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Symmetric Authenticated Tunneling Protocol (SATP) 

Revision 1.0a, March 14, 2025 

John G. Underhill – john.underhill@protonmail.com 

This document is an engineering level description of the SATP authenticated and encrypted 

remote user verification and tunneling protocol. This document describes the network protocol 

SATP, a quantum safe tunneling and identity verification system that enables remote logins to 

secure network devices, through a quantum secure tunneling and identity verification protocol. 
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Foreword 

This document is intended as the preliminary draft of a new standards proposal, and as a basis 

from which that standard can be implemented. We intend that this serves as an explanation of 

this new technology, and as a complete description of the protocol. 

This document is the first revision of the specification of SATP, further revisions may become 

necessary during the pursuit of a standard model, and revision numbers shall be incremented 

with changes to the specification. The reader is asked to consider only the most recent revision of 

this draft, as the authoritative implementation of the SATP specification. 

The author of this specification is John G. Underhill, and can be reached at 

john.underhill@protonmail.com 

SATP, the algorithm constituting the SATP messaging protocol is patent pending, and is owned 

by John G. Underhill and Quantum Resistant Cryptographic Solutions Corporation. The code 

described herein is copyrighted, and owned by John G. Underhill and Quantum Resistant 

Cryptographic Solutions Corporation. 
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1. Introduction 

Key distribution remains one of the most challenging problems in cryptography. The internet has 

rapidly evolved into a critical communications platform, used daily by billions of people 

worldwide. Given its foundational role in global commerce, personal communication, and 

critical infrastructure, information transmitted over the internet must be strongly protected from 

interception, tampering, or future compromise. 

Currently, the predominant security model relies heavily on asymmetric cryptography 

(public/private key cryptography) to establish secure encrypted tunnels and authenticate entities. 

These asymmetric primitives depend on mathematical ‘trapdoor’ functions, problems easily 

created with a public key but computationally infeasible to solve without the corresponding 

private key. However, asymmetric cryptographic methods have always carried an inherent risk: 

their security assumptions can be undermined over time by breakthroughs in mathematics or 

advances in computing technology. 

The emergence of quantum computing is now demonstrating this risk in a concrete and alarming 

manner. Quantum computers, leveraging quantum mechanics, threaten to render entire classes of 

asymmetric algorithms, such as RSA and elliptic-curve cryptography (ECC) obsolete within a 

foreseeable timeframe. Intelligence agencies already capture and archive encrypted data streams 

on a massive scale, aware that today's secure communications could eventually become readable 

if future computational breakthroughs materialize. Even newer asymmetric systems, such as 

lattice-based cryptography, while resistant to currently known quantum attacks, may face similar 

threats as quantum computing and mathematical techniques mature. 

In addition, parameter selection for asymmetric cryptography often involves trade-offs, choosing 

more modest security margins in exchange for improved performance. This compromise may 

accelerate the vulnerability of encrypted communications to future cryptanalysis. Considering 

that truly secure communication may need to remain confidential over decades, possibly 

spanning entire human lifetimes, the inherent unpredictability of asymmetric cryptography’s 

future safety becomes unacceptable. 

Symmetric cryptography presents an attractive alternative or complements to asymmetric 

methods. Provided that sufficiently strong symmetric cryptographic primitives and adequately 

long key lengths are chosen, symmetric encryption can offer formidable protection against future 

threats, potentially resisting cryptanalysis indefinitely. Nevertheless, symmetric key-based 

systems historically struggle with challenges like scalability, key distribution complexity, 

forward secrecy, and vulnerability to single points of failure. 

For example, traditional symmetric schemes relying upon pre-shared keys often use a single 

fixed key and session counters to derive encryption keys. Such approaches, seen in early SSH 

implementations, exhibit critical security weaknesses: capturing a single host’s secret key can 

compromise all past communications from that host; compromising a server’s key storage can 

potentially expose past, present, and future communication streams for all network participants. 
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The Symmetric Authenticated Tunneling Protocol (SATP) presented in this paper proposes a 

novel symmetric solution designed specifically to address these limitations. SATP employs 

securely provisioned, hierarchical symmetric key derivation, using keys stored securely on client 

devices (such as SIM, Micro-SD, USB, or on-chip ICCs). It generates fresh ephemeral session 

keys, ensuring that compromise of any individual client or server secret key does not 

retroactively compromise previously encrypted communication sessions. The protocol provides 

robust forward secrecy, post-quantum security via modern cryptographic hash constructions 

(SHAKE, cSHAKE, and KMAC), and excellent scalability, solving the key-management issues 

inherent in traditional symmetric key systems. 

SATP thereby aims to provide truly secure and long-term confidentiality suitable for the post-

quantum era, overcoming the traditional weaknesses of symmetric and asymmetric cryptographic 

schemes alike. 

 

1.1 Purpose 

The SATP secure messaging protocol, utilized in conjunction with quantum secure symmetric 

cryptographic primitives, is used to create an encrypted and authenticated duplexed 

communications channel. This specification presents a secure messaging protocol that creates an 

encrypted communications channel, in such a way that: 

1) The symmetric cipher keys for both the send and receive channels, are ephemeral, and 

use shared secrets for each channel that are unique to each session (forward secrecy). 

2) The capture of the client devices session key does not directly reveal any information 

about future sessions (predicative resistance). 

3) Provides strong authentication security, both during tunnel initialization, network login, 

and authenticated encrypted messaging. 

