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Abstract. SATP is a symmetric channel protocol designed for post quantum
environments where the cost of asymmetric primitives and key encapsulation mecha-
nisms is prohibitive. The protocol uses a deterministic hierarchy of SHAKE based
derivations to expand a root secret into branch keys and provisioned client keys, which
permits scalable deployment on constrained systems without maintaining per session
server state. SATP establishes a secure channel through a two stage exchange that
authenticates the server using a hash of provisioned secrets and derives channel keys
with a single SHAKE based expansion. All encrypted packets use an authenticated
encryption scheme with associated data that binds header fields to each ciphertext.
This paper provides a complete engineering description of the protocol derived from
the reference implementation, a formal specification of its key hierarchy and message
flow, and a security analysis based on game based definitions of channel authenticity,
confidentiality, ciphertext integrity, and replay resistance. The analysis includes
explicit reductions to the security of SHAKE and the underlying authenticated
encryption scheme. The paper also compares SATP with established symmetric trust
protocols such as Kerberos, TLS 1.3 in pre shared key mode, and 5G AKA, and
explains the use case for SATP in constrained post quantum environments where
deterministic symmetric key hierarchies provide practical and efficient security.
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1 Introduction

1.1 Context and Motivation

Symmetric trust infrastructures form the basis of many long lived secure systems where
endpoints are provisioned with static secrets during manufacturing or enrollment. Such
systems include industrial control networks, embedded and aerospace platforms, and
distributed sensor deployments. These environments frequently operate under strict
computational and memory constraints, and many lack the hardware acceleration or
entropy sources required for post quantum public key cryptography. In such settings,
protocols based on key encapsulation mechanisms or authenticated key exchange can
impose prohibitive overhead and code size. A symmetric alternative with predictable cost
and deterministic behavior is often more practical.

SATP is designed for these scenarios. It provides a channel establishment mechanism
that relies entirely on symmetric primitives while still delivering strong authentication
and confidentiality guarantees. The protocol uses a hash based hierarchy to derive branch
and device keys from a root secret, allowing large deployments to be organized without
maintaining a central online key distribution infrastructure. Channel keys are derived
deterministically from provisioned device keys and a session nonce, and each session is
authenticated through a server validation hash computed over device specific secrets. This
approach avoids the need for asymmetric operations while ensuring that only devices with
correct provisioned material can establish a secure channel.

The purpose of this paper is to present the design and formal analysis of SATP. It consoli-
dates the engineering implementation, the protocol specification, and the mathematical
model into a single rigorous study. The goal is not to critique or break the protocol,
but to document its structure, justify its security properties, and examine its tradeoffs
relative to established symmetric trust mechanisms such as Kerberos, TLS 1.3 in pre
shared key mode, and the 5G authentication and key agreement procedure. The analysis
is supported by explicit security definitions and game based proofs that capture the
authenticity, confidentiality, and replay resistance properties of SATP in constrained post
quantum environments.

1.2 Contributions

This paper provides a complete design and analysis of the Symmetric Authentication and
Tunneling Protocol (SATP). The main contributions are as follows.

e An engineering level description of SATP that is derived directly from the reference
implementation. This description specifies the exact derivation of branch keys, device
keys, session keys, and validation hashes, and defines the packet header and message
processing rules used by the protocol.

e A formal model of the SATP symmetric key hierarchy together with security notions
that capture channel authenticity, confidentiality, ciphertext integrity, replay resis-
tance, and a limited form of forward secrecy appropriate for provisioned symmetric
systems.

« Game based security proofs that reduce the authenticity and confidentiality of the
protocol to the pseudo-random properties of SHAKE based key derivation and to the
security of the authenticated encryption primitive used to protect the data channel.

e A comparative analysis showing how SATP relates to established symmetric trust
mechanisms, including Kerberos, TLS 1.3 in pre shared key mode, and the 5G
authentication and key agreement procedure. The comparison highlights the tradeoffs



between deterministic symmetric hierarchies and protocols that rely on public key
operations.

e A discussion of practical considerations that influence the security of SATP in
deployment, including replay windows, sequence handling, denial of service risks,
and the role of key rotation epochs in limiting long term exposure.

1.3 Organization of the Paper

The paper is organized as follows. Section 2 presents an engineering level description of
SATP based on the reference implementation, including the message flow and derivation
of all channel keys. Section 3 provides a review of related symmetric trust protocols and
positions SATP within that landscape. Section 4 introduces the cryptographic model,
security assumptions, and adversarial capabilities. Section 5 defines the formal execution
model and message formats used by SATP. Section 6 presents the security definitions for
authenticity, confidentiality, integrity, and replay resistance. Section 7 contains the main
security theorems and game based proofs. Section 8 provides a cryptanalytic evaluation of
the protocol and discusses robustness considerations. Section 9 describes the operational
parameters of SATP and summarizes performance characteristics. Section 10 discusses
deployment considerations, key management, and application scenarios. Section 11 outlines
limitations and possible directions for future work. Section 12 concludes the paper.

2 Engineering Description of SATP

This section gives an engineering level description of SATP based directly on the reference
implementation found in satp.h, satp.c, client.c, server.c, and kex.c. The descrip-
tion is implementation agnostic in form, but each rule and function corresponds exactly to
behavior realized in code. All constants, state transitions, and key derivations follow the
reference paths with no abstraction beyond notation.

2.1 Entities and Key Hierarchy
SATP is deployed in a symmetric trust infrastructure with three tiers of long term keys

that are represented explicitly in the reference implementation.

Master tier. A provisioning authority holds a master key structure
M = (mdk, mid, exp),

where satp_master_key.mdk is the master derivation key, mid is a master key identifier,
and expiration records the validity interval. In the code,

satp_generate_master_key samples a random value into mdk and copies mid and the
expiration time. The master key is never derived from higher level material.

Server or branch tier. Each SATP server holds a server key structure
S = (sdk,sid, ST, exp),

corresponding to satp_server_key. The field sdk is the server derivation key, sid
is the server identifier, stc is a long term validation secret shared with all devices
under this server, and expiration is inherited from the master key. The function
satp_generate_server_key first samples stc using the system random generator, then
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derives sdk deterministically from the master key and the server identifier by a SHAKE
based expansion

sdk < G (mdk, sid) = Shake256(mdk || cfg, || sid),

with the configuration string cfg, taken from SATP_CONFIG_STRING. This matches the call
to gsc_cshake256_compute in satp_generate_server_key.

Device tier. For each device, provisioning creates a device record
D; = (KTree;, kid;, ST, exp, spass),

implemented as satp_device_key. The array ktree holds
SATP_KEY_TREE_COUNT device keys of length SATP_DKEY_SIZE, kid is an identity
string of length SATP_KID_SIZE, stc is copied from the server key and equals ST, for that
server, expiration is inherited from the server, and spass points to the memory hard
image of the device authentication secret.
The function satp_generate_device_key derives the key tree deterministically from the
server derivation key sdk and the device identity string kid. It first copies the device identity
prefix did into kid, then for each index j € {0,...,SATP_KEY_TREE_COUNT — 1}
computes

K. j < Gaev(sdk, kid;, j) = Shake256(sdk || kid; || 7),

by calling qsc_cshake256_compute with key input skey->sdk and message input equal
to the current kid value. After each derivation it increments the trailing key index bytes
of kid with gsc_intutils_be8increment. Once all entries have been filled, the index
bytes are reset to zero. Every element K. ; ; in KTree; is therefore a deterministic function
of sdk and the device identity string plus key index.

During protocol execution, the server does not store the full key tree. Instead, it recovers
an individual device key on demand using satp_extract_device_key. Given a server key
sdk and an identity string kid; whose last bytes encode an index j, the extraction uses

K. + Shake256(sdk | kid;),

provided that j < SATP_KEY_TREE_COUNT. This matches the single call to
gsc_cshake256_compute in satp_extract_device_key. In the rest of the paper, K.;
denotes the particular tree element selected by the current index encoded in kid; and used
in the SATP handshake for that device.

