonic within acceptable tolerance 

and requires sequence numbers to increase strictly. These constraints ensure that 

replays, reordering attempts, or retroactive insertions of ciphertext fail the AEAD 

verification step. 

The model assumes endpoints follow these rules exactly, and that the adversary has no 

ability to force violations other than through normal network manipulation. 

3.8 Adversary Model 

The adversary controls the entire network. It may read, drop, modify, replay, or reorder 

packets at will. It may initiate its own SATP sessions with honest peers and interleave 

these sessions arbitrarily. 

Two types of compromise are explicitly modeled: 

1. Client compromise after session completion. The adversary learns Kc,i and the 

user's passphrase. 

2. Server branch key compromise. The adversary learns Kbr and can regenerate all 

device keys derived from this branch. 

The adversary is assumed unable to do the following: 

• Distinguish SHAKE256 output from random when keyed with unknown values. 

• Forge AEAD ciphertexts that pass integrity verification. 

• Reconstruct STc or Kc,i without direct compromise. 

These are the only cryptographic assumptions used. 

3.9 Alignment With Implementation 

Every element of the model in this chapter matches the SATP specification and the C 

implementation in: 

• satp.c 

• satp.h 



• kex.c and kex.h 

• connections.c 

• client.c 

• server.c 

No part of the model introduces behavior or data structures not present in the 

implementation. All proofs in later chapters rely on these definitions, making the model 

both internally consistent and externally faithful to the deployed SATP protocol. 

 

Chapter 4: Related Work and Theoretical Context 

SATP belongs to a class of symmetric key secure channel protocols that construct 

authenticated and confidential communication layers without relying on asymmetric 

cryptography. The design is influenced by several decades of research on key 

hierarchies, deterministic derivation mechanisms, authenticated encryption, and 

password based authentication. This chapter situates SATP within that body of work to 

clarify the theoretical foundations on which the protocol relies, the existing security 

arguments that inform the SATP construction, and the ways SATP departs from or 

extends established designs. This context is necessary because many of the proofs 

presented in later chapters depend on assumptions and reduction structures that 

originate in prior research. 

4.1 Symmetric Key Tunneling Protocols 

Protocols that use only symmetric primitives to bootstrap secure tunnels are not new. 

Early examples include Kerberos ticket based channels and cluster level symmetric 

tunnels used in high performance computing systems. In these systems, trusted 

authority nodes distribute keys to all devices and rely on deterministic key schedules to 

refresh session material. SATP adopts this approach by assigning the server complete 

derivation authority over all device keys and by allowing the server to regenerate any 

device key from the corresponding branch key. 

Unlike Kerberos or early symmetric VPN models, SATP does not rely on trusted third 

party ticket issuance, nor does it introduce expiration based delegation mechanisms. 

Instead it uses a pure derivation based architecture where the root key acts as a master 



secret for the full domain. This places SATP in alignment with modern deterministic 

hierarchy designs rather than ticket based authentication systems. 

4.2 Key Hierarchies and Deterministic Derivation 

Key hierarchies have been studied extensively in secure group communication, scalable 

identity based systems, and large scale distributed architectures. Most hierarchical 

designs use deterministic derivation functions so that servers can recover or verify 

subordinate keys without storing them explicitly. SATP follows this principle precisely. 

The derivation: 

Kbr = SHAKE256( Kroot , Ddom , Dbr ) 

Kc,i = SHAKE256( Kbr , ID(c,i) ) 

is consistent with the general theory of pseudorandom key expansion, in which a single 

uncompromised root value determines the security of an entire deployment. SATP 

differs from hierarchical public key systems because it uses no asymmetric operations 

and therefore places all trust for key regeneration in the server. This structural choice 

affects the forward secrecy analysis, because it enables post hoc reconstruction of 

device keys in a way that hierarchical public key systems do not permit. 

4.3 Authenticated Encryption as a Transport Layer Primitive 

The authenticated encryption layer used by SATP fits within the framework introduced 

by modern AEAD constructions such as AES GCM and Keccak derived schemes. The use 

of associated data to bind packet headers, timestamps, and sequence numbers is 

consistent with standard models of channel security developed in the literature on 

robust transport encryption. Under these models, confidentiality reduces to IND CCA 

security of the AEAD primitive, and integrity reduces to INT CTXT security. SATP inherits 

these reduction structures directly. 

The theoretical foundation for this approach is the general paradigm that secure 

transport channels can be built safely on top of an IND CCA and INT CTXT secure AEAD 

scheme, provided that all session keys and nonces meet freshness and uniqueness 

requirements. SATP satisfies these conditions through deterministic expansion driven by 

a fresh client nonce. The protocol then binds timestamp and sequence number values 

inside the AEAD associated data in order to enforce replay and ordering guarantees. 

4.4 Password Based Authentication in Encrypted Channels 

SATP incorporates a password based authentication stage that operates inside the 

encrypted tunnel. This is conceptually related to techniques used in SSH, TLS with 

password authenticated key exchange extensions, and various symmetric authenticated 

login protocols. SATP differs in two respects. First, it does not use a password based key 



exchange mechanism to derive session keys; the device key and client nonce already 

determine the session keys before the user authentication stage begins. Second, SATP 

uses a hardened memory intensive KDF, SCB, to produce a verifier that the server checks 

inside the encrypted channel. 

The theoretical context for this approach is the principle of proof within confidentiality, 

in which password authentication is performed only after a secure transport layer has 

been established. This separation minimises the likelihood that user authentication 

failures leak information about the passphrase. The security of this stage derives not 

from the SATP key exchange itself but from the hardness properties of the SCB function 

and the confidentiality of the enclosing channel. 

4.5 Replay Protection and Freshness Guarantees 

Replay and ordering control in secure channel protocols has a long history in systems 

such as IPsec, SSH, and the original Needham Schroeder protocol corrections. Most 

secure channel designs bind a monotonically increasing counter or timestamp to the 

encryption operation so that ciphertexts cannot be accepted out of order. SATP follows 

this principle by including the timestamp, sequence number, and header flag in the 

AEAD associated data. This design situates SATP within the family of protocols that 

enforce stateful freshness, rather than using purely stateless nonces supplied externally. 

SATP’s freshness guarantees depend on the assumption that both peers maintain 

monotonic counters and that AEAD binding correctly enforces rejection of any 

attempted reuse. This is consistent with the established theoretical results that show 

that replay resistance reduces to the unforgeability of the associated data binding 

provided by AEAD. 

4.6 Deterministic Key Schedules and Forward Secrecy Considerations 

The literature on deterministic key derivation contains several results relevant to SATP. 

Deterministic hierarchies simplify provisioning, but they complicate forward secrecy 

analysis because compromise of a high level key often reveals all subordinate keys. SATP 

follows this pattern. The server can derive all device keys from the branch key. As a 

result, compromise of a branch key eliminates forward secrecy for all clients under that 

branch. This property is not anomalous but rather inherent to deterministic symmetric 

hierarchies. 