SATP is a duplexed communications system. Symmetric cipher keys are ephemeral, and unique 

keys are generated for each session. The system works in a client/server model, where a client 

requests a connection from the server and initiates the key exchange. These keys are used to 

initialize a quantum secure symmetric cipher for both communications channels, which encrypts 

the communications stream. A strong emphasis has been placed on authentication with SATP, 

with the entire key exchange using authentication to guarantee the exchange, and the symmetric 

stream cipher using KMAC authentication, with additional data parameters (AEAD) that 

authenticate the SATP packet headers. 
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2. Scope 

This document describes the SATP secure messaging protocol, which is used to establish an 

encrypted and authenticated duplexed message stream between two hosts. This document 

describes the complete symmetric key exchange, authentication, and the establishment of an 

encrypted tunnel. This is a complete specification, describing the cryptographic primitives, the 

derivation functions, and the complete client to server messaging protocol. 

 

2.1 Application 

This protocol is intended for institutions that implement secure communication channels used to 

encrypt and authenticate secret information exchanged between remote terminals. 

The key exchange functions, authentication and encryption of messages, and message exchanges 

between terminals defined in this document must be considered as mandatory elements in the 

construction of an SATP communications stream. Components that are not necessarily 

mandatory, but are the recommended settings or usage of the protocol shall be denoted by the 

key-words SHOULD. In circumstances where strict conformance to implementation procedures 

is required but not necessarily obvious, the key-word SHALL will be used to indicate 

compulsory compliance is required to conform to the specification. 
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3. Terms and Definitions 

3.1 Cryptographic Primitives 

 

3.1.1 SCB 

The SHAKE Cost Based Key Derivation Function (SCB-KDF) uses advanced techniques such as 

cache thrashing, memory ballooning, and a CPU intensive core function to mitigate attacks on a 

hash function by making it more expensive to run dictionary and rainbow attacks to discover a 

user’s passphrase. 

 

3.1.2 RCS 

The wide-block Rijndael hybrid authenticated AEAD symmetric stream cipher. 

 

3.1.3 SHA-3 

The SHA3 hash function NIST standard, as defined in the NIST standards document FIPS-202; 

SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. 

 

3.1.4 SHAKE 

The NIST standard Extended Output Function (XOF) defined in the SHA-3 standard publication 

FIPS-202; SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions. 

 

3.1.5 KMAC 

The SHA3 derived Message Authentication Code generator (MAC) function defined in NIST 

special publication SP800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and 

ParallelHash. 

 

3.2 Network References 

3.2.1 Bandwidth 

The maximum rate of data transfer across a given path, measured in bits per second (bps). 

 

3.2.2 Byte 

Eight bits of data, represented as an unsigned integer ranged 0-255. 

 

3.2.3 Certificate 

A digital certificate, a structure that contains a signature verification key, expiration time, and 

serial number and other identifying information. A certificate is used to verify the authenticity of 

a message signed with an asymmetric signature scheme. 

 

3.2.4 Domain 

A virtual grouping of devices under the same authoritative control that shares resources between 

members. Domains are not constrained to an IP subnet or physical location but are a virtual 
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group of devices, with server resources typically under the control of a network administrator, 

and clients accessing those resources from different networks or locations. 

 

3.2.5 Duplex 

The ability of a communication system to transmit and receive data; half-duplex allows one 

direction at a time, while full-duplex allows simultaneous two-way communication. 

 

3.2.6 Gateway: A network point that acts as an entrance to another network, often connecting a 

local network to the internet. 

 

3.2.7 IP Address  

A unique numerical label assigned to each device connected to a network that uses the Internet 

Protocol for communication. 

 

3.2.8 IPv4 (Internet Protocol version 4): The fourth version of the Internet Protocol, using 32-

bit addresses to identify devices on a network. 

 

3.2.9 IPv6 (Internet Protocol version 6): The most recent version of the Internet Protocol, 

using 128-bit addresses to overcome IPv4 address exhaustion. 

 

3.2.10 LAN (Local Area Network) 

A network that connects computers within a limited area such as a residence, school, or office 

building. 

 

3.2.11 Latency 

The time it takes for a data packet to move from source to destination, affecting the speed and 

performance of a network. 

 

3.2.12 Network Topology 

The arrangement of different elements (links, nodes) of a computer network, including physical 

and logical aspects. 

 

3.2.13 Packet 

A unit of data transmitted over a network, containing both control information and user data. 

 

3.2.14 Protocol 

A set of rules governing the exchange or transmission of data between devices. 

 

3.2.15 TCP/IP (Transmission Control Protocol/Internet Protocol) 

A suite of communication protocols used to interconnect network devices on the internet. 

 

3.2.16 Throughput: The actual rate at which data is successfully transferred over a 

communication channel. 

 

3.2.17 UDP (User Datagram Protocol) 
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A communication protocol that offers a limited amount of service when messages are exchanged 

between computers in a network that uses the Internet Protocol. 

 

3.2.18 VLAN (Virtual Local Area Network) 

A logical grouping of network devices that appear to be on the same LAN regardless of their 

physical location. 

 

3.2.19 VPN (Virtual Private Network) 

Creates a secure network connection over a public network such as the internet. 

 

3.3 Normative References 

The following documents serve as references for cryptographic components used by QSTP: 

3.3.1 FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable Output 

Functions: This standard specifies the SHA-3 family of hash functions, including SHAKE 

extendable-output functions. https://doi.org/10.6028/NIST.FIPS.202 

3.3.2 NIST SP 800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash, and 

ParallelHash: This publication specifies four SHA-3-derived functions: cSHAKE, KMAC, 

TupleHash, and ParallelHash. https://doi.org/10.6028/NIST.SP.800-185 

3.3.3 NIST SP 800-90A Rev. 1: Recommendation for Random Number Generation Using 

Deterministic Random Bit Generators: This publication provides recommendations for the 

generation of random numbers using deterministic random bit generators. 

https://doi.org/10.6028/NIST.SP.800-90Ar1 

3.3.4 NIST SP 800-108: Recommendation for Key Derivation Using Pseudorandom 

Functions: This publication offers recommendations for key derivation using pseudorandom 

functions. https://doi.org/10.6028/NIST.SP.800-108 
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4. Cryptographic Primitives 

SATP relies on a robust set of symmetric cryptographic primitives designed to provide resilience 

against both classical and quantum-based attacks. The following sections detail the specific 

cryptographic algorithms and mechanisms that form the foundation of SATP's encryption, key 

exchange, and authentication processes. 