2.2 Protocol Messages and Packet Structure

SATP messages consist of a fixed header followed by an optional encrypted payload. The
header layout is defined in satp.h. Each header contains:

« a flag byte identifying the SATP message type,
e a 32 bit message length,
e a 64 bit sequence number,

e a 64 bit timestamp.

Serialization follows the exact byte order in the reference implementation. These header
bytes form the associated data for authenticated encryption.

Let Hdr denote the serialized header. For all packets that are processed through the SATP
cipher (the connect response, authentication messages, and established data packets),
encryption has the form:



(C,T) = AEAD.Enc(Kenc, Nenc, Hdr, P),

where P is the plaintext payload. Decryption validates the tag before processing any

payload, consistent with satp_decrypt_packet. The Connect Request is the only message
that is sent in plaintext and is not passed through this interface.

2.3 Session Key and Hash Derivation

Session establishment begins when the client generates a 32 byte nonce N, using the
device random generator. All key material for the SATP channel is derived from K, ;, the
configuration string cfg,, and Nj.

The client computes a validation hash:

H, = Shake256(ST., Ko.;, Np,).

This value is stored by the client and used to authenticate the server during the handshake.
The server recomputes the same H, after deriving K. ;. The session key tuple is obtained

by a single SHAKE expansion

X = Shake256(K. ;,cfg,, Ny),

and splitting X deterministically into four 32 byte values:

(Rk, Rn, Tk, Tn) = X[0:32], X[32:64], X[64:96], X[96:128].

These values initialize the receive and transmit RCS contexts. The splitting boundaries
exactly follow the byte indexing used in kex_derive_session_keys.

2.4 Client State Machine and Message Flow

The client follows a deterministic state machine consistent with the logic in client.c.

o Initialization. The client loads K,.;, ST,, and cfg,. It initializes replay and
timestamp state.

e Connect Request. The client generates the session nonce Np, computes the
validation hash H,., derives the session tuple (Rg, Ry, Tk, T,), and initializes the
SATP cipher contexts. It then constructs the packet header with the current transmit
sequence number, writes the device identity string and N}, into the plaintext payload,
and sends a Connect Request. No authenticated encryption is applied to the Connect
Request, which matches the behavior of client_connect_request in the reference
implementation.

e Processing Connect Response. Upon receiving a Connect Response, the client
decrypts the packet, extracts the hash returned by the server, and compares it to the
stored H.. Equality authenticates the server and advances the state to Connected.

¢ Authentication Request and Response. After the key exchange completes and
the SATP cipher contexts have been initialized, the client performs a password based
authentication step. Each device is provisioned with a memory hard authentication
verifier Hpass; € {0, 1})‘ derived from a passphrase and stored in the spass field of
its device record. The client constructs an authentication request payload

AuthReqMsg = ('L'7 Hpass,i)a
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where i is the device identifier of length SATP_DID_SIZE and Hpass; has length
SATP_HASH_SIZE. This payload is encrypted under the established transmit context
using the SATP AEAD interface and sent as an

satp_flag_encrypted_message packet. On the server side, the first encrypted
packet received after the key exchange is decrypted and passed to an application level
authentication callback, which verifies that the pair (¢, Hpass ;) matches a provisioned
device record, typically using a memory hard verifier such as SCB. If verification
succeeds, the server sends an Authentication Response containing its server identifier
sid encrypted under the SATP channel. The client decrypts this response and accepts
the authentication if and only if the recovered identifier equals the expected server
identifier. Once this exchange completes successfully, both sides transition to the
Established state and subsequent packets are handled as application data.

Established Operation. Once established, the client processes SATP packets
strictly through the AEAD decrypt function with header bound integrity and
monotonic sequence checks.

Server State Machine and Message Flow

The server logic mirrors the client but includes derivation of device keys from branch level
material, as seen in server.c.

2.6

Reception of Connect Request. The server parses the header, copies the device
identity string and client nonce N, from the plaintext payload, and uses them to
derive the device key and session state, as in server_connect_ response.

Device Key Derivation. The server recomputes K.; from K and ¢, then
recomputes H, = Shake256(Ny, K. ;, ST.).

Session Key Computation. The server derives (Rk, Rn,Tk,Tn) identically to
the client and initializes cipher contexts.

Connect Response. The server constructs a packet containing H., encrypts it with
the receive/transmit roles reversed relative to the client, and sends the response.

Authentication Handling. The server parses the client authentication message,
verifies the session tuple, and returns an encrypted acknowledgment. After this phase
the state enters Established.

Failure Handling. Any invalid packet, failed tag verification, expired timestamp,
or sequence rollback transitions the session to a termination state.

SATP Key Exchange pseudo-code

The following pseudo-code reflects the exact ordering of computations in the reference
implementation.

2.7

SATP Key Exchange pseudo-code

The SATP key exchange uses a single client generated nonce Nj and the provisioned
device key K. ; to derive a session tuple that seeds the RCS based data channel. The
connect request message carries the device identifier and Ny, in clear. The connect response
contains an encrypted validation hash H,. that authenticates the server to the client.

We write

(Rk, Rn,Tk,Tn) < Split(X)



to denote splitting a 128 byte string X into four 32 byte segments as
Rk = X[0:32], Rn= X[32:64], Tk = X[64:96], Tn = X[96:128].

The RCS key parameters for a direction are given by a key and nonce pair, and the protocol
initializes one transmit and one receive context on each side.

2.7.1 SATP Client Connection Request

The CLIENT CONNECT__REQUEST function constructs and transmits the initial SATP
connection request. It generates the client session nonce Ny, derives the session key
material used to initialize the transmit and receive RCS contexts, and computes the session
validation hash H. that authenticates the server in the subsequent response. The function
places the device identifier and N, into the packet payload in clear-text, constructs the
packet header with the current transmit sequence number, and initializes both channel
directions using the four segments of the derived pseudo-random material. No encryption
is applied to the connect request, and the function updates the exchange flag to indicate
that a connect request has been sent.

Algorithm 1 CLIENT _CONNECT__REQUEST
Require: cls, cns, packetout
1: if cls = NULL or cns = NULL or packetout = NULL then
2 return satp_error_general_failure
3: end if
4: Allocate kid, nh, prnd and set to zero
5: if QSC__CSP__GENERATE(nh, SATP_STOK_SIZE) then
6
7

QSC__MEMUTILS__COPY(kid, c1s—kid, SATP_KID_SIZE)
: QSC__CSHAKE256__COMPUTE(prnd, sizeof (prnd), cls—dk, SATP_DKEY_SIZE,
(uint8_t*)SATP_CONFIG_STRING, SATP_CONFIG_SIZE, nh, SATP_STOK_SIZE)
8: QSC__CSHAKE256__COMPUTE(cls—hc, SATP_HASH_SIZE, nh, SATP_STOK_SIZE,
cls—dk, SATP_DKEY_SIZE, cls—stc, SATP_SALT_SIZE)

9: QSC__MEMUTILS__COPY(packetout—pmessage, kid, SATP_KID_SIZE)

10: QSC__ MEMUTILS__COPY(packetout—pmessage + SATP_KID_SIZE, nh,
SATP_STOK_SIZE)

11: QSC__MEMUTILS__CLEAR(nh, SATP_STOK_SIZE)

12: SATP__PACKET__HEADER__CREATE(packetout, satp_flag_connect_request,

cns—txseq, SATP_CONNECT _REQUEST_MESSAGE_SIZE)
13: kp.key < prnd
14: kp.keylen < SATP_SKEY_SIZE
15: kp.nonce < prnd + SATP_SKEY_SIZE
16: QSC__RCS__INITIALIZE(&cns—txcpr, &kp, true)
17: kp.key < prnd + SATP_SKEY_SIZE + SATP_NONCE_SIZE
18: kp.nonce < prnd + SATP_SKEY_SIZE + SATP_NONCE_SIZE + SATP_SKEY_SIZE

19: QSC__RCS__INITIALIZE(&cns—rxcpr, &kp, false)

20: QSC__MEMUTILS__CLEAR((uint8_t*)&kp, sizeof (kp))
21: QSC__MEMUTILS_ CLEAR(prnd, sizeof (prnd))

22: cns—exflag < satp_flag_connect_request

23: return satp_error_none

24: else

25: cns—exflag < satp_flag_none

26: return satp_error_random_failure

27: end if
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2.7.2 SATP Server Connection Response

The SERVER__CONNECT__RESPONSE function processes an incoming connect request on
the server. It copies the device identifier and client nonce from the clear-text payload,
derives the device key from the server side key material, initializes the receive and transmit
RCS contexts for the session, computes the server validation hash H., and returns a
connect response that encrypts H. under the new session keys with the serialized header
as associated data.