SATP partially mitigates this structural limitation through client side erasure of Kc,i. Once 

a session has derived (Rk, Rn, Tk, Tn), the client deletes the device key so that 

compromise of the client after the session does not reveal past traffic. This approach 

aligns with forward secrecy by consumption, a concept explored in symmetric key 



literature where ephemeral secrets can compensate for deterministic long term 

hierarchies. However, because the server retains Kbr, complete forward secrecy is not 

achievable under this architecture. 

4.7 Summary of Theoretical Dependencies 

The security analysis of SATP relies on theoretical foundations that are well established 

in several areas: 

1. Pseudorandom function behavior of SHAKE256 when keyed with unknown 

material. 

2. The IND CCA and INT CTXT definitions for authenticated encryption and their use 

in constructing secure transport channels. 

3. Standard adversarial models for replay control based on counters and associated 

data. 

4. Deterministic hierarchical key derivation as used in symmetric key management 

systems. 

5. Password verification inside encrypted channels as a method of binding a user 

secret to an already established tunnel. 

Taken together, these results form the theoretical context in which SATP operates. The 

protocol does not attempt to exceed these foundations, and its security proof structure 

follows the established reduction patterns used for modern secure channel protocols. 

 

Chapter 5: Protocol Overview 

This chapter presents a complete overview of SATP as it is defined in the specification 

and implemented in the C codebase. The objective is to describe the protocol in a 

manner that is faithful to the real system, suitable for formal analysis, and consistent 

with all security properties proven later. The overview is organized to highlight the 

interaction between the hierarchical key structure, the session derivation functions, the 

server validation mechanism, the user authentication sequence, and the authenticated 

encryption transport layer. All packet formats, state transitions, and cryptographic 

computations referenced here are taken directly from the corresponding SATP source 

files. 

5.1 High Level Workflow 

SATP establishes a secure tunnel in two stages. First, the client authenticates the server 

by verifying a server produced value derived from the device key, the session nonce, and 



the long term server secret. This step completes before any encrypted traffic is allowed 

to flow. Second, the client authenticates itself to the server using a hardened password 

derived value inside the encrypted tunnel. Only after both stages succeed does the 

session reach the established state. 

The protocol flow is therefore: 

1. Client sends a Connect Request that contains its identity and a fresh session 

nonce. 

2. Server derives the session keys and returns a Connect Response containing an 

encrypted validation hash. 

3. Client verifies the server by decrypting and recomputing the validation hash. 

4. Client and server enter the encrypted channel. 

5. Client performs user authentication inside the channel. 

6. Once accepted, the server transitions the state to established and both sides 

exchange encrypted data. 

This workflow strictly separates server authentication and user authentication, and 

ensures that no user authentication data is transmitted outside the encrypted tunnel. 

5.2 Key Material and Derivation Flow 

SATP’s key hierarchy connects long term secrets to session keys through deterministic 

derivation: 

1. Root key Kroot identifies the deployment domain. 

2. Branch key Kbr is derived using SHAKE256(Kroot, Ddom, Dbr). 

3. Device key Kc,i is derived using SHAKE256(Kbr, ID(c,i)). 

4. Session keys (Rk, Rn, Tk, Tn) are derived using SHAKE256(Kc,i, cfgs, Nh). 

The configuration string cfgs is compiled into the SATP implementation and identifies 

the AEAD configuration in use. The client generated nonce Nh is the sole source of fresh 

entropy. All values above appear explicitly in the implementation. 

The session derivation produces two keys and two nonces: 



• Rk and Rn are used when receiving packets. 

• Tk and Tn are used when transmitting packets. 

This separation enforces direction specific encryption and prevents reflection attacks 

inside the channel. 

5.3 Packet Structure and Message Types 

All SATP packets share a consistent header structure that contains three fields: 

• A timestamp representing the sender’s local time. 

• A sequence number that increases monotonically. 

• A header flag identifying the packet type. 

The packet types include: 

• Connect Request 

• Connect Response 

• Client Authentication Request 

• Server Authentication Response 

• Client Authentication Verification 

• Encrypted Data 

• Keepalive 

• Session Terminated 

These flags are processed exactly as implemented in satp.c, server.c, and client.c, and are 

used both to route packets and to bind packet meaning during authenticated 

encryption. 

5.4 Connect Request 

The first message in the protocol is sent by the client. It contains the identity string 

ID(c,i) and the session nonce Nh. The identity is sent in plaintext, as is customary in 

symmetric tunnel designs. The nonce Nh is a mandatory fresh random value generated 

by the client and is passed directly to the session derivation function. 



Upon receiving the Connect Request, the server reconstructs the device key Kc,i using 

the branch key and the identity. It then derives the session keys and prepares to 

authenticate itself. 

5.5 Connect Response and Server Authentication 

To prove that it is the legitimate server for the client’s identity, the server constructs a 

validation hash: 

Hc = SHAKE256( Nh , Kc,i , STc ) 

This value is encrypted and authenticated under the session keys and placed into the 

Connect Response. The client decrypts the response and verifies it by recomputing Hc. A 

mismatch indicates that the responder does not possess the correct device key or the 

server secret. 

Only after this step does the client accept that it is talking to the intended server. 

5.6 Establishment of the Encrypted Tunnel 

Once server authentication succeeds, both sides enter the encrypted channel. All 

subsequent packets, including user authentication messages, are encrypted under Rk, 

Rn, Tk, and Tn. The timestamp, sequence number, and header flag are placed in the 

associated data field of the AEAD primitive, so any modification of these values results in 

immediate packet rejection. 

The tunnel remains in a pre authentication state until the user authentication stage 

completes. 

5.7 User Authentication Under Encryption 

The client proves knowledge of its passphrase using a hardened SCB based function. 

The SCB output is not used to derive session keys. Instead, it is used purely as a verifier 

that the server compares with a stored reference value. The server returns an 

authenticated success or failure message inside the encrypted channel. 

This step binds the user’s secret to the session without exposing any password related 

information outside the encrypted tunnel. 

5.8 Transition to Established Session 



Once the server accepts the client’s authentication, the internal state on both sides 

transitions to "established". At this point: 

• All encrypted data is processed normally. 

• Timestamps and sequence numbers advance on each packet. 

• Replay and reorder checks are enforced by AEAD associated data binding. 

This state persists until one side closes the session or either timestamp or sequence 

validation fails. 

5.9 Replay Protection and Transport Semantics 

SATP enforces replay control through: 

• Monotonic sequence numbers that must always increase. 

• Timestamps that must remain within acceptable drift limits. 

• Binding both values to the authenticated data of the AEAD operation. 

Any replayed ciphertext, even if structurally correct, is rejected because its timestamp or 

sequence number will not match the expected values. This mechanism is fully consistent 

with the SATP code and represents a core security property of the tunnel. 

