Symmetric Authenticated Tunnelling Protocol

SATP Technology Integration Guide

Revision: 1.0
Date: October 23, 2025

1 Introduction and Scope

Symmetric Authenticated Tunneling Protocol (SATP) is a post-quantum, symmetric-only
tunneling and authentication protocol designed to replace certificate-based VPN/TLS stacks. It
eliminates public-key dependencies by deriving all material from SHA-3 family primitives
(cSHAKE/KMACQ), a single stream/AEAD cipher (RCS-256 by default), and a cost-based KDF for
optional passphrase auth. The result is sub-millisecond handshakes on constrained devices,
deterministic provisioning, and certificate-free operations (see the SATP summary and
performance table).

This guide mirrors the DKTP Integration Guide structure you supplied, but translates each step
to SATP’s symmetric key-tree model and API.

2 Protocol Overview

2.1 Simplex Handshake (symmetric-only)

SATP uses a staged Connect — Exchange — Establish flow. Packets carry an authenticated
header (flag, sequence, UTC time, payload size). Replay, ordering, and integrity are enforced
before AEAD decryption. Core phases and header fields are defined in satp.h and the spec:

e Connect Request/Response. Client sends identity/config + nonce; server returns server
ID/config + server nonce; both compute session hashes.

e Exchange Request/Response. Client sends a secret token (AEAD-protected) derived from
device session hash + embedded device key. Server verifies and derives its receive key.

o Establish Request/Response/Verify. Client encrypts its key identity, server echoes it back,
client verifies, session becomes Established.

Packet flags and timing/sequence rules are standardized (e.g., Encrypted Message, Keep Alive,
Error) in the spec’s tables.

2.2 APl Summary

Key integration surfaces:

e Client connect (IPv4/IPv6):
satp_client_connect_ipv4(satp_device_key*, addr4, port, send_func, receive_cb)
satp_client_connect_ipv6(satp_device_key*, addr6, port, send_func, receive_cb) —
performs KEX, initializes cipher states & sequences.

¢ Client close / error:
satp_client_connection_close(cns, error); satp_client_send_error(sock, error).

¢ Server (multi-threaded):
satp_server_start_ipv4(const satp_server_key*, receive_cb, disconnect_cb,
authentication_cb) and IPv6 twin; plus pause/resume/quit/broadcast.

o Connections pool (internal server): initialize, add, index, next, reset, clear, dispose, self-
test.

e KEX internals (normally hidden): satp_kex_client_key_exchange(...),
satp_kex_server_key_exchange(...), and KEX state structs.

2.3 Choosing Parameter Sets

e Cipher/AEAD: Default is RCS-256 + KMAC (SATP_USE_RCS_ENCRYPTION enabled).
Undefine to use AES-256/GCM.

e Tag/nonce sizes: With RCS: MACTAG=32, NONCE=32; with AES-GCM: MACTAG=16,
NONCE=16.

e Packet/header sizing: HEADER=21B, default MTU=1500, MESSAGE_SIZE=1024.

o Keepalive/timing: KEEPALIVE_TIMEOUT=300s; enforce a narrow time window in packet
validation for stronger anti-replay.

3 Key Management and Provisioning

SATP organizes secrets into a root (master) — server (branch) — device (tree) — session
hierarchy:

e Root (domain) key: Kroot, expiration, domain id (offline, rarely changed).
e Server (branch) key: Kbr, sid, stc, expiration.

o Device key-tree: 1024 one-time leaves by default (SATP_KEY_TREE_COUNT) bound to kid;
one leaf is consumed per session.

Provisioning steps (DKTP-style adapted to SATP):

1. Generate Root & Server keys offline (root — branch derivation); serialize for secure
storage. (See SATP header for serialization constants and sizes.)

2. Generate Device key-trees per device under target server branch; embed the device's
kid and the first unused leaf. Erase each leaf after use; persist the incremented key index
atomically. (Single-use keys underpin forward secrecy.)

3. Optional passphrase factor: Pre-compute hardened passphrase hashes for the device
and store server-side; use server helpers to generate/verify in the
authentication_callback.

Domain identity/config strings: Adjust your deployment config constants (e.g., per line-of-
business) similarly to how DKTP exposes a domain identity string; SATP’'s SATP_CONFIG_SIZE
defines the config string length.

4 Integration into Payment Networks
4.1 Architecture
e Client: POS/ATM devices hold a device key-tree and kid (and optional passphrase hash).

e Server: Payment gateway holds server branch key and stc, validates device kid and
passphrase (if required) via authentication_callback.

Transport uses your existing sockets; callbacks mirror the DKTP guide’s send/receive flow, but all
SATP tunnel operations are symmetric. (The DKTP guide section this mirrors is 4.x).

4.2 Integration Steps

1. Provisioning: Manufacture-time derivation of device key-trees from the server branch;
inject kid and the initial leaf.

2. Client connect: Call satp_client_connect_ipv4/ipv6(...) with your send/receive callbacks;
KEX derives duplex channel keys and sequence counters.

3. Transmit: Build packet — encrypt/authenticate — send; on receive, validate header
(flag/seq/time/len) then decrypt. (Header format and flags in spec.)