Algorithm 2 SERVER__CONNECT__RESPONSE

Require: svs, cns, packetin, packetout

Ensure: satp_errors err

uint8_t dk[ SATP_DKEY SIZE ] « 0

uint8_t kid[ SATP_KID SIZE ] « 0

uint8_t nh[ SATP_STOK_SIZE ] « 0

uint8_t shdr[ SATP_HEADER_SIZE ] +« O

if svs NULL and cns NULL then
err + satp_error_none
QSC__MEMUTILS__COPY(kid, packetin-pmessage, SATP_KID_SIZE)
QSCiMEMUTILsicOPY(nh, packetin-pmessage + SATP_KID_SIZE,

SATP_STOK_SIZE)

9: if SATP_ EXTRACT__DEVICE_KEY(dk, svs-sdk, kid) then

10: SATP__INIT__SESSION__CIPHERS(dk, nh, cns)

11: QSC__CSHAKE256__COMPUTE(svs-hc, SATP_HASH_SIZE, nh, SATP_STOK_SIZE,
dk, SATP_SKEY_SIZE, svs~stc, SATP_SALT_SIZE)

12: SATP_ PACKET HEADER__CREATE(packetout, satp_flag_connect_response,
cns-txseq, SATP_CONNECT _RESPONSE_MESSAGE_SIZE)

13: SATP__PACKET__HEADER__ SERIALIZE(packetout, shdr)

14: QSC__RCS__SET__ASSOCIATED(&cns-txcpr, shdr, SATP_HEADER_SIZE)

15: QSC__RCS__TRANSFORM(&cns-txcpr, packetout-pmessage, svs-hc,
SATP_HASH_SIZE)

16: cns~exflag + satp_flag_connect_request

17: err + satp_error_none

18: else

19: err + satp_error_key_expired

20: end if

21: else

22: err + satp_error_general_failure

23: end if

24: return err

The helper SATP__INIT_ SESSION__CIPHERS implements the RCS keying logic used by the
server during the connect response. It derives the pseudo-random session material from
the device key, configuration string, and client nonce, and uses it to initialize the receive
and transmit cipher contexts, then erases all temporary key material.



Algorithm 3 SATP__INIT__SESSION__CIPHERS
Require: dk, nh, cns

1: uint8_t prnd[ (SATP_SKEY_SIZE + SATP_NONCE_SIZE) * 2 ] « 0

2: gsc_rcs_keyparams kp « {0}

3: QSC__CSHAKE256__COMPUTE(prnd, sizeof (prnd), dk, SATP_DKEY_SIZE,
(uint8_t*)SATP_CONFIG_STRING, SATP_CONFIG_SIZE, nh, SATP_STOK_SIZE)
kp.key ¢« prnd
kp.keylen « SATP_SKEY_SIZE
kp.nonce + prnd + SATP_SKEY_SIZE
kp.info + NULL
kp.infolen « O
QSC__RCS__INITIALIZE(&cns-rxcpr, &kp, false)

10: kp.key ¢« prnd + SATP_SKEY_SIZE + SATP_NONCE_SIZE

11: kp.keylen « SATP_SKEY_SIZE

12: kp.nonce + prnd + SATP_SKEY_SIZE + SATP_NONCE_SIZE + SATP_SKEY_SIZE
13: kp.info « NULL

14: kp.infolen « O

15: QSC__RCS_ INITIALIZE(&cns~txcpr, &kp, true)

16: QSC__MEMUTILS_ CLEAR((uint8_t*)kp, sizeof (qsc_rcs_keyparams))

17: QSC__MEMUTILS__CLEAR(prnd, sizeof (prnd))

© %NS T e

3 Related Work and Positioning

3.1 Symmetric Key Hierarchies and Kerberos

Kerberos is a classical symmetric authentication system that relies on a central key
distribution center which issues tickets that grant access to specific services. Each client
and each service shares a long term key with the key distribution center. The server side
maintains short lived state in the form of issued tickets, which are bound to timestamps
and sequence windows that limit replay attacks. Kerberos provides a flexible trust model
within a single administrative domain, but it depends on online ticket generation and a
central authority that must remain available.

SATP follows a different design philosophy. It replaces ticket based authentication with a
deterministic key hierarchy derived from a single master secret. Branch keys and device
keys are derived through SHAKE based expansions, and servers do not maintain per
session state outside the active channel. SATP avoids ticket issuance entirely and does
not require an online key distribution center once provisioning is complete. The replay
window of SATP is enforced by the authenticated encryption layer which binds timestamps
and sequence numbers to every ciphertext. These differences make SATP suitable for
deployments that cannot rely on online ticket services or central authorities.

3.2 TLS 1.3 PSK and KEM-Based Protocols

TLS 1.3 allows endpoints to resume sessions or establish new sessions using pre shared
keys. In most practical settings this mechanism is combined with ephemeral Diffie Hellman
exchange, which provides perfect forward secrecy for all parties. Public key operations
remain central to the protocol. Modern post quantum deployments of TLS rely on key
encapsulation mechanisms such as Kyber to provide forward secrecy under quantum
adversaries. These public key operations increase computation and code footprint, and
they require support for large keys and structured randomness that is not always available
in embedded environments.
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SATP removes public key operations entirely. It establishes a channel using only symmetric
methods and a single SHAKE based key derivation. The resulting protocol does not achieve
full forward secrecy for the server, because compromise of a branch key reveals all device
keys in that branch. SATP trades this limitation for predictable cost, small code size,
and post quantum resilience in resource constrained environments where KEM based
handshakes are impractical. This tradeoff is appropriate for systems that rely on pre
provisioned symmetric secrets and that cannot accommodate the overhead of full TLS
style negotiation.

3.3 3GPP AKA and Mobile Authentication

The authentication and key agreement procedure used in mobile networks relies on a
hierarchical symmetric trust model in which each subscriber identity module stores a long
term secret that is known to the home network. Session keys are derived deterministically
from this secret and a challenge generated by the network. This approach avoids public key
operations and allows large populations of devices to authenticate rapidly with minimal
computation.

SATP shares structural similarities with the mobile authentication model. Device keys
are provisioned in advance and are deterministically derived from a branch level key.
Both systems use symmetric operations to derive fresh session keys and rely on challenge
response mechanisms to authenticate the network. The main difference is that SATP
integrates channel encryption and replay protected transport directly into the protocol,
and binds its session keys to a configuration string and a client generated nonce rather
than a network generated challenge. These differences allow SATP to operate in more
general environments without relying on cellular infrastructure or the specific message
formats used by mobile networks.

3.4 Target Use Cases

SATP is designed for deployment in environments where public key methods are impractical
or too costly. These include embedded systems with limited memory, industrial control
networks, satellite and aerospace platforms, and legacy infrastructures that require post
quantum protection without large code additions. Such systems often rely on symmetric
secrets provisioned during manufacturing and cannot accommodate the computational or
memory requirements of key encapsulation mechanisms or digital signature verification.
SATP provides a channel establishment mechanism that operates entirely within these
constraints while offering strong authentication, confidentiality, and replay protection
based on standard symmetric primitives.

4 Cryptographic Model and Assumptions

This section introduces the cryptographic model used to analyze SATP. It defines the
primitives assumed by the protocol, the key hierarchy and its trust assumptions, the
adversarial capabilities, and the security goals that guide the formal proofs in the following
sections.

4.1 Primitives and Security Assumptions

SATP relies on three classes of symmetric primitives.