5.10 Summary 

This chapter has presented a complete overview of the SATP protocol as it is specified 

and implemented. The description includes the hierarchical key structure, the derivation 

of session keys, the server authentication mechanism, the user authentication stage, the 

packet formats, the tunnel operation, and the replay handling mechanisms. This 

overview forms the structural basis for the formal definitions and proofs in the next 

chapters, where each component is precisely analyzed under the adversarial model 

defined earlier. 

 

Chapter 6: Formal Specification and Mathematical Model 

This chapter provides a complete algebraic specification of SATP. All constructions are 

presented as explicit functions over bitstrings so that confidentiality, integrity, 

authentication, and replay protection can be evaluated in a precise mathematical 



setting. Every definition here corresponds directly to an operational behavior in the 

SATP code and specification. No symbolic notation outside normal ASCII is used so the 

content renders correctly in Microsoft Word. 

The mathematical model captures four principal components: the hierarchical key 

derivation process, the session derivation function, the server validation mechanism, and 

the authenticated encryption channel. The final subsection formalizes the SATP state 

machine as a sequence of deterministic transitions. 

6.1 Notation and Conventions 

All values are treated as bitstrings. Concatenation is written as: 

X || Y 

The SHAKE256 and SHAKE128 extendable output functions are written as: 

SHAKE256( input1 , input2 , ... ) 

SHAKE128( input1 , input2 , ... ) 

Multiple inputs indicate domain separated concatenation. The output size is determined 

by context. All functions map bitstrings to bitstrings and are deterministic. 

Let: 

• Kroot denote the domain root key. 

• Kbr denote a branch key. 

• Kc,i denote the device key for client identity ID(c,i). 

• cfgs denote the configuration string in the implementation. 

• Nh denote the client generated session nonce. 

• STc denote the server secret used for validation. 

Constants Ddom and Dbr are domain separation labels supplied in the specification. 

6.2 Hierarchical Key Derivation 

The SATP hierarchy is defined as a deterministic tree rooted at Kroot. 

1. Branch key derivation: 



Kbr = SHAKE256( Kroot , Ddom , Dbr ) 

The arguments Kroot, Ddom, and Dbr are concatenated with explicit separators in the 

implementation and passed into SHAKE256 as a single domain separated input. The 

model treats them as concatenated inputs. 

2. Device key derivation: 

Kc,i = SHAKE256( Kbr , ID(c,i) ) 

This derivation is deterministic for each identity. Both specification and implementation 

require that ID(c,i) be unique within a branch so that the mapping from identities to 

device keys is injective with respect to SHAKE256 domain separation. 

No randomness is introduced at any point. From the server perspective, the key 

hierarchy behaves as a deterministic pseudorandom function family indexed by 

identities. 

6.3 Session Key Derivation 

The session derivation function produces the set of transport keys and nonces used for 

authenticated encryption. SATP defines: 

(Rk , Rn , Tk , Tn) = SHAKE256( Kc,i , cfgs , Nh ) 

The interpretation is: 

• Input 1: Kc,i (secret). 

• Input 2: cfgs (implementation specific configuration string). 

• Input 3: Nh (fresh random nonce generated by the client). 

The SHAKE256 output is then partitioned into four contiguous segments of equal 

predetermined lengths: 

Rk = first segment of output 

Rn = second segment 

Tk = third segment 

Tn = fourth segment 



These lengths match the AEAD key length and nonce length of the chosen encryption 

backend. For example, if AES-256 is selected, Rk and Tk are 256 bit encryption keys and 

Rn and Tn are 96 bit or 128 bit nonces depending on compile time parameters. 

The mathematical model assumes: 

1. For unknown Kc,i, the mapping 

(Kc,i , cfgs , Nh) -> (Rk , Rn , Tk , Tn) 

is computationally indistinguishable from drawing four independent random 

values. 

2. Distinct values of Nh lead to independent session key tuples. 

These assumptions follow from the cryptographic properties of SHAKE256. 

6.4 Server Validation Hash 

Before any encrypted data flows, the server must prove possession of the long term 

secrets Kc,i and STc. SATP defines the validation hash as: 

Hc = SHAKE256( Nh , Kc,i , STc ) 

This output is included in the Connect Response as ciphertext protected by AEAD(Tk, 

Tn). The client reconstructs Hc using its local copies of Nh and Kc,i (it does not know 

STc). The validation hash is accepted only if: 

Hc(received) == SHAKE256( Nh , Kc,i , STc ) 

This binds the server's identity to the session nonce and prevents replay or substitution 

of validation messages. 

The mathematical model assumes that for an adversary who does not know Kc,i or STc, 

the function: 

(Nh , Kc,i , STc) -> Hc 

is collision resistant and preimage resistant. Producing a correct Hc without knowing 

these values would require breaking SHAKE256 or forging a valid AEAD ciphertext. 

6.5 AEAD Encryption and Associated Data Binding 

SATP uses an AEAD primitive defined by the implementation, either an RCS based 

scheme or AES based scheme. The encryption function is: 



C , Tag = AEAD_Enc( Key , Nonce , AD , P ) 

The corresponding decryption is: 

P = AEAD_Dec( Key , Nonce , AD , C , Tag ) 

where AD denotes associated data. For SATP, the associated data is: 

AD = Timestamp || Sequence || HeaderFlag 

These fields are extracted from the SATP packet header. The AEAD primitive is treated as 

a black box satisfying: 

1. IND-CCA confidentiality 

2. INT-CTXT integrity with respect to both ciphertext and associated data 

Thus, SATP transport security reduces to the security of the AEAD channel provided that 

session keys and nonces are unique per session, which is enforced by the session 

derivation function and the client's nonce Nh. 

6.6 Formal Replay Model 

SATP enforces replay protection by incorporating timestamp and sequence number into 

AD. Define: 

AD_t = Time_t || Seq_t || Flag_t 

A ciphertext C_t is accepted by the receiver only if: 

1. AEAD_Dec returns a valid plaintext. 

2. Time_t is within allowable drift. 

3. Seq_t is greater than any previously accepted sequence number for the session. 

Formally: 

Accept(C_t) = 1 if and only if all three conditions are satisfied. 

An adversary cannot cause accept(C_i) for any i < j without breaking AEAD integrity, 

because AD_i != AD_j implies a tag mismatch. 

Thus, the replay model for SATP is stateful and monotonic. 

6.7 State Machine Specification 



We formalize the SATP state machine as a tuple: 

State = ( Mode , Keys , Counters , Flags ) 

Mode takes one of the following values: 

• INIT 

• SERVER_AUTH_PENDING 

• TUNNEL_RAISED 

• USER_AUTH_PENDING 

• ESTABLISHED 

• TERMINATED 

The transitions are deterministic and correspond exactly to SATP packet processing: 

1. INIT -> SERVER_AUTH_PENDING 

Trigger: receipt of Connect Response and availability of Kc,i 

Condition: successful construction of session keys 

2. SERVER_AUTH_PENDING -> TUNNEL_RAISED 

Trigger: validation hash Hc decrypts and matches local recomputation 

3. TUNNEL_RAISED -> USER_AUTH_PENDING 

Trigger: first encrypted authentication request received 

4. USER_AUTH_PENDING -> ESTABLISHED 

Trigger: server verifies SCB derived proof 

5. Any state -> TERMINATED 

Trigger: explicit termination packet or failure of timestamp or sequence validation 

or AEAD tag failure 

These transitions define the canonical SATP execution path. All proofs in later chapters 

quantify adversarial success probabilities with respect to this state machine. 