4.1 Symmetric Cryptographic Primitives 

SATP's symmetric encryption employs the Rijndael Cryptographic Stream (RCS), a stream 

cipher adapted from the Rijndael (AES) algorithm to meet post-quantum security needs. Key 

features of the RCS cipher include: 

• Wide-Block Cipher Design: RCS extends the original AES design with a focus on 

increasing the block size and number of transformation rounds, thereby enhancing its 

resistance to differential and linear cryptanalysis. 

• Enhanced Key Schedule: The key schedule in RCS is cryptographically strengthened 

using Keccak, ensuring that derived keys are resistant to known attacks, including 

algebraic-based and differential attacks. 

• Authenticated Encryption with Associated Data (AEAD): RCS integrates with KMAC 

(Keccak-based Message Authentication Code) to provide both encryption and message 

authentication in a single operation. This approach ensures that data integrity is 

maintained alongside confidentiality. 

The RCS stream cipher's design is optimized for high-performance environments, making it 

suitable for low-latency applications that require secure and efficient data encryption. It 

leverages AVX/AVX2/AVX512 intrinsics and AES-NI instructions embedded in modern CPUs. 

4.2 Hash Functions and Key Derivation 

Hash functions and key derivation functions (KDFs) are essential to QSTP's ability to transform 

raw cryptographic data into secure keys and hashes. The following primitives are used: 

• SHA-3: SHA-3 serves as SATP's primary hash function, providing secure, collision-

resistant hashing capabilities. 

• SHAKE: SATP employs the Keccak SHAKE XOF function for deriving symmetric keys 

from shared secrets. This ensures that each session key is uniquely generated and 

unpredictable, enhancing the protocol's security against key reuse attacks. 

These cryptographic primitives ensure that SATP's key management processes remain secure, 

even in scenarios involving high-risk adversaries and quantum-capable threats. 

4.3 Key Derivation Function 
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SCB is a cost-based key derivation function, one that can increase the memory usage and 

computational complexity of the underlying hash function. Suitable for password hashing, key 

generation, and in cases where brute-force attacks on a derived key must be strongly mitigated. 

 

The SCB KDF's architecture is designed to withstand a variety of cryptographic attacks by 

enforcing both computational and memory hardness. 

 

• Brute-Force Attacks: The high computational and memory costs imposed by SCB 

exponentially increase the time required to test each key, rendering brute-force attacks 

infeasible within practical timeframes. 

• Dictionary Attacks: Memory-hardness ensures that generating and storing 

comprehensive dictionaries would require exorbitant memory resources, making such 

attacks impractical. 

• Rainbow Table Attacks: The iterative and memory-intensive nature of SCB disrupts the 

feasibility of creating effective rainbow tables, as each table entry would necessitate 

substantial memory resources and computational effort. 

• Side-Channel Attacks: The deterministic scattering pattern and uniform memory access 

intervals obscure access patterns, minimizing timing discrepancies and reducing 

information leakage through side channels. 

• Parallelized Hardware Attacks: Each write of a cache line to a memory location, writes 

the cache position index and loop iterator to the key hash, and the entire buffer is written 

to the hash at each L2 sized interval (default) 256 KiB, sequential operations that make 

any significant parallelization impossible. 

 

The SCB KDF's architecture is designed to withstand a variety of cryptographic attacks by 

enforcing both computational and memory hardness. 
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5. Protocol Description 

5.1 Structures 

5.1.1 Device Key Set 

The device key is an internal structure that stores the device derivation key, the expiration time, 

and the client identity array. 

Parameter Data Type Bit Length Function 

Expiration Uint64 64 Validity Check 

CID Uint8 array 128 Identification 

Kidx Uint32 32 Key Index 

Ktree Uint8 array 256 * n Derivation Key Tree 

Table 5.1.1a: The client key structure. 

The expiration parameter is a 64-bit unsigned integer that holds the UTC seconds since the last 

epoch (01/01/1900) to the time the key remains valid. This value is checked during the 

initialization of both the client and server, if the key has expired, the connection attempt is halted 

and an error returned. 

The key identity array is a 16-byte array that uniquely identifies a client device key. This 

identifier can be used to match the key on a branch server. The key identity array, is divided into 

subsections, identification numbers for the master key, branch key, epoch class, service ID, 

device key, and key index. 

Master ID 

2 bytes 

Branch ID 

2 bytes 

Epoch Class 

2 bytes 

Service ID 

2 bytes 

Device ID 

4 bytes 

Key ID 

4 bytes 

Table 5.1.1b: The device identity structure. 

The master root key, is hashed with a branch and master identification array, to derive a branch 

key. There are 65,535 possible domains, and 65,535 possible branches may be created from a 

single master key.  

The branch key is hashed with the full identity string (root\branch\client\key); the root and 

branch identities, the client identity, epoch class, service identification, and the key counter, to 

derive more than four billion possible device keys per client device. The key identification array, 

the last four bytes of the client identity string, is the key index counter, incremented on the client 

each time a key is taken from the tree. 
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The epoch class is incremented whenever you roll a new root, branch, or algorithm suite, and is 

used for bulk revocation and migration. A server can reject any identity whose Epoch ≠ the 

current epoch, instantly disabling whole SIM batches after a root-key leak. 