« SHAKE-based key derivation functions. The protocol uses SHAKE to derive
branch keys, device keys, session keys, and the validation hash H.. The analysis
models SHAKE as a pseudo-random function for all inputs of interest. We assume
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that for any efficient adversary A the advantage in distinguishing SHAKE from a
pseudo-random function is negligible.

e Memory hard password hashing. The authentication phase of SATP uses a memory
hard function, such as SCB, to derive long term authentication verifiers from device
specific passphrases. For each device with identifier i, the provisioning process
computes

Hassi = SCB(passphrase;)

and stores Hpass,; both on the device and in the corresponding server side record.
During a session, the client sends Hp,ss,; inside the encrypted authentication request,
and the server verifies it against its stored value. The function is assumed to be
one way for adversaries with classical, GPU, or moderately parallel hardware. The
protocol analysis requires only preimage resistance of this verifier function.

e Authenticated encryption. All encrypted SATP packets are protected by an
authenticated encryption scheme with associated data. The security analysis assumes
ciphertext indistinguishability under chosen ciphertext attack and ciphertext integrity
for the AEAD primitive. The protection applies to replay and reordering attacks
because the header fields are included in the associated data.

The proofs reduce the security of SATP to the combined security of these primitives, and
no other assumptions are required.

4.2 Key Hierarchy Model

SATP uses a deterministic hierarchy of symmetric keys derived from a root secret held by
a provisioning authority.

e The root authority holds Koo, which is never exposed outside trusted provisioning
environments.

o Each branch server receives a branch key

Ky = Shake256( K o0t || branch_id).

e Each client device with identifier 7 receives a device key
K. ; = Shake256( Ky, || i),
and a server secret ST, that is shared only with the branch server.

The model assumes that K., and Kp, remain secret, and that compromise of a device
key K. affects only the corresponding device and its established sessions. The security
definitions allow the adversary to compromise certain keys as part of the key compromise
oracle in order to model limited forward secrecy.

4.3 Adversarial Capabilities

The adversary controls the network and may be classical or quantum. The model assumes
the following capabilities.

e Network control. The adversary may deliver, drop, delay, reorder, or replay SATP
packets. It may inject arbitrary ciphertexts under arbitrary headers.

e Channel oracles. The adversary may query encryption oracles that simulate the
transmission of application data. It may query decryption oracles that return failure
or success depending on whether the ciphertext is valid.
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o Key compromise. The adversary may request compromise of K. ; for any device
that it does not control during a challenge session. After compromise, the adversary
learns the device key and may attempt to distinguish previous ciphertexts from
random. Compromise of Kp, or Koot is not permitted, because those events break
the trust model of the system.

e Computation limits. The adversary may be classical or quantum and may perform
arbitrary polynomial time computation. The analysis relies on the assumption that
no such adversary can violate the security properties of SHAKE or the AEAD
primitive.

The model does not limit the adversary’s access to packet timing or packet size information,
because SATP does not attempt to hide these features.

4.4 Security Goals

The analysis considers the following goals for parties that establish a SATP session.

¢ Channel authenticity. Each participant accepts only if it is communicating with
the intended peer and does so only when both sides derive the same session keys.
Authenticity requires correct computation and comparison of the validation hash H..

« Confidentiality of application data. An adversary that cannot compromise K ;
during the session should not distinguish encrypted application data from random
strings of the same length.

o Ciphertext integrity. An adversary should not cause a participant to accept any
ciphertext that was not generated by the peer with the correct session keys. This is
guaranteed by the integrity of the AEAD primitive and the binding of header fields
to each ciphertext through the associated data.

o Client side key erasure but no forward secrecy. If K. ; is revealed at some
time ¢, an adversary that has recorded the SATP handshake for that device can
recompute the session keys for any past session, because N, is transmitted in clear
in the Connect Request and the configuration string is public. The implementation
erases session keys at termination, which prevents compromise of a device from
directly revealing stored session material, but it does not provide forward secrecy
against an adversary that both records traffic and later learns K, ;.

5 Formal Protocol Specification

This section defines the SATP protocol in formal terms. It introduces the notation used
throughout the analysis, specifies all message formats used in the key exchange and data
channel, and describes the execution model for honest participants. These definitions align
with the engineering description of Section 2 and reflect the exact message flow and key
derivations realized in the reference implementation.

5.1 Notation

We use the following notation throughout.

e {0,1}"™ denotes the set of binary strings of length n. The set of all finite binary
strings is {0, 1}*.

» Concatenation of two strings X and Y is written X || Y.
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o For a string X, the slice X[a:b] denotes the substring consisting of bytes a through
b — 1 inclusive, with zero based indexing.

o Identifiers are strings in {0,1}* and include device identifiers and branch identifiers.
We assume that identifiers are unique within their domains.

e Keys are binary strings. The root key is Koo, @ branch key is Ky, and a device key
is K. ; for device identifier ¢.

e FEach device stores a server validation secret ST, known to the corresponding branch
server.

e A session nonce N}, is a uniformly random string of length 32 bytes chosen by the
client.

o The function Shake256(X) denotes the SHAKE based expansion of input X into a
required number of output bytes.

e The notation (Rk, Rn,Tk,Tn) < Split(X) refers to splitting a 128 byte string X
into four 32 byte segments in increasing order of index.

o The authenticated encryption scheme is written
(C,T) = AEAD.Enc(K, N, A, P)
where A is associated data and P is the plaintext payload, and
P = AEAD.Dec(K,N,A,C,T)

indicates acceptance and recovery of P, while L indicates rejection.

o Packet headers are denoted by Hdr and contain a flag, a message length, a sequence
number, and a timestamp. The exact format matches the definition in Section 2.

5.2 Message Formats

We now define the format of every SATP message exchanged during a session.
Connect Request. In the implementation the header flag is set to

satp_flag connect_request and the payload consists of the device identity string and Ng

in clear. The Connect Request is not passed through the authenticated encryption layer
and therefore has no ciphertext or authentication tag.

CR= (ﬂagcra i, Nh)

where flag., denotes the Connect Request flag, IVy, is the client generated session nonce,
and 7 is the device identifier.

Connect Response. A Connect Response contains the server computed validation hash:
R = (ﬂagresv H(‘)

The payload H. is encrypted under the server’s transmit context and is authenticated to
the client upon decryption.

Authentication Request. After a client has validated the server using the connect
response, it sends an authentication request that proves knowledge of the provisioned
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passphrase without exposing it in clear. Each device with identifier ¢ stores an authentica-
tion verifier
Hpass,i = SCB(passphrase; ),

where SCB denotes a memory hard password hashing function and Hpaes; has length
SATP_HASH_SIZE. The authentication request payload is

AR = (ﬂagarv ia Hpass,i)»

where flag,, denotes the authentication request flag and 7 is encoded as a
SATP_DID_SIZE byte device identifier. The entire payload (¢, Hpass,;) is encrypted under
the client transmit context using the SATP AEAD scheme with the serialized header as
associated data. The server decrypts the first encrypted packet received after the key
exchange and passes the recovered (7, Hpass,;) pair to an application level verifier, which
compares it against the provisioned verifier for that device.
Authentication Response. If the server side verifier accepts the authentication request
for identifier i, the server responds with an authentication response that confirms its
identity to the client and signals that the client is authenticated. The authentication
response has the form

AS = (flag,,, sid),

where flag,. denotes the authentication response flag and sid is the server identifier of
length SATP_SID_SIZE. The value sid is encrypted under the SATP data channel with the
header as associated data. Upon decryption, the client compares the recovered identifier to
its expected server identifier and accepts the authentication if and only if they are equal.
After a successful authentication response, the session state on both sides is Fstablished
and subsequent encrypted packets carry application data.

Application Data Packets. Once established, either party may send application data.
A data packet has the form:

DP = (ﬂagdataa P)
where P is arbitrary plaintext data. The header sequence number and timestamp are

monotone increasing and form part of the associated data for encryption.

Error Messages. Error messages follow the structure

ERR = (flag,,,, ErrorCode)

where the error code identifies the condition detected by the receiver.

5.3 Execution Model

We formalize the behavior of SATP as a system of interacting sessions. Each session
is associated with a participant role, either client or server, and maintains local state
throughout its lifetime.