6.8 Summary of the Mathematical Model 

This formal specification gives a complete, Word compatible algebraic description of 

SATP: 



• deterministic hierarchical key derivation, 

• deterministic session derivation from fresh nonce, 

• server validation through keyed SHAKE256 structure, 

• encryption and integrity through AEAD with associated data binding, 

• replay semantics enforced by timestamp and sequence monotonicity, 

• and a well defined state machine governing protocol flow. 

All later security proofs rely on these definitions. 

 

Chapter 7: Security Definitions and Proof Structure 

This chapter introduces the formal security definitions used to analyze SATP and 

explains the proof structure employed in subsequent chapters. The goal is to provide 

precise adversarial games for confidentiality, integrity, server authentication, client 

authentication, and replay protection, then explain how SATP’s security arguments 

reduce to the security of its underlying primitives and the structural properties 

formalized in earlier chapters. These definitions are aligned with the model, 

assumptions, and mathematical constructions already introduced, and they reflect the 

operational behavior of the SATP implementation. 

The chapter is divided into five thematic parts: channel confidentiality, channel integrity, 

server authentication, client authentication, and replay resistance. The final section 

describes the unified reduction structure that the formal proofs adopt. 

7.1 Confidentiality Definition (IND-CPA and IND-CCA Channel Security) 

SATP aims to provide confidentiality for all encrypted payloads once the tunnel is raised. 

This property is defined through a standard indistinguishability under chosen ciphertext 

attack experiment adapted to SATP’s deterministic session derivation. 

The confidentiality experiment proceeds as follows: 

1. The adversary selects two equal length plaintexts P0 and P1. 

2. A bit b is chosen uniformly by the experiment. 

3. SATP derives session keys using the real device key Kc,i and a fresh Nh. 

4. The AEAD encryption function encrypts Pb using the transmit direction key, 

nonce, and associated data. 



5. The adversary receives the ciphertext and may issue arbitrary decryption queries 

subject to the restriction that the challenge ciphertext cannot be queried. 

6. The adversary outputs a guess bit b'. 

SATP provides confidentiality if every adversary has only negligible advantage: 

Adv_conf = | Pr[b' = b] - 1/2 | 

Under the model from Chapter 6, we say SATP satisfies IND-CCA confidentiality if any 

such attacker can be converted into an attacker against the underlying AEAD primitive 

with non negligible probability. The reduction is straightforward, since the keys used by 

the AEAD scheme are derived from SHAKE256 with a secret device key and fresh Nh, 

which is indistinguishable from random as long as Kc,i is secret. 

7.2 Integrity and Authenticity Definition (INT-CTXT) 

Integrity of ciphertext and associated data is defined through the standard INT-CTXT 

experiment for authenticated encryption. An adversary succeeds if it produces a 

ciphertext-tag-associated-data triple that decrypts successfully under keys used by an 

honest endpoint, with the condition that the triple was not produced by previous 

queries to the encryption oracle. 

In the SATP context: 

1. The experiment simulates the state machine for an honest endpoint. 

2. The adversary receives encryption oracle access to AEAD_Enc(Rk, Rn, AD, P). 

3. The adversary outputs a forged ciphertext C*, tag T*, and associated data AD*. 

4. The forgery succeeds only if AEAD_Dec(Rk, Rn, AD*, C*, T*) returns a plaintext and 

AD* matches the timestamp and sequence constraints of the implementation. 

SATP provides integrity if the probability of producing any such forgery is negligible. 

Any successful SATP forgery corresponds directly to an INT-CTXT forgery against the 

AEAD primitive, because AD is strictly enforced and the session keys remain unknown to 

the adversary. 

7.3 Server Authentication Definition 

Server authentication means that the client accepts a server as legitimate only if it holds 

both the correct device key Kc,i and the correct server secret STc. The adversarial 

experiment for server authentication proceeds as follows: 

1. The adversary interacts with the server as in a normal SATP session. 

2. The adversary then attempts to impersonate the server to the client by producing 

a Connect Response that contains a ciphertext encapsulating a validation hash 

Hc*. 



3. The client accepts the server if the decrypted Hc* matches SHAKE256(Nh, Kc,i, 

STc). 

An adversary succeeds if it causes the client to accept without the adversary knowing 

both Kc,i and STc. SATP provides server authentication if the probability of success is 

negligible. 

The security reduction shows that any adversary who forges a valid Hc* must either 

invert the SHAKE256 construction or forge the AEAD tag. Since both operations are 

assumed infeasible, server authentication holds. 

7.4 Client Authentication Definition 

Client authentication concerns proving knowledge of the user's passphrase after the 

tunnel is raised. We define the client authentication experiment: 

1. The adversary interacts with the server and observes all encrypted messages. 

2. The adversary attempts to impersonate the client by producing valid SCB derived 

authentication messages after the tunnel has been established. 

3. The adversary succeeds if the server accepts the SCB verifier as correct. 

Because all authentication messages are encrypted, an impersonation attack requires 

either breaking the SCB function or breaking the confidentiality of AEAD. Under the 

assumption that SCB is one way and that AEAD is IND-CCA secure, SATP provides client 

authentication. 

7.5 Replay Resistance Definition 

Replay resistance requires that ciphertext accepted by an endpoint must be fresh with 

respect to timestamp and sequence number. SATP defines freshness via: 

1. Monotonic sequence numbers enforced per direction. 

2. Monotonic timestamps within allowed drift. 

3. Inclusion of both values in AEAD associated data. 

The replay experiment is: 

1. The adversary records a ciphertext C_old with AD_old = (Time_old, Seq_old, 

Flag_old). 

2. The adversary attempts to inject C_old at a later point in the session. 

3. The receiver accepts a replay only if AEAD_Dec succeeds and the timestamp and 

sequence number are valid. 

SATP provides replay resistance if no adversary can cause acceptance of any previously 

used ciphertext. Because the AEAD primitive authenticates AD_old, and the receiver’s 

counters reject stale values, any attempt to replay packets results in rejection unless the 

adversary can forge a new valid tag. 



7.6 Forward Secrecy in the SATP Model 

SATP does not provide traditional forward secrecy. Instead, it provides limited secrecy 

under client compromise but not under branch key compromise. To define this property 

formally: 

• The adversary may compromise the client after a session and learn Kc,i and the 

passphrase. 