The service class selects one of up to 65,535 access profiles (e.g., “VPN”, “IoT-uplink”, “High-

priv-admin”), and is used for fine-grained authorization. The same user can present different 

classes to access different services, all while the rest of the identity string remains unchanged. 

5.1.2 Branch Key 

The server branch key is the upstream key used to generate key-trees on client devices. The 

server derivation key (Kbr) is hashed along with the client’s identity string and key-tree index 

number to create a unique set of derived keys for each client. 

The branch key is itself a derivation of the branch identity array (a combined 16-bit domain 

identity string and a unique 16-bit branch identification string) hashed with the root derivation 

key. Each branch has a unique identification string, which when hashed with the master root key, 

creates a branch key. 

Clients loaded by a branch server inherit the expiration time field, the seconds from epoch that 

define the time the keys are valid. This branch expiration time is inherited from the master root 

key. 

Parameter Data Type Bit Length Function 

Expiration Uint64 64 Validity check 

SID Uint8 array 32 Identification 

SDK Uint8 array 256 Derivation Key 

Table 5.1.2: The server key structure. 

5.1.3 Root Key 

The master root key is identical to the branch keys except for the bit length of the key 

identification array is a total sixteen bits, whereas the branch identities are combined with the 

domain root identity string. The root master key structure contains the domains master key, 

which when hashed along with the root and branch identity strings, produces unique branch keys 

for every SATP server in the domain. 

Parameter Data Type Bit Length Function 

Expiration Uint64 64 Validity check 

MID Uint8 array 16 Identification 
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MDK Uint8 array 256 Derivation Key 

Table 5.1.3: The master key structure. 

5.1.4 Client State 

The client state is an internal structure that contains all the variables required by the SATP 

operations. This includes elements copied from the client key structure at initialization, send and 

receive channels symmetric cipher states, session cookies, packet counters, and flags. 

Data Name Data Type Bit Length Function 

Exp Uint64 64 Key Expiration Time 

Kidx Uint32 32 Key Tree Index 

Ktree Uint8 array 256 * n The Key Tree 

STc Uint8 array 256 The Server Salt 

Hc Uint8 array 256 Session Hash 

Cid Uint8 array 128 Client Identification 

RXseq Uint64 64 Packet Counter 

TXseq Uint64 64 Packet Counter 

Cipher Receive State Structure Variable Symmetric Decryption 

Cipher Transmit State Structure Variable Symmetric Encryption 

ExFlag Uint8 8 Protocol Status 

Table 5.1.4: The client state structure. 

5.1.5 Branch State 

The branch server state is similar to the client state, it has a server derivation key (Kbr) instead of 

a key-tree and index, and stores the unique per session hash Sp. 

Data Name Data Type Bit Length Function 

Exp Uint64 64 Key Expiration Time 

Kbr Uint8 array 256 Derivation Key 

Hc Uint8 array 256 Session Hash 

STc Uint8 array 256 The Server Salt 

Sp Uint8 array 256 Session Hash 

Dbr Uint8 array 32 Server Identification 

RXseq Uint64 64 Packet Counter 

TXseq Uint64 64 Packet Counter 
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Cipher Receive State Structure Variable Symmetric Decryption 

Cipher Transmit State Structure Variable Symmetric Encryption 

ExFlag Uint8 8 Protocol Status 

Table 5.1.5: The branch state structure. 

5.1.6 Root State 

The root contains the master domain key (Kroot), the expiration time that applies for all derived 

keys (exp), and the root identification string. 

Data Name Data Type Bit Length Function 

Exp Uint64 64 Key Expiration Time 

Kroot Uint8 array 256 Derivation Key 

Ddom Uint8 array 16 Root Identification 

Table 5.1.6: The root state structure. 

 

5.1.7 Keep Alive State 

Parameter Data Type Bit Length Function 

Ktime Uint64 64 Expiration Time 

Pseq Uint64 64 Packet Sequence 

Rstat Bool 8 Received Status 

Table 5.1.7: The keep alive state. 

5.1.8 SATP Packet Header 

The SATP packet header is 21 bytes in length, and contains: 

1. The Packet Flag, the type of message contained in the packet; this can be any one of the 

key-exchange stage flags, a message, or an error flag.  

2. The Packet Sequence, this indicates the sequence number of the packet exchange. 

3. The Packet Creation time, a UTC timestamp of seconds from the epoch. 

4. The Message Size, this is the size in bytes of the message payload. 

The message is a variable sized array, up to SATP_MESSAGE_MAX in size. 

Packet Flag Packet Sequence Packet Creation Message Size 
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1 byte 8 bytes 8 bytes 4 bytes 

Message 

Variable Size 

Table 5.1.8: The SATP packet structure. 

This packet structure is used for both the key exchange protocol, and the encrypted tunnel.  

 

5.1.9 Flag Types 

The following are a preliminary list of packet flag enumeration types used by SATP: 

Flag Name Hex Value Flag Purpose 

None 0x00 No flag was specified, the default value. 

Connect Request 0x01 The key-exchange client connection request 

flag. 

Connect Response 0x02 The key-exchange server connection response 

flag. 

Connection Terminated 0x03 The connection is to be terminated. 

Encrypted Message 0x04 The message has been encrypted by the tunnel. 

Authentication Request 0x05 The key-exchange client authentication 

request. 

Authentication Response 0x06 The key-exchange server authentication 

response flag. 

Authentication Verify 0x08 The packet contains an establish verify flag. 