Session State. Each session maintains the following values:

e the device identifier 7,
« the device key K. ;,
o the server validation secret ST, (in client state) or its server side copy,

o the session nonce Ny, (on the client),
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o the session tuple (Rk, Rn, Tk, Tn),
e the current sequence number and replay window state,

o the current state label, one of {Init, Connected, Auth, Est, Terminated}.

Session Start. A client begins a session by generating Ny, computing H,., deriving the
session tuple, and sending a Connect Request. A server begins a session upon reception of
a Connect Request, and derives K. ; and H. based on the request contents.

Acceptance. A client accepts a session if and only if the Connect Response decrypts
correctly and yields a value equal to the stored H.. A server accepts a session once the
authentication request validates successfully.

Transition to Established. Both parties transition to the established state once
application data is allowed to flow. At this point, both have confirmed that the peer
derived the same session keys and that the authentication phase succeeded.

Rejection and Termination. A session is terminated upon any of the following events:

o failure of authenticated decryption,

o violation of the sequence monotonicity rule,

e expiration outside the timestamp window,

e receipt of an error message,

e explicit termination by either participant.
Upon termination, all session keys are erased and the state transitions to Terminated. No
further packets are processed.

This execution model defines the traces against which the security definitions of Section 6
are evaluated.

6 Security Definitions

This section defines the adversarial goals relevant to SATP. The definitions follow standard
game based formulations and are tailored to the symmetric trust hierarchy and deterministic
key schedule used by the protocol. All games are run with respect to the execution model
of Section 5.

6.1 Channel Authenticity Experiment

The channel authenticity experiment models an adversary that attempts to cause an honest
participant to accept a session without interacting with the intended peer or without
deriving matching session keys. On the server, a session is considered accepted only after
the authentication request has been decrypted under the SATP channel and the verifier
(4, Hpass,i) has been validated against the provisioned record for <.

The experiment proceeds as follows.

1. The challenger initializes the system parameters, generates Koo, and derives all
branch and device keys required for the experiment.



16 The Design and Analysis of the Symmetric Authenticated Tunneling Protocol

2. The adversary is given network control and may deliver, delay, drop, or modify any
SATP packet. It interacts with honest participants through oracle access to their
message generation and processing functions.

3. The adversary may open any number of sessions and may corrupt any device key
except the one used in the challenge session.

4. The adversary succeeds if it causes an honest party to transition to the Connected or
Est state with a peer identity that never participated in the corresponding session,
or if two honest parties accept with different session keys.

The advantage of an adversary A in breaking channel authenticity is

Adv33Po (A) = Pr[A wins the authenticity experiment].

The protocol achieves channel authenticity if this advantage is negligible for all efficient

adversaries.

6.2 Channel Confidentiality Experiment

Channel confidentiality is modeled by an IND-CCA style experiment for the established
data channel. The experiment proceeds as follows.

1. The adversary interacts with honest participants and may perform any number of
session initiations, authentications, and transmissions. It may corrupt device keys
except within a designated challenge session.

2. Once a challenge session reaches the Est state, the adversary submits two equal
length plaintexts Py and P;.

3. The challenger selects a bit b € {0, 1} uniformly at random and returns the encryption
of P, under the active SATP session keys.

4. The adversary continues interacting with all participants, including through decryp-
tion oracles which reject malformed ciphertexts. It may not query the challenge
ciphertext to the decryption oracle.

5. The adversary outputs a guess b'.
The advantage of A is defined as

AdvEREp (A4) = [Pr[V = 1]

SATP achieves channel confidentiality if this advantage is negligible for all efficient
adversaries. The definition captures confidentiality of all application data sent after the
session reaches the established state.

_1
31

6.3 Ciphertext Integrity Experiment

Ciphertext integrity is defined by an INT-CTXT experiment for the AEAD protected data
channel. The experiment models an adversary which attempts to cause an honest party to
accept a ciphertext that the peer never generated.

1. The adversary interacts with honest participants and may observe ciphertexts
produced by any session through the encryption oracle.

2. The adversary eventually outputs a candidate ciphertext header and payload
(Hdr,C,T) for decryption by an honest participant.
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3. The adversary wins if the honest participant outputs a plaintext P # 1 and the
ciphertext was not generated by the corresponding peer during the session.

The advantage of A is:

Advifip(A) = Pr[A wins the integrity experiment].
SATP achieves ciphertext integrity if this advantage is negligible for all efficient adversaries.

Because header fields are included in the associated data, this definition also covers integrity
of sequence and timestamp values.

6.4 Client-Side Forward Secrecy

SATP does not provide forward secrecy under compromise of a device key. Because the
Connect Request transmits the session nonce N, in clear and the session key derivation is
fully deterministic in

X = Shake256(K.; || cfg, || Nw),

an adversary that records a session transcript and later compromises the corresponding
device key K., can recompute the exact session tuple (Ry, Ry, Tk, 1)) for that session.
This allows full recovery of all application data protected under that session’s keys.

To reflect this property, we define a client-side compromise resilience experiment rather
than a forward secrecy experiment. After a session has terminated, the adversary is
permitted to obtain K. ; for a target device and is given a challenge string that is either
(i) a real ciphertext previously recorded from that session or (ii) a uniformly random
string of the same length. Because the adversary can recompute the session keys using the
public nonce N}, and the revealed key K. ;, it can always distinguish the real ciphertext
from random with non-negligible advantage. Hence, the protocol as implemented does not
satisfy a forward secrecy definition and instead provides only erasure of session keys from
local state once a session terminates.

6.5 Replay and Reordering Security

Replay and reordering security captures the guarantee that an adversary cannot force an
honest party to accept packets that were previously processed or that violate the ordered
delivery rules of the protocol.

The experiment is defined as follows.

1. The adversary interacts with honest participants and may obtain any number of
legitimate ciphertexts from established sessions.

2. The adversary outputs a candidate packet consisting of a header and ciphertext
(Hdr, C,T) for processing by an honest participant.

3. The adversary wins if the honest participant accepts the packet and either the
timestamp or sequence number in Hdr is not strictly greater than the last accepted
values in the session.

The advantage of A in breaking replay or reordering security is:

AdvgeX-lrag(A) = Pr[A wins the replay experiment)].
Because the header is bound to ciphertexts as associated data, any attempt to reuse old

header values produces an invalid authenticated encryption tag. SATP achieves replay
and reordering security if the above advantage is negligible.
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7 Provable Security Analysis

This section sketches the provable security analysis of SATP in the model and with the
goals defined in Sections 4 and 6. The proofs follow a standard game based approach
that reduces the advantage of any adversary against SATP to the advantages of related
adversaries against SHAKE and the underlying AEAD scheme.

Adversary Model and Assumptions. The security arguments in this section are
made under the same threat model and operational assumptions as defined in the SATP
specification. The adversary is assumed to have full network visibility and control, including
the ability to observe, delay, replay, drop, and inject packets. Compromise of individual
client devices or branch servers is considered within scope, with the restriction that
compromise occurs after any session keys under analysis have been erased. The adversary
may possess quantum computational capabilities limited to generic square-root attacks
such as Grover search, and no assumption is made of feasible large-round hidden-shift or
state-recovery attacks against the Keccak permutation. All randomness used for nonces
and key generation is assumed to be generated by a cryptographically secure random
number source, and long-term secrets such as the server authentication secret ST, are
assumed to be stored in a manner resistant to trivial extraction. Unless explicitly stated
otherwise, security claims assume correct protocol execution, unique per-session nonces,
and strict monotonic enforcement of packet sequence numbers and timestamps.

Authentication Layer Separation. The SATP handshake enforces authentication
through three cryptographically independent mechanisms, each serving a distinct security
purpose. First, server authentication is achieved during tunnel establishment by verification
of the session validation hash

H. = SHAKE256(Ny, || K., || ST.),

which can be computed only by a server possessing both the correct derived client key K. ;
and the long-term server secret ST,. Second, client authentication is performed after tunnel
establishment using a passphrase-derived credential hardened via the SCB cost-based key
derivation function, ensuring resistance to offline dictionary and brute-force attacks even
under partial server compromise. Third, session authentication and freshness are enforced
by ephemeral per-session keys derived from one-time-use client tree keys K ;, together with
authenticated packet sequence numbers and timestamps bound into the AEAD additional
authenticated data. These mechanisms are independent by construction: compromise of
any single authentication secret does not enable impersonation or retroactive decryption
without simultaneous compromise of the remaining layers.