• The adversary must not recover past session plaintexts unless it can break AEAD 

confidentiality. 

SATP provides forward secrecy under this restricted definition because the device key is 

erased after use and past session keys cannot be reconstructed without Kc,i. 

No forward secrecy is retained under branch key compromise, because the attacker can 

regenerate Kc,i and redo the entire session derivation. This is a structural limitation 

formalized in Chapter 6. 

7.7 Unified Proof Strategy 

The proofs in later chapters follow a structured pattern: 

1. Replace session keys generated by SHAKE256 with uniformly random keys. 

2. Argue that any adversary able to distinguish real session keys from random 

would break the pseudorandomness of SHAKE256 on secret inputs. 

3. Condition on the keys being indistinguishable from random and reduce all 

confidentiality claims to the IND-CCA security of the AEAD primitive. 

4. Condition on keys being indistinguishable from random and reduce all integrity 

and replay claims to the INT-CTXT security of AEAD. 

5. Reduce server authentication to the collision and preimage resistance of 

SHAKE256 plus the integrity of AEAD. 

6. Reduce client authentication to the one way security of SCB and the 

confidentiality of AEAD. 

This modular proof structure ensures that SATP’s security follows directly from well 

understood cryptographic assumptions and from correct implementation of protocol 

state transitions. 

7.8 Summary 

This chapter has defined the formal adversarial experiments for each major SATP 

security property and explained the reduction structure used in later proofs. These 

definitions are consistent with the SATP model, reflect the real behavior of the C 

implementation, and provide a rigorous foundation for the formal security analysis that 

follows. 



 

Chapter 8: Cryptanalytic Evaluation and Attack Surface 

This chapter evaluates SATP from a cryptanalytic perspective, using the model and 

definitions established in the preceding chapters. The objective is to characterize, with 

precision, the attack surface that an adversary encounters when interacting with a 

correctly implemented SATP deployment. The analysis considers both black box 

cryptanalytic attacks on primitives and structural attacks on the protocol’s deterministic 

key hierarchy, session construction, validation logic, and replay semantics. Because SATP 

relies entirely on symmetric cryptography and deterministic derivation, its attack surface 

is fundamentally different from protocols that rely on ephemeral asymmetric secrets. 

The evaluation here therefore emphasizes structural weaknesses, compromise 

boundaries, and adversarial leverage points that arise from SATP's design. 

8.1 Exposure of Public Values and Adversarial Knowledge 

SATP exposes several values to the adversary as part of normal protocol operation. 

These include the identity string ID(c,i), the client nonce Nh, timestamps, sequence 

numbers, header flags, and all ciphertext produced by the AEAD layer. The adversary 

also learns that the branch key and device key derivation structure is deterministic and 

that cfgs is known and constant. 

This exposure is not, by itself, a vulnerability. The security of SATP does not rely on 

secrecy of public identifiers or deterministic inputs. However, because SATP uses 

deterministic derivation, an attacker with complete knowledge of public inputs can 

mount structural reasoning attacks if any secret component leaks even partially. The 

cryptanalytic evaluation therefore examines whether these exposures enable narrowing 

of the key space or partial information recovery. Under the SHAKE256 assumptions, they 

do not, but the structural implications are important for later compromise scenarios. 

8.2 Attacks on Hierarchical Key Derivation 

The derivation functions Kbr = SHAKE256(Kroot, Ddom, Dbr) and Kc,i = SHAKE256(Kbr, 

ID(c,i)) behave as pseudorandom keyed functions when Kroot is unknown. An adversary 

observing ID(c,i) and Nh gains no advantage in recovering Kc,i beyond brute forcing Kbr 

or Kroot. Since SHAKE256 output space is large, generic attacks are impractical. 



However, deterministic key hierarchies introduce specific weaknesses under 

compromise: 

1. If Kroot is compromised, the entire system collapses, because all branch keys and 

device keys follow directly. 

2. If Kbr is compromised, all device keys for that branch are exposed. 

3. If Kc,i is compromised, only sessions for that identity are exposed, and only until 

the client erases the device key. 

These structural properties are fundamental aspects of SATP. They do not arise from 

cryptanalytic weakness in SHAKE256 but from architectural trust placement. In particular, 

no amount of session level hardening can mitigate a compromise of Kbr. 

8.3 Attacks on Session Key Derivation 

The session key derivation (Rk, Rn, Tk, Tn) = SHAKE256(Kc,i, cfgs, Nh) presents a single 

realistic attack vector: withdrawal of entropy in Nh. If Nh is not generated randomly or if 

an adversary can induce reuse of Nh, then session keys become dependent on 

deterministic values alone, enabling replay of Connect Requests to cause key reuse. 

In practical terms: 

• If Nh repeats, an adversary replaying the old Connect Request forces the server to 

regenerate identical session keys. 

• Identical session keys allow ciphertexts from past sessions to decrypt under the 

present session. 

However, this attack fails in correctly implemented SATP because the server immediately 

detects reuse of timestamp and sequence numbers, and ciphertexts from earlier 

sessions carry those values in the associated data. Decryption therefore fails even if keys 

repeat. Nevertheless, predictable or repeated Nh weakens SATP’s defense against 

related key attacks and violates the assumptions of the confidentiality proofs. For this 

reason SATP places responsibility for Nh generation entirely on the client and expects 

high quality randomness. 

8.4 Attacks on Server Validation Hash 



The server validation hash Hc = SHAKE256(Nh, Kc,i, STc) is vulnerable to cryptanalysis 

only if the adversary can guess Kc,i or STc or find a preimage for SHAKE256 under these 

inputs. Since each component is 256 bits or larger, brute force attacks are not feasible. 

Collision attacks have no effect on Hc because malicious collisions would require 

injecting a different Nh or Kc,i, which the adversary cannot influence legitimately. 

The attack surface here consists of protocol misuse: 

• If STc is weak or shared across deployments, compromise affects all servers using 

that secret. 

• If Kc,i is weak or derived from low entropy identity strings (contrary to the 

specification), it becomes more predictable. 

• If endpoints skip validation or fail to recompute Hc correctly, server 

authentication collapses. 

The cryptanalytic surface is minimal; the protocol surface is more consequential. 

8.5 Attacks on the AEAD Transport Layer 

SATP’s confidentiality and integrity reduce to the AEAD primitive. Common attacks 

include: 

• Attempting to forge ciphertext or associated data. 

• Modifying timestamps or sequence numbers to bypass ordering rules. 

• Manipulating length or padding to induce decryption oracles. 

• Hosting chosen ciphertext queries to extract timing information. 

Because SATP uses standard AEAD constructions (RCS based or AES based), 

cryptanalytic attacks target the underlying primitives rather than SATP itself. There is no 

evidence in the implementation of nonce reuse, variable time comparisons, or malleable 

decrypt paths that would open SATP to chosen ciphertext or side channel attacks. 