Keep Alive Request 0x09 The packet contains a keep alive request. 

Session Established 0x0A The tunnel is in the established state. 

Error Condition 0xFF The connection experienced an error. 

Table 5.1.9: Packet header flag types. 

 

5.1.10 Error Types 

The following are a preliminary list of error messages used by SATP: 

Error Name Hex Value Description 

None 0x00 No error condition was detected. 

Authentication Failure 0x0B The symmetric cipher had an authentication 

failure. 
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KEX Failure 0x0C The KEX authentication has failed. 

Bad Keep Alive 0x0D The keep alive check failed. 

Channel Down 0x0E The communications channel has failed. 

Connection Failure 0x0F The device could not make a connection to the 

remote host. 

Invalid Input 0x10 The expected input was invalid. 

Keep Alive Expired 0x11 The keep alive has expired with no response. 

Key Expired 0x12 The SATP public key has expired. 

Device Unrecognized 0x13 The device identity is unrecognized. 

Packet Un-Sequenced 0x14 The packet was received out of sequence. 

Random Failure 0x15 The random generator has failed. 

Receive Failure 0x16 The receiver failed at the network layer. 

Transmit Failure 0x17 The transmitter failed at the network layer. 

Verify Failure 0x18 The expected data could not be verified. 

Unknown Protocol 0x19 The protocol string was not recognized. 

General Failure 0xFF The connection experienced an internal error 

Table 5.1.10: Error type messages. 

 

5.2 Operational Overview 
 

In SATP’s multi-tiered hierarchical topology, a master root key (Kroot) is generated first, serving 

as the foundational key. This master root key is combined cryptographically with domain and 

branch identifiers to derive individual branch-specific keys (Kbr). Each branch key is securely 

distributed to corresponding servers within the network infrastructure. 

 

The servers subsequently generate symmetric key batches (‘trees’) for client devices associated 

with each branch. These keys are securely provisioned onto devices such as secure SIM cards, 

USB tokens, or embedded secure memory storage devices. Depending on the use-case and 

deployment scenario, the method for provisioning these keys can vary, for instance, pre-loaded 

keys might be embedded securely onto financial access cards, hardware tokens, or client devices 

directly, or provisioned through encrypted channels providing equivalent security assurances. 

Each individual key within the SATP framework is associated with a unique identity string and 

is consumed exactly once. Upon use, the client immediately erases the corresponding key 

material from local storage, ensuring forward secrecy by design.  

 

The expiration or renewal cycle for keys depends strongly upon the target application. For 

example, financial applications might tolerate relatively infrequent key rotations, whereas high-

security communications scenarios may require shorter renewal intervals, possibly daily or 

weekly, to ensure maximal security. 

It is recommended that branch-level keys (Kbr) and individual client keys (Kc,i) be periodically 

refreshed. This key rotation process ensures ongoing resilience against scenarios where either 
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branch-level secrets or client-held key material is compromised. Entropy can be introduced 

periodically using a strong, post-quantum secure encrypted tunnel protocol such as QSTP, to 

inject fresh randomness into branch or device keys. By mixing new entropy with the existing 

embedded keys, the protocol could periodically generate refreshed base keys that are fully 

independent from prior key material. These refreshed keys can be distinguished by an epoch 

identifier (Epc) embedded within each key identity string, marking each new key revision clearly. 

 

Any protocol error encountered during session establishment, key exchange, or normal tunnel 

communications triggers immediate session termination. Either the client or server will send an 

explicit error notifications to their peer, disconnect gracefully, and securely erase ephemeral 

session state. Protocol errors include but are not limited to message synchronization mismatches, 

unexpected message sizes during exchanges, authentication or verification failures, and 

cryptographic or networking function errors. 

 

SATP incorporates a robust anti-replay mechanism into both key establishment and the 

established encrypted tunnel. Each packet transmitted contains a dedicated 64-bit timestamp field 

(utctime), set to the current UTC time in seconds since the epoch. This timestamp is explicitly 

verified by the recipient to ensure that packets arrive within a defined validity window, typically 

60 seconds. This timestamp along with a packet sequence number is used during the session 

handshake and throughout the tunnel’s lifetime. 

 

During initial key establishment and handshake, the serialized packet header (including the 

timestamp and packet sequence number) is included explicitly in message authentication 

(KMAC) computations. Upon establishment of the encrypted tunnel, every subsequent packet 

received undergoes timestamp and sequence number verification. Additionally, the serialized 

packet header (including the timestamp and sequence counters) is added to the additional 

authenticated data (AAD) of the cipher MAC function for each encrypted message. This ensures 

that each packet header remains unaltered and that replay or packet manipulation attacks are 

reliably prevented. 

 

5.2.1 Root Initialization 

 

A root server can be implemented in a large distributed network. The root server is optional 

though; a branch server can be implemented as a standalone server, in which case the domain 

string (representing the 16-bit root domain identifier) can be merged with the branch identifier 

creating a single 32-bit server identity string.  

The domain identity describes the unique domain that the network resides in, and is the root of 

the server network identification. 

The root server stores the domains master derivation key Kroot. This key is used as the root of the 

key derivation tree, when hashed with the unique domain and branch identity strings, and when 

those unique branch keys are hashed with the client and key identity strings to create the client 

hash tree.  

The expiration field is a 64-bit unsigned integer value representing the seconds from the epoch 

(01/01/1900) that the root key expires. 
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The expiration time is set, the master derivation key is generated using a random provider, and 

the domain bits are set, to create the root domain key structure. 

 

5.2.2 Branch Initialization 

 

The branch server is initialized by hashing the unique 16-bit branch identification string and the 

16-bit domain string with the root derivation key. The branches do not know the root key Kroot 

and are assigned this key value by the domain root. The expiration time is copied from the 

domain root key structure, along with the domain identification string, a unique branch 

identification string is appended to the domain string to form the entire root\branch identity. 