7.1 Overview of Reduction Strategy

The analysis proceeds by defining a sequence of games for each security goal, starting from
the real protocol execution and gradually replacing components with idealized objects. At
each step we bound the change in the adversary’s advantage by the advantage of a related
adversary against one of the underlying primitives.

For channel authenticity and confidentiality, the main steps are:

e Replace the SHAKE based derivations of session keys and validation hashes with
outputs of independent random functions on the corresponding domains. This step
is justified by the pseudo-randomness assumption on SHAKE.

e Replace the AEAD instance with an ideal authenticated encryption oracle that
provides perfect confidentiality and ciphertext integrity. This step is justified by the
IND CCA and INT CTXT security of the AEAD scheme.
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In the resulting ideal game, the adversary has negligible probability of causing an acceptance
event that violates the security property of interest. Summing the differences between
consecutive games yields the final bound.

For replay and reordering resistance, the argument relies on the binding of timestamps
and sequence numbers into the associated data of each ciphertext.

7.2 Authentication Theorem

Theorem 1 (Channel Authenticity). Let A be an adversary against channel authenticity
that makes at most qp, queries to the SHAKE based key derivation functions across all
sesstons and at most q. encryption queries to the AEAD channels. Then there exist
adversaries By and By such that

AdVERTR (A) < a1 - AdVEL Lo (B1) + AdVREAD (B2) + Saurh.

where €auth 18 negligible in the security parameter and accounts for residual events in the
idealized game.

Proof. We define a sequence of games Gy, G1, Gs.

Game Gy. Thisis the real channel authenticity experiment from Section 6. The adversary
A interacts with honest participants running SATP with SHAKE based key derivations
and the real AEAD scheme.

Game (7. In G; the challenger replaces all calls to Shake256 used for branch key, device
key, session key, and validation hash derivation with outputs of independent random
functions on the corresponding input domains. Specifically, for each derivation type the
challenger maintains a table that maps inputs to uniformly random outputs, and answers
repeat queries consistently.

Any adversary that can distinguish G from G yields a PRF adversary B against SHAKE.
The standard hybrid argument over g;, derivation calls implies

|Pr[A wins in Go] — Pr[A wins in G1]| < g, - AdvET, (B1).

Game G3. In G5 the challenger replaces the AEAD scheme with an ideal authenticated
encryption oracle that returns uniformly random ciphertexts and tags on encryption queries
and rejects any forged ciphertext with probability one. In particular, in G5 it is impossible
for the adversary to produce a ciphertext that decrypts to a valid message unless it was
returned by the encryption oracle.

Any adversary that can distinguish G from G4 yields an INT CTXT adversary Bs against
the AEAD scheme, because the only difference is the possibility of successful forgeries.
Therefore

|Pr[A wins in G1] — Pr[A wins in Ga]| < AdviiEap (B2).

Analysis of G2. In G5, all session keys and validation hashes are uniformly random
and independent, and the AEAD oracle does not allow forgeries. For an honest client to
accept with a server identity that did not participate in the session, or for two honest
parties to accept with different session keys, the adversary must cause the client to accept
a Connect Response that contains the correct value of H. and binds to the correct header
fields. Since H. is a uniformly random value that never appears on the network before
encryption, the only way this can happen is if the adversary submits a ciphertext that was
previously output by the encryption oracle. This corresponds to replaying a legitimate
response, which does not produce an authentication violation in the definition of Section 6.
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Thus, in G2 the probability that A wins the authenticity experiment is bounded by a
negligible term e, that accounts for events such as collisions in identifier encodings and
length fields.

Combining the bounds across the three games yields:

AdVgl/JAtThP(A) <qn- Advg:fake(Bl) + AdvREAp (B2) + €auth,

which is negligible under the assumed security of SHAKE and the AEAD scheme. O

7.3 Confidentiality Theorem

Theorem 2 (Channel Confidentiality). Let A be an adversary in the channel confidentiality
experiment that makes at most q, SHAKE based derivation queries and at most q
encryption queries to the SATP channels. Then there exist adversaries By and By such
that:

AdVg?AanP(A) < qn- AdVgLfake(Bl) + AdvEgACSa(Bz) + Econf s

where econf 1S negligible.

Proof. The proof follows the same structure as the authenticity theorem.
Game Gjy. G is the real confidentiality experiment from Section 6.

Game G;. In G; we replace SHAKE based derivations with outputs of random functions
as in the previous theorem. The distinguishing advantage between Gy and G is bounded
by qh - Adngfake(Bl)'

Game G3. In Gy we replace the AEAD scheme with an ideal IND CCA secure encryption
oracle that returns uniformly random ciphertexts for new queries and rejects any ciphertext
submitted to the decryption oracle that was not produced by the encryption oracle.

The difference in the adversary’s view between G; and G5 is bounded by

AdViNE$S2(By), because any distinguishing strategy can be converted into an IND CCA
attack against the AEAD.

Analysis of G3. In G, challenge session keys are uniformly random and independent,
and the challenge ciphertext is produced by an ideal encryption oracle. From the adversary’s
perspective, the challenge ciphertext is independent of the bit b used to select P, since
the oracle outputs random strings subject to the restriction that decryption is consistent.
It follows that the adversary’s probability of correctly guessing b is at most one half plus a
negligible term, so the advantage in G is bounded by econf. Summing differences across
games yields the stated bound. O

7.4 Replay and Reordering Resistance

We conclude with a lemma that relates replay and reordering resistance of SATP to the
integrity of the AEAD primitive and the inclusion of header fields in the associated data.

Lemma 1 (Replay and Reordering Resistance). Let A be an adversary in the replay
and reordering experiment that attempts to cause an honest party to accept a packet with
timestamp or sequence number not strictly greater than the last accepted values. Then
there exists an adversary B against the ciphertext integrity of the AEAD scheme such that

Advge:_llfg(A) S AdVi’-QEAD (B) + Ereplay

where ereplay 15 negligible.
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Proof. In SATP, the serialized header, which contains the timestamp and sequence number,
is always passed as associated data to the AEAD. For any ciphertext accepted by an honest
participant, the tag validation ensures that the header used during decryption matches
the header used during encryption.

An adversary that attempts to replay a previously observed packet with the same header
cannot violate the replay policy in the protocol model, because the receiver rejects packets
whose timestamps or sequence numbers are not strictly increasing. An adversary that
attempts to modify the header in order to bypass these checks must produce a new
ciphertext and tag pair that the receiver will accept. This is exactly a ciphertext forgery
under modified associated data.

Any successful strategy for A thus yields an INT CTXT adversary B that forges a valid
ciphertext under new associated data. The probability of such a forgery is bounded by
AdviEAp (B), plus a negligible term: Ereplay that accounts for residual events such as counter
wraparound. This gives the stated bound. O

8 Cryptanalysis and Robustness

This section discusses the robustness of SATP under realistic threat scenarios that are not
fully captured by the idealized security model. The focus is on the effects of compromise
within the symmetric key hierarchy, on denial of service risks created by deterministic key
derivation, and on attack surfaces that arise from deployment choices and implementation
errors.

8.1 Symmetric Hierarchy Compromise and Epoch Rotation

The symmetric key hierarchy used by SATP introduces a strong dependency between the
security of the branch keys and the security of all devices attached to that branch. If an
adversary compromises K, for a branch, it can recompute every device key K. ; derived
from that branch key by evaluating

K.,; = Shake256( Ky, || i)

for each device identifier . This reveals all provisioned device keys under that branch and
allows the adversary to impersonate any device to the server, and the server to any device,
within the branch.