Replay attempts fail because the associated data binds ordering metadata. Modification 

attacks fail because AEAD integrity checks abort processing. The AEAD layer is therefore 

cryptanalytically robust as long as the underlying primitive is sound. 

8.6 Attacks on the Replay and Ordering Mechanism 



Replay control in SATP depends on the monotonic progression of timestamps and 

sequence numbers. An adversary can attempt: 

• Replay of old ciphertexts. 

• Reordering within a valid sequence window. 

• Injection of artificially advanced timestamps to desynchronize peers. 

Because timestamps and sequence numbers are included in AEAD associated data, any 

modification results in immediate failure. Replays are rejected because the timestamp 

and sequence number no longer satisfy the monotonicity requirements enforced by the 

receiver. Attempts to desynchronize timestamps are blocked by drift checks in the 

implementation. This subsystem therefore behaves as a cryptographically enforced state 

machine rather than a statistical detection system. 

The attack surface is minimal as long as both endpoints maintain correct counters. 

8.7 Attacks on the User Authentication Stage 

User authentication relies on SCB derived values transmitted inside the encrypted 

channel. Attacks on this stage fall into two categories: 

1. Attacks on SCB itself, attempting to invert the hardened KDF. 

2. Attacks on the encrypted tunnel to extract authentication messages or modify 

them. 

Because SCB is not used to derive session keys, its compromise does not affect 

confidentiality of traffic. The encrypted tunnel prevents passive observation of SCB 

values. Modification attacks are prevented by AEAD integrity. The only realistic attack 

vector is a weak passphrase chosen by the user. SATP cannot mitigate this 

cryptographically, but it does not amplify the risk beyond SCB’s intrinsic vulnerability to 

dictionary attacks. 

8.8 Compromise-Induced Attacks 

SATP exhibits sharply different behavior depending on which secret, if any, is 

compromised. 

8.8.1 Client compromise 



If the adversary obtains Kc,i and the passphrase after a session completes, replaying past 

ciphertext still fails because timestamps and sequence numbers prevent decryption 

under new AD values. Past traffic remains confidential because the device key is erased 

after use. 

8.8.2 Branch key compromise 

If the adversary learns Kbr, all device keys under that branch follow. All past and future 

sessions for those clients become decryptable. Session derivation does not mitigate this, 

because the adversary reconstructs Kc,i and replays session derivations with recorded 

Nh values. 

8.8.3 Server secret compromise 

If STc is compromised, server authentication fails. The adversary can impersonate the 

server but cannot read old ciphertexts without also compromising Kc,i or Kbr. 

These boundaries are structural and cannot be changed without redesigning SATP. 

8.9 Multi-Session and Cross-Session Attacks 

SATP’s deterministic derivation implies that an adversary may attempt to correlate 

sessions to identify patterns or weaken assumptions. Attempts include: 

• Testing whether two Nh values are equal across sessions. 

• Checking relationships between AEAD keys derived from predictable inputs. 

• Attempting to mount cross session related key attacks. 

Because Nh must be unpredictable and because SHAKE256 behaves as a pseudorandom 

function, cross session correlation does not reveal exploitable structure. Cross session 

interaction is therefore limited to denial of service or replay attempts, neither of which 

breaks the cryptographic layer. 

8.10 Summary of Cryptanalytic Exposure 

The cryptanalytic attack surface of SATP is small and strongly bounded by its reliance on 

SHAKE256 and AEAD as its only cryptographic primitives. No algebraic attacks on these 

primitives are known that would result in practical breaks. The structural vulnerabilities 

center on compromise of long term symmetric keys and on the deterministic design of 



the hierarchy rather than on exploitable weaknesses in the derivation functions 

themselves. 

SATP resists all known active cryptanalytic attacks under its intended deployment model, 

provided that: 

• The client generates Nh with full entropy. 

• The server protects Kroot, Kbr, and STc. 

• Implementation correctly enforces AEAD integrity and replay constraints. 

• User passphrases possess sufficient entropy to resist offline guessing against SCB. 

The next chapter presents the formal confidentiality and integrity proofs, using the 

adversarial definitions and reduction structures established earlier. 

 

9. Confidentiality and Integrity Proofs 

This chapter provides the formal proofs that SATP satisfies the confidentiality and 

integrity properties defined in Chapter 7, assuming the cryptographic assumptions 

stated in Chapter 6. All proofs follow the reduction style standard in modern symmetric 

cryptography. The objective is not to claim absolute resistance but to show that 

breaking SATP’s channel security would require breaking the IND-CCA or INT-CTXT 

properties of the underlying AEAD primitive or the pseudorandomness of SHAKE256 

when keyed with unknown inputs. 

The proofs in this chapter apply only after the secure tunnel has been raised. Server 

authentication and user authentication proofs appear in later chapters. 

9.1 Preliminaries 

For clarity, we restate the core assumptions needed for this chapter: 

1. The derivation 

(Rk, Rn, Tk, Tn) = SHAKE256( Kc,i , cfgs , Nh ) 

behaves as a pseudorandom function when Kc,i is unknown to the adversary. 

2. The AEAD primitive satisfies IND-CCA confidentiality. 

3. The AEAD primitive satisfies INT-CTXT integrity. 



4. Associated data binding (timestamp || sequence || header flag) is enforced exactly 

as in the SATP implementation. 

5. The adversary cannot force nonce reuse except by causing Nh to repeat, which is 

prevented by the protocol model. 

Using these assumptions, we now analyze confidentiality and integrity in turn. 

 

9.2 Confidentiality Proof 

Confidentiality is defined by the IND-CCA experiment in Chapter 7. The goal is to prove 

that the adversary cannot distinguish encryptions of chosen plaintexts under a fresh 

SATP session. 

The proof has three steps: 

1. Replace the session keys with random keys. 

2. Argue that the adversary cannot distinguish real session keys from random keys. 

3. Reduce any successful distinguisher to a distinguisher against the AEAD primitive. 

9.2.1 Hybrid 1: Replacement of Session Keys 

Define Hybrid 1 as a version of SATP in which session keys (Rk, Rn, Tk, Tn) are replaced 

with uniformly random values of the same lengths, independent of Kc,i, cfgs, and Nh. 

Let Adv_real denote the adversary's advantage in the real IND-CCA experiment, and 

Adv_H1 its advantage in Hybrid 1. 

Suppose the adversary can distinguish between the real SATP session keys and the 

Hybrid 1 keys. Then it can distinguish between: 

SHAKE256( Kc,i , cfgs , Nh ) 

and a uniform random tuple of the same size. 

This contradicts the pseudorandomness of SHAKE256 on secret inputs. Therefore: 

| Adv_real - Adv_H1 | <= negligible 

9.2.2 Hybrid 2: Replacement of AEAD Encryption with Idealized AEAD 



In Hybrid 2, the AEAD encryption is replaced with an ideal IND-CCA encryption oracle 

using the random keys from Hybrid 1. 