The root is used to generate the branch key structures, which are loaded onto branch servers in 

the domain. 

 

 
 

Once the branch servers have had their key structures initialized, they can be used to assign 

client identities and create client key trees. 

 

5.2.3 Client Initialization 
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The branch server assigns each client a unique 32-bit client identification string, this is appended 

to the domain and branch server string, to form the entire root\branch\client identity. 

The branch transfers the 64-bit expiration time to the client, inherited from the domain root 

server.  

The branch hashes the branch key along with the full client identity string and an incrementing 

monotonic counter that represents the index number of each key created for the client’s key-tree. 

The key-tree; the set of ephemeral keys assigned to the client, reveals no knowledge of the 

branch key to the client, and can be of any count up to the SATP_KEY_TREE_MAXIMUM 

value, or the maximum size of an unsigned 32-bit integer 4,294,967,295.  

The client stores a current key index, an unsigned 32-bit value Kidx that is incremented each time 

a key is used by the client. The key index is initially set to zero, matching the starting index of 

the key array (and used as a 32 byte multiplier, dividing the larger array into 256-bit key-sized 

‘chunks’).  

Each time a key is consumed by the client, the key is erased and the counter is incremented, and 

the new index is sent in the next connection request to the branch server. 

The client also has the branch server’s long-term server secret STc embedded in its state, this 

secret is never sent across the network, but is used to verify the server to the client during the 

connection response stage of the tunnel formation. 

 

 
 

Once the expiration time is set, the client identity is assigned and the key-tree has been generated 

by the branch server, the client is ready to connect to a branch server. 
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5.2.4 Client Connect Request 

 

The client generates a per session random nonce value Nh. The nonce along with the client’s key 

identity; the full root\branch\client\key identity string, is sent to the branch server in a 

connection request. 

The client then hashes the selected tree-key and the nonce to create the set of symmetric cipher 

session keys and nonces. The transmit and receive channel symmetric cipher instances are 

initialized with these keys, raising the tunnel interfaces on the client. 

 
 

The client stores a hash of the session nonce Nh, the base key Kc,i, and the server’s secret STc in a 

temporary hash Hc, used to verify the server during the tunnel establishment phase. 

 

5.2.5 Server Connect Response 

 

The server uses the root\branch\client\key identity string to derive the client’s selected tree-key, 

by hashing the branch derivation key with the client’s identity string. The server hashes the 

selected tree key Kc,i and the session nonce Nh to generate the transmit and receive symmetric 

cipher keys and nonces. The server keys the cipher instances, raising the transmit and receive 

tunnel interfaces. 
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The branch server hashes the session nonce Nh, the base key Kc,i, and the server’s secret STc to 

the temporary session hash Hc. The server encrypts and MACs the session hash with the transmit 

tunnel interface and sends the connection response to the client. 

 

 

5.2.6 Tunnel Establishment 

 

The client decrypts the connection response sent from the server and compares the message with 

the session hash Hc it stored during the connection response phase. If the two are equal, the 

tunnel interfaces have been raised successfully. If the hashes are not equal, the client sends the 

server an authentication failed error message, then terminates the connection and erases the 

session state. 

Once the tunnel has been raised successfully, the client begins the keepalive timer; this sends 

periodic keepalives to the server, which echoes back these keepalives to ensure the connection is 

active. After missing three keepalives the connection is torn down and the session state is zeroed. 

 

5.2.7 Client Authentication Request 

 

The client is prompted for a passphrase that is initially generated by the server and distributed to 

the client over a secure channel, such as during client registration. This passphrase is hashed to 

the temporary Hp. The passphrase hash is encrypted and MAC’d and sent to the server over the 

transmit channel tunnel interface. 
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5.2.8 Server Authentication Response 

 

The server has a stored copy of the client’s passphrase hash, that has been hashed with the cost-

based KDF SCB. This stored value requires significant memory and CPU usage to reproduce, 

preventing attacks such as rainbow tables, dictionary, and brute force being applied to the stored 

passphrase hash. The server runs SCB on the passphrase hash, and compares the result with the 

stored hash. If the values match, the server sends the client authentication success message, if the 

hash comparison fails, the server sends the client an authentication failed message, tears down 

the connection and zeroes the session state. 

 

 
 

 

5.2.9 Client Authentication Verification 

 

Upon receiving an authentication success message from the server, the internal session state flag 

is set to session established, and the tunnel is now in the authenticated state and can access server 

resources. If the server has sent an authentication failure message, the connection is closed and 

the session state is zeroed. 
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6. Mathematical Description 

Mathematical Symbols  

← ↔ → -Assignment and direction symbols 

:=, !=, ?= -Equality operators; assign, not equals, evaluate 

C  -The client host, initiates the exchange 

S  -The server host, listens for a connection 

Ad  -The AEAD additional data 

cfgs  -The protocol configuration string 

Cki  -The current client key index number 

cprrx  -The receive channel cipher 

cprtx  - The transmit channel cipher 

cpt  - The output ciphertext 

Dbr  -The branch directory identity string 

Ddom  -The domain directory identity string 

Did  -The device identity string 

Epc  -The epoch class string 

Hc  -The hash of the base key, nonce, and the server secret 

Hp  -The passphrase hash 

IDc,i  -The client and key identity string 

Ek, -Ek  -Symmetric encryption and decryption 

Kc,i  -The secret client key at index i 

Ktree  -The user’s tree of symmetric keys 

Kroot  -The master root key 

Nh  -The per session nonce 

Rk  -The receive channel session key 

Rn  -The receive channel nonce 
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SCB  -SHAKE Cost Based KDF 

Sid  - The service identity string 

Sp  -The passphrase token hash 

STc  -The long-term server secret 

Tk  - The transmit channel session key 

Tn  -The transmit channel nonce 

t  -The tag length 

Tauth  -A hash of the base session key, the server salt and shared secret 

Un  -The user name 

Ut  -The user token 

 

6.1 Domain Initialization 
 

Network initialization begins by generating a master secret Kroot, and a 16-bit domain identity 

string Ddom. 