4. Rotation: Each session consumes one key-tree leaf; device erases it and increments kid.
Server rejects replays/out-of-order kid.

4.3 Operational Considerations

e Latency: SATP handshake and data path are constant-time symmetric ops, yielding the
low latencies noted in the summary.

e HA / Load-balancing: Use stickiness per device kid during KEX; post-establish, the server
maps packet headers (seq/time/flag) to the right satp_connection_state. Manage
capacity with the connections pool helpers.

5 Integration into Cloud Platforms

5.1 Use Cases

e Service-mesh RPC (replace mTLS): lower CPU and no certificates.

e Tenant VPNs / inter-DC links using SATP tunnels.

e SaaS API protection over SATP channels. (Parallels DKTP §5.1 items.)
5.2 Integration Steps

o Key distribution service: Issue branch/device keys and kid via your KMS/secret store,
similar to DKTP’s guidance, but supplying SATP device key-trees.

o Sidecar pattern: Sidecars initiate satp_client_connect_* to peers and pass plaintext to the
app via UDS/shared memory.

e High concurrency: Use satp_connections_* to pre-size, add, index, and recycle
connection states; run the included self-test in Cl.

e LB & routing: Ensure packets from a given connection land on the same backend
instance across KEX; after establishment, header fields plus instance IDs in your pool
enable correct routing. (Mirrors DKTP §5.2.)

6 Integration into SCADA and Industrial Control

6.1 Deployment Architecture
o Field devices act as SATP clients; each has a device key-tree.

e Control center runs the SATP server with the matching branch key; optional passphrase
factor per device group. (Mirrors DKTP §6.)

6.2 Integration Steps

Offline provisioning of device key-trees; choose longer epochs in isolated networks.
(Adapted from DKTP key-provisioning advice.)

Connection management: Devices call satp_client_connect_ipv4/ipv6; control centers
start the multi-threaded server and register callbacks (receive, disconnect, auth).

Fieldbus encapsulation: Wrap Modbus/DNP3 frames in SATP packets; validate header
(seq/time/flag) prior to decrypt to meet determinism.

Keepalive/watchdog: Respect KEEPALIVE_TIMEOUT=300s; use authenticated keep-alive
requests and drop on expired time window.

7 Integration into loT Devices

7.1 Integration Guidelines

Footprint: Symmetric-only SATP minimizes flash/RAM vs PQ-KEM tunnels; see summary
table.

Compile-time options: Keep RCS enabled (bigger tag/nonce) or select AES-GCM for FIPS
pathways.

Key storage: Store device key-trees and kid in secure flash/SE; erase consumed leaves
immediately; persist index atomically.

Network stack: Use non-blocking sockets; supply send_func/receive_callback exactly as
in the client API.

Firmware updates: Ship signed payloads inside SATP; the tunnel provides AEAD-level
integrity in addition to update signatures (pattern mirrors DKTP §7.1).

8 Security Best Practices

Single-use keys: Enforce one leaf per session; on reconnect, a fresh leaf must be used to
preserve PFS.

Passphrase hardening: When a human/passphrase factor is used, generate/verify with
the server helpers and only store hardened hashes.

Replay/downgrade protection: Strictly check header flag/seq/time/len before
decryption; reject on time skew or sequence violations; use the spec’s flag registry.

Timeouts: Enforce KEEPALIVE_TIMEOUT; treat keep-alive failure as connection loss; drop
early on invalid time windows.

Capacity & isolation: Size the connection pool to OS FD limits; monitor availability/full
status via satp_connections_available()/full().

9 Quick Start (both roles)

Server (multi-threaded)

1.

Client

Load server branch key and register callbacks:
satp_server_start_ipv4(&skey, on_receive, on_disconnect, on_auth) (IPv6 variant available).

Optionally: satp_server_broadcast(...), satp_server_pause/resume/quit() for lifecycle
control.

Initialize the connections pool early: satp_connections_initialize(init_count, max); use
*_add/next/index/reset during operation.

Load device key-tree and current kid.

Connect: satp_client_connect_ipv4(&dkey, &addr, SATP_SERVER_PORT, send_func,
receive_cb) (IPv6 variant available).

Send/receive using the packet API in your callbacks; close with
satp_client_connection_close(cns, err).

10 Appendix: Packet & Flags (Field Reference)

Header = 21 bytes: flag (1) | seq (8) | UTC (8) | len (4); message follows (<
SATP_MESSAGE_MAX).

Flags: Connect Request/Response, Encrypted Message, Auth Request/Response/Verify,
Keep Alive, Session Established, Error, etc.

11 Conclusion

Adopting SATP delivers certificate-free, quantum-resilient tunnels with deterministic

provisioning and dramatically lower resource budgets than asymmetric or PQ-KEM stacks. The

integration path mirrors your DKTP rollout playbooks — but with simpler key hierarchy
operations, single-use device leaves, and a smaller, symmetric-only codebase. For payments,
cloud service meshes, SCADA, and loT, the steps above are sufficient to bring up connect —
exchange — establish flows and operate at scale using the provided server, client, KEX, and

connection-pool APIs.