Since the adversary cannot distinguish Hybrid 1 from Hybrid 2 without breaking AEAD 

confidentiality: 

| Adv_H1 - Adv_H2 | <= negligible 

9.2.3 Reduction to AEAD IND-CCA 

In Hybrid 2, the adversary interacts with a standard IND-CCA encryption scheme with 

random keys and nonces. The adversary receives one challenge ciphertext. Any 

advantage it gains constitutes an advantage against the AEAD primitive itself. 

Thus: 

Adv_H2 <= Adv_AEAD_INDCCA 

Since the AEAD primitive is assumed IND-CCA secure, this value is negligible. 

9.2.4 Conclusion of the Confidentiality Proof 

Combining these results: 

Adv_real 

<= |Adv_real - Adv_H1| + |Adv_H1 - Adv_H2| + Adv_H2 

<= negligible + negligible + negligible 

Therefore SATP provides IND-CCA confidentiality under the stated assumptions. 

 

9.3 Integrity Proof 

Integrity is defined by the INT-CTXT experiment. The adversary succeeds if it produces 

any ciphertext-tag-associated-data triple that decrypts successfully under SATP keys, 

without having been produced by an encryption query. 

The proof structure mirrors the confidentiality proof. 

9.3.1 Hybrid 1: Replacement of Session Keys 



As in the confidentiality proof, replacing the session keys with random values produces 

a hybrid distribution that is indistinguishable from the real distribution. The 

pseudorandomness of SHAKE256 ensures: 

| Adv_real_INT - Adv_H1_INT | <= negligible 

9.3.2 Hybrid 2: Replacement of AEAD with Ideal Integrity Oracle 

In Hybrid 2, the AEAD encryption and decryption are replaced with an oracle that 

maintains perfect INT-CTXT security. 

Any adversary distinguishing Hybrid 1 from Hybrid 2 would break AEAD integrity. 

Thus: 

| Adv_H1_INT - Adv_H2_INT | <= negligible 

9.3.3 Integrity Reduction 

In Hybrid 2, the only way the adversary can create a forgery is by producing a 

ciphertext-tag pair that the ideal AEAD oracle accepts. By definition of INT-CTXT, this 

has negligible probability. 

Therefore: 

Adv_H2_INT <= negligible 

9.3.4 Associated Data Binding 

SATP enforces integrity not only of ciphertext but also of timestamps, sequence 

numbers, and header flags. Because all these values are placed into AEAD associated 

data: 

• Any replay of old ciphertext fails because associated data no longer matches. 

• Any modification of timestamps or sequence numbers causes AEAD tag rejection. 

• Any attempt to reorder ciphertext fails because sequence number monotonicity is 

strictly enforced. 

Thus the proof ensures transport-level integrity as well as ciphertext integrity. 

9.3.5 Conclusion of the Integrity Proof 

Combining the hybrid steps: 



Adv_real_INT 

<= negligible + negligible + negligible 

SATP therefore satisfies INT-CTXT integrity under the AEAD assumptions. 

 

9.4 Robustness Against Combined Confidentiality and Integrity Attacks 

In many practical scenarios, the adversary attempts combined attacks, such as: 

• Using chosen ciphertext queries to extract information (padding oracle style). 

• Attempting to manipulate timestamps or counters to induce state corruption. 

• Combining ciphertext modification with replay attempts. 

• Using malformed packets to probe the behavior of the validation state machine. 

Because SATP: 

1. uses a single AEAD primitive that enforces both confidentiality and integrity, 

2. binds timestamps, sequence numbers, and header flags in associated data, 

3. rejects any AEAD tag failure without exposing decryption information, 

4. and maintains a deterministic and monotonic state machine, 

none of these hybrid or chained attacks succeed without breaking AEAD confidentiality 

or integrity. 

 

9.5 Summary 

This chapter proves that: 

1. SATP provides IND-CCA confidentiality after the tunnel is raised. 

2. SATP provides INT-CTXT integrity for ciphertext, tags, and associated data. 

3. Violation of either property would require either breaking SHAKE256 

pseudorandomness or breaking AEAD confidentiality or integrity, all assumed 

infeasible. 



These results establish the foundational cryptographic strength of SATP’s transport layer. 

The next chapter addresses authentication, which requires a distinct set of proofs. 

 

10. Authentication Security Proofs 

Authentication in SATP occurs in two distinct stages. The first stage authenticates the 

server to the client during the Connect Response. The second stage authenticates the 

client to the server inside the encrypted tunnel using a hardened password based 

mechanism. Because these stages occur in different parts of the protocol and rely on 

different cryptographic constructions, they require separate security analyses. This 

chapter provides complete proofs that SATP achieves both properties under the 

assumptions stated earlier. 

The results show that server authentication reduces to the collision and preimage 

resistance of SHAKE256 combined with the integrity of AEAD, while client authentication 

reduces to the one way security of the SCB function combined with the confidentiality 

and integrity of AEAD. 

 

10.1 Server Authentication 

Server authentication in SATP requires proving that the client accepts a responder as the 

legitimate server only if the responder possesses both the correct device key Kc,i and 

the server secret STc. The protocol accomplishes this by sending the validation hash 

Hc = SHAKE256( Nh , Kc,i , STc ) 

encrypted and authenticated under the newly derived session keys. The client accepts 

the server only if the decrypted value matches its own recomputation of Hc. 

The security definition for server authentication was given in Chapter 7. The proof below 

demonstrates that forging a valid Connect Response for an uncompromised client 

requires either inverting SHAKE256 on secret inputs or forging an AEAD ciphertext. 

10.1.1 Threat Model 

The adversary attempts to impersonate the server during the handshake. The adversary 

knows: 



• The client identity string ID(c,i). 

• The client nonce Nh. 

• All public protocol fields. 

• The structure of the handshake and message formats. 

The adversary does not know Kc,i or STc unless it has compromised the server or branch 

key. 

The adversary’s goal is to send a forged Connect Response containing a value Hc* that 

the client accepts. 

10.1.2 Reduction Structure 

We examine the two ways an adversary can succeed. 

Case 1: The adversary produces a ciphertext containing a valid Hc* without 

knowing the session keys. 

This requires forging an AEAD ciphertext under keys derived from SHAKE256(Kc,i, cfgs, 

Nh). Because these session keys are indistinguishable from random to the adversary, 

breaking this condition reduces to an INT-CTXT forgery against the AEAD primitive. 

From Chapter 9, this probability is negligible. 

Case 2: The adversary decrypts or guesses the correct Hc without knowing either 

Kc,i or STc. 

This requires finding Hc such that: 

Hc = SHAKE256( Nh , Kc,i , STc ) 

with neither Kc,i nor STc known. Any adversary producing such a value must either: 

• invert SHAKE256 on secret inputs, 

• find a second preimage for SHAKE256, or 

• predict the output of SHAKE256 on unknown components. 

Each of these contradicts the assumed security of SHAKE256. 