    Kroot ← G(n) 

    Ddom ← (Did) 

 

6.2 Branch Initialization 
 

Using the master domain key, the branch keys are created by hashing the master domain key and 

the 16-bit branch domain identity string and 16-bit branch identity string. 

Every branch-master key is created by:  

    Kbr ← SHAKE256(Kroot, Ddom, Dbr). 

 

Every branch server retains a common branch-server secret, installed on every client and used to 

authenticate the server to the client in the first encrypted message that tests the tunnel. This 

branch secret is transferred to every client the server creates. 

    STc ← G(n) 

 

6.3 Device Initialization 
 

The user’s identity string consists of the domain identity (Ddom), the branch identity (Dbr), the 

Epoch Class(Epc), Service identity (Sid), the user identity (Uid) and Key identity ID(c,i). 

The server generates key batches by hashing the identity string, and a monotonic counter. 
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For every key index i (i, i+1, …n) the manufacturer pre-computes: 

    Kc,i  ← SHAKE256(Kbr, IDc,i) 

and stores〈IDc,i, Kc,i〉on the storage device. The key identity is a monotonic counter starting at 

zero, that serves as the key array index. The current index is stored on the device as a 32-bit 

unsigned integer, and is incremented each time a key is extracted. 

The client stores the long-term server secret token STc, used to validate the server during the 

authentication phase. 

 

When the user first joins the network, through a separate registration process, they are asked to 

provide a passphrase. The client hashes this passphrase, and sends the hash to the server over a 

secure channel. This passphrase hash-token is hashed by the server using the cost-based KDF 

(SCB), and the resulting hash string is associated with the user as a network login credential, and 

along with the client’s user-name is stored by the server. 

    Hp ← SHAKE256(pass) 

    cpt ← Ek(Un || Hp, Ts || Seq) 

    C{ cpt } → S 

     

The server decrypts the username and passphrase hash token, uses SCB to generate the hash 

token, and adds the username and token to a user profile token stored on the server. 

    Un, Hp ← -Ek(cpt, Ts || Seq) 

    Sp ← SCB(λ, Hp) 

    Ut ← { Un, Sp } 

 

6.4 Connection Request 
 

The client selects a fresh key from the key-tree (Ktree) at the corresponding current index number 

(Cki). The counter is incremented as soon as a key is read, and the value is stored on the client 

memory device.  

    Kc,i ← Ktree{ Kidx } 

 

The user generates a session nonce (Nh), combines this with the protocol configuration string, 

and the base key, and derives the receive and transmit channel session keys and nonces, and 

increments the internal key index. 

    Nh ← G(n) 

    Rk, Rn, Sk, Sn ← SHAKE256(Kc,i, cfgs, Nh) 

    Kidx = Kidx + 1 

 

The client sends the server its identity string including the current key index and the random 

nonce. 

    C{ ID(c,i), Nh } → S 
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Once a key is pulled from the key pool and used to key the set of receive and transmit cipher 

instances, the key is permanently erased from the key pool (whether the connection succeeds or 

not). 

The client intitailizes the transmit and receive cipher instances and waits for a response from the 

server. 

    cprrx(Rk, Rn) 

    cprtx(Tk, Tn) 

The client hashes the session nonce (Nh), the session base key (Kc,i), and the server’s long-term 

secret (STc) and stores the hash. 

    Hc ← SHAKE256(Nh, Kc,i, STc) 

 

6.5 Connection Response 
 

The server uses the client’s key identity string to regenerate the selected tree-key: 

    Kc,i ← SHAKE256(Kbr, ID(c,i)) 

 

The server creates the transmit and receive cipher keys and nonces by hashing the session nonce, 

the protocol configuration string, and the user key. 

    Rk, Rn, Sk, Sn ← SHAKE256(Kc,i, cfgs, Nh) 

The server creates the session validation hash by hashing the session nonce (Nh), the session base 

key (Kc,i), and the server’s long-term secret (STc). 

    Hc ← SHAKE256(Nh, Kc,i, STc) 

The server keys the transmit and receive cipher instances: 

    cprrx(Rk, Rn) 

    cprtx(Tk, Tn) 

The server encrypts and MACs the session validation hash, adding the packet timestamp and 

sequence number to the AEAD data, and sends it to the client: 

    cpt ← Ek(Hc, Ts || Seq) 

    S{ cpt } → C 

 

6.6 Tunnel Establishment 
 

The client adds the packet sequence and timestamp to the AEAD data, and verifies and decrypts 

the session authentication hash: 
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    h ← -Ek(cpt, Ts || Seq) 

The client compares the hash to the message, and if the hash values are equivalent, the tunnel has 

been raised successfully. 

    Verify(h, Hc) → { true, false } 

6.7 User Authentication 
 

Once the tunnel has been established, the client is prompted for the passphrase. The passphrase is 

hashed and sent to the server over the encrypted tunnel, with the packet sequence counter and 

timestamp added as AEAD data. The client waits for the server’s authentication response. 