The impact on historical and future sessions must be separated.

o Historical sessions. Once Ky, is known, the adversary can derive all device keys
and can recreate the session keys for any session whose nonce N, and configuration
string cfg, are observable in the transcripts. In the current design, IVj, is carried in
clear in the Connect Request payload, so a passive adversary that records traffic and
later learns Ky, (or any K. ;) can reconstruct the past session keys for that branch.

o Future sessions. After compromise of K, the adversary can actively participate in
new handshakes as either party. It can generate its own N}, derive the session tuple
(Rk, Rn,Tk,Tn), and compute the correct validation hash H,.. Future sessions under
the compromised branch key therefore provide no authenticity or confidentiality
against the adversary.

To limit the long term effects of a branch compromise, the deployment model must include
time bounded epochs and key rotation policies.
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e In an epoch based model, each branch uses a key K éf ) for a fixed time interval indexed

by 7, and devices derive K éjl) accordingly. The system retires old branch keys and
device keys once the epoch ends.

e Compromise of Kéf ) then affects only sessions that were established while epoch j
was active, and does not allow recovery of sessions from previous epochs that used
unrelated branch keys.

« Rotation policies must ensure that new epochs are provisioned securely and that

devices can migrate from K C(jl) to Kc()jiﬂ)

keys.

without leaving residual copies of retired

The protocol design does not prescribe a specific epoch mechanism, but the symmetric
hierarchy makes such mechanisms essential for deployments that require strong containment
of long term breaches. Without rotation, compromise of Ky, is catastrophic for the entire
lifetime of the branch.

8.2 DoS and State Exhaustion Analysis

The deterministic derivation of device keys from Ky, and device identifiers introduces
a potential denial of service vector on the server. For each incoming connect request,
the server must parse the device identifier, derive K.; using SHAKE, and recompute
the validation hash H, before it can decide whether the request originated from a valid
device. An adversary can therefore attempt to flood the server with connect requests
containing arbitrary identifiers, forcing it to perform expensive key derivations for non
existent devices.

The impact of this vector depends on the cost of SHAKE evaluation on the target platform
and the rate at which the attacker can generate requests. In environments where SHAKE
is relatively expensive and where network access is inexpensive for the adversary, this
attack can increase CPU load and reduce capacity for legitimate clients.

Several engineering strategies can mitigate this risk.

o Identifier filtering. Servers can maintain a compact representation of valid device
identifiers, such as a Bloom filter or a hash table keyed by identifier, and check
membership before deriving K, ;. Requests carrying identifiers that are not present
in the filter can be rejected early without invoking SHAKE.

¢ Rate limiting. Per source address or per identifier prefix rate limits can prevent
individual adversaries from monopolizing server resources. Combined with logging,
this allows operators to detect and isolate sources that generate anomalous traffic.

o Lightweight prechecks. Servers can require that connect requests conform to rigid
length and format constraints for identifiers and other fields. Packets that fail these
checks can be dropped without further processing.

o Tiered processing. In some deployments, a front end component can perform basic
filtering and identity lookup and only pass candidate requests that match provisioned
entries to a back end SATP server that performs SHAKE based derivations.

SATP does not attempt to solve denial of service at the protocol level, but the deterministic
nature of its key derivation makes these engineering considerations important in practice.
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8.3 Attack Surfaces and Misuse Scenarios

Beyond the explicit cryptographic assumptions, SATP inherits several attack surfaces
from its operational environment. These do not violate the formal security model directly,
but they can weaken effective security if left unaddressed.

Nonce misuse. FEach session relies on a fresh, uniformly random N}, generated by the
client. Reuse of N}, across different sessions with the same device key K. ; causes reuse
of the corresponding session tuple (Rk, Rn,Tk,Tn). This may expose the data channel
to attacks that exploit keystream reuse or related key structure in the underlying cipher.
Implementations must ensure that the nonce generator is reliable and that failures are
detected and handled, for example by aborting the connection if nonce generation fails.

Clock skew and timestamp configuration. Replay protection relies on comparing
packet timestamps against local clocks and a configured acceptance window. Incorrect
time configuration, large clock skew, or excessively permissive windows can weaken replay
resistance and allow delayed packets to be accepted. Conversely, overly strict windows can
cause legitimate packets to be rejected in networks with variable latency. Deployments
must specify clear policies for clock synchronization and for the size of the allowed window
to balance robustness and security.

Weak authentication material. The memory hard authentication layer protects
against brute force attacks on the device authentication secret, but it does not compensate
for extremely weak passwords or secrets. If devices are provisioned with low entropy
authentication material, an adversary that obtains the corresponding SCB image may still
recover the secret by exhaustive search. Provisioning processes must therefore enforce
minimum entropy requirements and must protect SCB parameters from downgrades that
weaken the effective cost of offline attacks.

In summary, the core SATP design withstands adversaries that operate within the
assumed cryptographic model, but robust deployments must address these additional risks
through careful parameter selection, operational procedures, and defensive implementation
techniques.

9 Parameters and Performance

This section summarizes the concrete parameter choices used by SATP and discusses the
resulting performance characteristics. The values are drawn from the protocol specification
and the reference implementation, and are selected to balance security margin and efficiency
in constrained post quantum environments.

9.1 Parameter Choices

SATP fixes the following parameters.

« Hash and KDF outputs. All key derivations use SHAKE256. Branch keys Ky,
and device keys K. ; are 256 bit strings. Session derivation produces a 128 byte
string that is split into four 32 byte values (Rk, Rn,Tk,Tn), which serve as keys
and nonces for the data channel.

e AEAD key and nonce sizes. The authenticated encryption scheme uses 256 bit
keys and nonces sized to match the underlying cipher. Each direction of the channel
maintains its own key and nonce pair. Nonces are derived deterministically from the
session tuple and are advanced for each packet to prevent reuse.
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e Replay window threshold. The protocol defines a maximum time skew between
packet timestamps and the local clock, represented by a replay window parameter AT
Packets with timestamps outside the interval [tiocal — AT, tiocal + AT are rejected. The
choice of AT depends on deployment latency and clock synchronization guarantees.

These choices ensure that all keys have security levels consistent with 256 bit symmetric
primitives and that replay protection remains effective in typical network conditions.

9.2 Implementation Footprint

The reference implementation of SATP is designed to fit within the constraints of embedded
and control systems that cannot accommodate large cryptographic libraries.

e Code size. The SATP implementation includes the protocol logic, the SHAKE
based key derivation, and an authenticated encryption layer. The total code size
is significantly smaller than that of typical post quantum key encapsulation suites,
because it does not include lattice based arithmetic or large polynomial operations.

e« Memory usage. The protocol requires storage for a small number of keys per session
and for a minimal amount of state, including sequence numbers and timestamp
metadata. No per session tickets or long term session caches are required. This keeps
RAM usage modest and predictable.

e Computational cost. The dominant costs are the SHAKE evaluations used for key
derivation and the authenticated encryption operations for the data channel. Both
are symmetric operations with predictable constant factors. There are no public key
operations, and there is no need for large integer arithmetic or structured lattice
operations.

These characteristics make SATP suitable for devices with limited flash, RAM, and CPU
resources that still require a secure channel protocol with post quantum resilience.

9.3 Comparison with KEM-Based Designs

Post quantum key exchange protocols based on key encapsulation mechanisms, such
as those built from NIST standard candidates, typically require multiple lattice based
operations per handshake. These operations involve large public keys and ciphertexts and
require several kilobytes of code and data to implement. On constrained devices, such
overhead can be prohibitive.

In contrast, SATP relies solely on symmetric primitives. The cost of a handshake
is dominated by a small number of SHAKE evaluations and the initialization of the
authenticated encryption contexts. The code footprint is correspondingly smaller, since
it reuses hash and block cipher components that are often present for other purposes.
The protocol also avoids the need to store long term public keys or to handle complex
certificate chains.

The tradeoff is that SATP does not provide full forward secrecy under compromise of
branch keys. Deployments that can afford the implementation and runtime cost of post
quantum key encapsulation may prefer KEM based designs that offer stronger forward
secrecy guarantees. SATP is intended for environments where those options are not
practical and where a deterministic symmetric hierarchy provides the best balance between
efficiency and security.
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10 Deployment Considerations

This section discusses practical issues that arise when SATP is deployed in real systems.
These considerations extend beyond the formal model and reflect operational, governance,
and lifecycle requirements that influence the long term security of the protocol.