10.1.3 Combined Result 



Let Adv_server denote the adversary's probability of impersonating the server. Then: 

Adv_server 

<= Adv_SHAKE256_preimage 

• Adv_SHAKE256_collision 

• Adv_AEAD_INTCTXT 

<= negligible 

Thus SATP satisfies server authentication under the assumed cryptographic guarantees. 

 

10.2 Client Authentication 

Client authentication occurs after the tunnel is raised and all subsequent messages are 

encrypted under Rk, Rn, Tk, and Tn. The client computes a hardened password based 

secret using the SCB mechanism and sends a derived verifier to the server. The server 

compares it to its stored reference and accepts or rejects the client. 

Formally, the security property requires that an adversary cannot impersonate the client 

unless it knows the correct passphrase or can break the SCB function. 

10.2.1 Threat Model 

The adversary is assumed to know: 

• All ciphertext transmitted in previous sessions. 

• All public protocol metadata. 

• All session nonces Nh observed across sessions. 

The adversary does not know: 

• The client’s passphrase. 

• The SCB hardened key derived from that passphrase. 

• The device key Kc,i (unless a client compromise occurs). 

Client compromise is modeled separately. The current proof concerns only 

impersonation without compromise. 



10.2.2 Core Proof Idea 

The client authentication mechanism is protected by two cryptographic barriers: 

1. The SCB output acts as a one way function of the user passphrase. 

2. All authentication messages are encrypted and authenticated under AEAD. 

To impersonate the client, the adversary must produce a ciphertext containing a valid 

SCB derived verifier that decrypts without AEAD failure and matches the server’s locally 

stored reference value. 

This requires either: 

• breaking SCB, 

• guessing the passphrase, 

• or forging an AEAD ciphertext. 

10.2.3 Reduction to SCB One Way Security 

Assume an adversary A can impersonate the client with probability Adv_client. 

Construct an algorithm B that uses A to invert SCB: 

1. B receives an SCB challenge output SCB_out and must recover the passphrase. 

2. B embeds SCB_out as the verifier expected by the server. 

3. B gives A all ciphertext and transcript information consistent with this setup. 

4. If A successfully impersonates the client, it must produce a valid SCB derived 

value. 

5. B extracts this value and outputs it as the solution. 

If A impersonates the client without breaking AEAD, then it must have inverted or 

guessed the SCB value. Thus: 

Adv_client <= Adv_SCB_inversion + Adv_AEAD_INTCTXT 

Both terms are negligible under the assumptions in Chapter 6. 

10.2.4 AEAD Confidentiality and Structural Leakage 



If the adversary cannot break AEAD confidentiality, then it cannot observe or modify any 

SCB related value in flight. This removes the possibility of: 

• chosen ciphertext attacks against SCB messages, 

• partial information extraction from encrypted SCB proofs, 

• observational leakage of password dependent patterns. 

Therefore an impersonation attack requires knowledge of the passphrase. 

10.2.5 Combined Result 

Let Adv_client denote the probability of client impersonation without compromise. 

Then: 

Adv_client 

<= Adv_SCB_inversion 

• Adv_SCB_guess 

• Adv_AEAD_INTCTXT 

• Adv_AEAD_INDCCA 

All values on the right side are negligible, assuming SCB is configured with sufficient 

hardness parameters and the AEAD primitive meets its standard guarantees. 

Thus SATP satisfies client authentication under the stated assumptions. 

 

10.3 Joint Authentication Security 

Because server authentication and client authentication occur in sequential and 

independent phases, the full authentication guarantee of SATP is the conjunction of 

both properties: 

SATP is jointly authenticated if and only if: 

• The server proves possession of STc and Kc,i. 

• The client proves possession of its passphrase inside the encrypted tunnel. 

Combining the results: 



Adv_joint 

<= Adv_server + Adv_client 

<= negligible 

Joint authentication therefore holds as long as: 

• SHAKE256 behaves as a secure pseudorandom and preimage resistant function, 

• the AEAD primitive enforces confidentiality and integrity, 

• SCB is configured with sufficient hardness, 

• and SATP endpoints enforce the protocol state machine correctly. 

 

10.4 Summary 

This chapter has established that SATP satisfies: 

1. Server authentication, by reducing forgeries to SHAKE256 preimage resistance 

and AEAD integrity. 

2. Client authentication, by reducing impersonation to SCB one way security and 

AEAD confidentiality. 

3. Joint authentication, by combining the above results. 

The next chapter evaluates forward secrecy, compromise boundaries, and long term 

security properties of SATP. 

 

Chapter 11: Conclusion and References 

11.1 Conclusion 

This report has presented a complete formal analysis of the Secure Authenticated 

Tunnel Protocol (SATP), grounded in its specification and validated against the reference 

C implementation. The analysis reconstructed the protocol’s deterministic key hierarchy, 

session derivation process, server validation mechanism, password based user 

authentication stage, and authenticated encryption transport layer. A precise 

mathematical model was established, enabling proofs of confidentiality, integrity, server 



authentication, client authentication, and replay protection within the adversarial 

framework defined in earlier chapters. 

The evaluation shows that, after the tunnel is raised, SATP provides confidentiality and 

integrity through the security of its underlying AEAD primitive, assuming IND CCA and 

INT CTXT guarantees. Server authentication is achieved through the validation hash that 

binds the session nonce, the device key, and the server secret, and is protected by 

authenticated encryption. Client authentication is achieved through a hardened SCB 

derived value transmitted inside the encrypted channel, preventing impersonation 

except by an adversary who knows the user’s passphrase or can invert SCB. Replay 

resistance follows from strict monotonicity of timestamps and sequence numbers, 

combined with their binding into the AEAD associated data. 

SATP’s deterministic key hierarchy establishes clear structural constraints on the 

protocol. Erasure of the device key after session derivation provides protection against 

retrospective compromise of a client device, ensuring that past sessions cannot be 

reconstructed. However, compromise of a branch key enables regeneration of all device 

keys under that branch and recovery of past session keys. SATP therefore provides 

limited forward secrecy against client compromise, but it does not provide forward 

secrecy against compromise of long term server side branch keys. This limitation arises 

directly from the necessity of deterministic key derivation and does not reflect a failure 

of the protocol’s cryptographic components. 

Within these boundaries, SATP achieves its intended security properties for symmetric 

key authenticated tunneling. The protocol assumes protection of Kroot, Kbr, and STc on 

the server, high quality randomness for client generated session nonces, correct 

enforcement of timestamp and sequence number semantics, and appropriate hardness 

configuration for SCB. When these conditions are met, SATP provides a stable, 

analyzable, and cryptographically coherent transport layer suitable for deployments 

where asymmetric cryptography is undesirable or impractical. 

This cryptanalysis establishes the theoretical and practical foundations for SATP’s 

security, identifies structural limitations inherent to deterministic hierarchies, and 

provides a formal basis for secure implementation, review, and future enhancement of 

the protocol. 
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