10.1 Key Management and Provisioning

SATP depends on a symmetric key hierarchy rooted at a master secret. Secure provisioning
and management of these keys is essential.

Root and branch keys. The master key Koo is generated and stored in a trusted
provisioning environment. Branch keys Ky, are derived from Koot and must be provisioned
into branch servers during initialization or during controlled rotation events. Neither Koot
nor Ky, should appear in any device level firmware or diagnostics, and both must be
protected by hardware or operational controls that provide strong resistance to extraction.

Device keys and server secrets. FEach device receives K.; and ST, as part of
manufacturing or enrollment. Devices must validate that these values are stored in secure
memory regions and must not expose them through debugging interfaces. Provisioning
systems must ensure that device identifiers are unique, that derivation inputs are encoded
consistently, and that the binding between devices and their identifiers cannot be altered
post deployment.

Key rotation. The symmetric hierarchy requires well defined rotation policies. Root
and branch keys should be rotated on a schedule that reflects organizational risk tolerance.
Device keys can be derived dynamically from new branch keys during an epoch transition,
but deployments must ensure that devices retire older keys and do not retain multiple sets
of credentials indefinitely. Rotation events must be authenticated and logged, and they
must be performed out of band to prevent interference from network adversaries.

10.2 Use Cases and Integration Scenarios

SATP is intended for environments where symmetric key provisioning is practical and
where public key cryptography imposes unacceptable costs.

Control networks. Industrial control systems and SCADA environments often include
devices with limited processing capabilities and predictable communication patterns. SATP
provides a lightweight channel protocol that fits within these constraints while offering
authenticated encryption and replay resistance. The deterministic key hierarchy simplifies
integration with provisioning pipelines.

Embedded systems. Many embedded devices lack hardware acceleration for public
key cryptography or have strict limits on code size and memory. SATP requires only hash
based derivation and a symmetric authenticated encryption scheme, making it suitable
for microcontrollers, sensors, and other embedded components that must operate for long
periods with minimal maintenance.

Post quantum constrained environments. Systems that require resistance to quan-
tum adversaries but cannot implement lattice based key encapsulation can use SATP
as a symmetric alternative. Examples include aerospace systems, legacy communication
platforms, and secure modules that must remain operational for extended periods. SATP
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provides confidentiality and authenticity based on symmetric primitives that are believed
to resist quantum attacks.

10.3 Governance, Audit, and Compliance

Formal security does not replace the need for governance and audit processes. SATP
deployments must align with organizational policies and relevant standards.

Configuration and parameter governance. Replay windows, sequence parameters,
and authentication settings must be selected carefully and documented. Operators must
ensure that these values are configured consistently across devices and that deviations are
audited.

Provisioning and lifecycle audit. The key hierarchy must be accompanied by tracking
of device enrollment, branch key distribution, and rotation events. Audit logs must record
when credentials are provisioned, replaced, or retired. These logs must be protected from
tampering and must support forensic analysis if a compromise is suspected.

Compliance alignment. SATP can support deployments that align with existing
regulatory and industry standards that emphasize symmetric trust models, such as
guidelines for industrial control systems and supply chain security. While SATP does not
replicate all features of protocols like TLS, its deterministic structure and symmetric nature
make it suitable for environments where certification requires minimal attack surface and
predictable cryptographic behavior.

In summary, SATP provides a secure and efficient symmetric channel protocol for
constrained environments, but successful deployment requires careful management of
provisioning, rotation, configuration, and audit processes. These considerations ensure
that the protocol’s formal guarantees translate into practical security in real systems.

11 Limitations and Future Work

SATP provides a secure and efficient symmetric channel protocol for constrained post
quantum environments, but its design reflects tradeoffs that introduce limitations in certain
deployment scenarios. This section summarizes these limitations and identifies directions
for future work.

Lack of server side perfect forward secrecy. SATP does not achieve perfect forward
secrecy for the server. Compromise of a branch key Ky, allows an adversary to derive all
device keys K, ; within that branch and to compute session keys for future handshakes.
The long term effect of a branch compromise remains significant. Deployments must
rely on epoch based rotation to bound this exposure. Designing variants of SATP with
partial server side forward secrecy while preserving low overhead remains an open research
problem.

Dependence on symmetric key provisioning. SATP relies on secure provisioning of
the symmetric hierarchy. This requires trusted manufacturing or enrollment pipelines and
the ability to protect root and branch keys from disclosure. In distributed environments
where provisioning cannot be tightly controlled, symmetric trust hierarchies may be
difficult to manage. Future work may explore hybrid designs that combine SATP
with lightweight public key mechanisms or secure bootstrapping protocols to enhance
provisioning robustness.
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Limited authentication expressiveness. Authentication in SATP is based on sym-
metric secrets and memory hard verifiers. This model is suitable for many embedded
and industrial environments, but it does not provide the flexibility of public key based
identity frameworks. Integration with external identity providers or with group based
authentication mechanisms may require extensions to the SATP handshake.

Formalization scope. The security analysis in this paper focuses on channel authenticity,
confidentiality, ciphertext integrity, and replay resistance. It does not cover side channel
leakage, denial of service conditions that arise from resource constraints, or multi party
composition scenarios. Extending the formal model to cover these aspects and to support
automated proof generation through tools such as Tamarin or ProVerif is a promising
direction for future work.

Automated verification and code audits. The reference implementation is small
and amenable to line by line audit, but comprehensive assurance requires static analysis,
symbolic verification, and fuzz testing. Creating a formal reference model that can be linked
to the implementation and verified through automated tools would increase confidence in
the protocol’s correctness. Techniques that support continuous verification during firmware
development may be especially valuable for environments where updates are infrequent.

Further performance analysis. While SATP is efficient, a deeper study of performance
under varying network conditions, device capabilities, and authentication workloads
would help guide parameter choices for large deployments. Experimental evaluations
on representative hardware, including microcontrollers and FPGA platforms, would clarify
practical limits and influence future optimizations.

Extensions to group communication. SATP is defined as a two party protocol.
Some environments require secure group communication channels with symmetric trust
assumptions. Extending SATP to support group keys or multicast without losing its
deterministic structure and low overhead presents additional research challenges.

In summary, SATP achieves its goals within the assumptions and constraints of a
symmetric, hash based channel protocol. Continued research on key rotation, flexible
authentication, automated verification, and broader deployment models can further
strengthen its applicability and resilience.

12 Conclusion

SATP provides a symmetric channel establishment protocol designed for environments
where post quantum public key operations are impractical or too costly. Its design combines
a deterministic hash based key hierarchy with a lightweight authenticated encryption layer
to produce a secure and efficient alternative to key encapsulation mechanisms. The protocol
derives all operational keys from pre provisioned symmetric material and a client generated
nonce, and it authenticates the server through a validation hash that depends on device
specific secrets. This structure enables SATP to operate in constrained systems while
maintaining strong guarantees of authenticity, confidentiality, and replay protection.
The formal analysis presented in this paper defines the cryptographic model and the
security goals for SATP and provides game based reductions that tie the protocol’s security
to the pseudo-randomness of SHAKE and the security of the AEAD primitive. The results
show that SATP achieves channel authenticity, channel confidentiality, ciphertext integrity,
replay and reordering resistance, and a limited form of forward secrecy for clients. These
guarantees hold under classical and quantum adversaries that operate within the symmetric
trust assumptions defined by the protocol.
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SATP’s reliance on symmetric primitives and deterministic key derivation introduces
specific tradeoffs compared with public key based protocols. The protocol does not provide
forward secrecy for the server under compromise of branch keys, and it depends on
secure provisioning of symmetric material. These tradeoffs are acceptable in environments
where symmetric trust hierarchies are practical and where the cost of post quantum
key encapsulation is prohibitive. Examples include control networks, embedded systems,
aerospace applications, and legacy infrastructures that require post quantum protection
without significant increases in code size or runtime cost.

In closing, SATP represents a focused design tailored to constrained post quantum
deployments. Its deterministic, symmetric foundation allows strong and analyzable security
within the intended operating assumptions. Future work on key rotation, extended formal
models, and automated verification can further strengthen the protocol and expand its
applicability.
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