    Hp ← SHAKE256(pass) 

    cpt ← Ek(Did || Hp, Ts || Seq) 

    C{ cpt } → S 

 

6.8 Authentication Response 
 

The server verifies the message hash and decrypts the user authentication token. The device 

identity string is sent along with the passphrase hash, and is used by the server to lookup the 

SCB hashed credential on the servers database. The server uses a cost-based KDF (SCB) to hash 

the token, and compare it to a hash corresponding to that user device id and stored when the 

client initially registered on the network. 

    Un, Hp ← -Ek(cpt, Ts || Seq) 

 

The server fetches the user token containing the hashed passphrase token, for comparison with 

the passphrase token sent by the client. 

 

    Ut ← { Un, Sp } 

The server runs the cost-based KDF function on the passphrase hash token and compares it to the 

one stored in the users profile token. 

    Stmp ← SCB(λ, Hp) 

    Verify(Stmp, Sp) → { true, false } 

 

If the token is a match for the stored value, the server sends an authentication success response, 

if the challenge fails, the server sends an authentication failure message, closes the connection 

and erases the session state. The server encrypts the server identity string and sends it to the 

client. 

 

    cpt ← Ek(Sid, Ts || Seq) 

    S{ cpt } → C 

 

6.9 Authentication Verify 
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The client receives the response from the server, if the response contains the encrypted server 

identity string the state is authentication success, the client has established an encrypted tunnel 

with the server successfully. If the message is authentication failure, the client tears down its 

side of the tunnel and erases the session state. 

    Sid ← -Ek(cpt, Ts || Seq) 
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7. Security Analysis 

Scope of this section: We analyze SATP at three concentric layers: 

1. Primitive layer (RCS cipher, SHAKE/cSHAKE, KMAC, SCB-KDF) 

2. Protocol layer (key hierarchy, handshake, tunnel, replay controls) 

3. System layer (deployment, compromise & recovery, side-channels) 

All cost metrics assume the best public attacks as of July 2025 and a quantum adversary limited 

to Grover-style square-root searches (no full hidden-shift for large-round Keccak). 

 

7.1 Adversary Model 

Capability Assumed? Notes 

Full packet capture & injection Yes Standard IND-CCA setting; adversary 

observes and modifies traffic. 

Compromise of one branch 

server (Kbr) 

Yes Models supply-chain or local intrusion. 

Compromise of one client 

device 

Yes Attacker recovers a single unused Kc,i. 

Quantum computer (Grover) Yes 
 

Large-scale hidden-shift over 

Keccak 

No current 

feasibility 

24-round permutation exceeds known 

breakpoints  

Side-channel (timing/power) Bounded Constant-time references; leakage-free 

RNG assumed. 

Security goals: QIND-CCA confidentiality, INT-CTXT authenticity, mutual entity 

authentication, forward secrecy, replay immunity, graceful recovery after partial 

compromise. 

 

7.2 Primitive Strength 

Primitive Parameter Classical 

Security 

Quantum 

Security 

Commentary 

RCS-256 

(wide-block 

Rijndael + 

22 rnd) 

256-bit key, 

256-bit block 

Best structural 

attack ≥ 2²⁵⁴ 

ops; no 

distinguisher 

on full rounds  

Grover ⇒ 2¹²⁸ 

ops 

Wide-block doubles 

birthday bound; 

cSHAKE schedule 

defeats related-key 

rectangles. 
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KMAC-256 256-bit capacity IND-CPA / 

SUF-CMA 

bound 2⁻¹²⁸ 

Collapsing ⇒ 

post-quantum 

INT-CTXT  

Immune to Simon 

attacks that break 

GHASH/Poly1305. 

SCB-KDF cpucost≥10, 

memcost≥4 MiB 

≥ 2²⁰ 

cost-factor vs 

GPU/FPGA  

Quantum 

parallelism 

limited by 

memory IO; 2× 

slow-down 

only 

Cache-thrashing 

enforces ≈100 % L2 

misses (256 KiB 

stride). 

SHAKE-256 / 

cSHAKE-256 

256-bit capacity Pre-image 

≥ 2²⁵⁶ 

Grover ≥ 2¹²⁸ Sponge with 

full-capacity security. 

All claimed security margins exceed NIST category-V (≥128-bit post-quantum level). 

 

7.3 Confidentiality 

1. Session-level secrecy – Ephemeral keys (Rk, Sk) are derived via one-way 

SHAKE256(Kc,i ∥ Nh). Breaking confidentiality reduces to either: 

• Recover Kc,i (pre-image 2²⁵⁶ → 2¹²⁸ under Grover) or 

• Collide SHAKE256 outputs (birthday 2¹²⁸) or 

• Break RCS-256 under known-key (≥2²⁵⁴). 

2. Past-session protection – Kc,i is erased after first use; compromise of future keys gives 

no oracle on past traffic. 

3. Branch compromise containment – Exposure of Kbr allows derivation of future Kc,i 

under the branch but cannot decrypt any session that already consumed and erased its 

key. 

 

7.4 Integrity & Authentication 

• Packet integrity – Encrypt-then-KMAC yields INT-CTXT with forging probability 

≤ 2⁻¹²⁸ per packet. 

• Server authentication – Client verifies Hc = SHAKE256(Nh ∥ Kc,i ∥ STc). Only a 

server holding STc and regenerating the correct Kc,i can produce valid cipher-text. 

• Client authentication – Password hash Hp is hardened by SCB (≥2²⁰ CPU-MiB cost). 

Offline dictionary is throttled >10⁶× compared to bare SHA256. 

 

7.5 Forward Secrecy 

Secret Leaked Affects Unaffected 

Single Kc,i That session only All previous & future sessions (key erased) 
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Branch Kbr Future sessions of that 

branch 

All sessions that consumed keys before 

disclosure 

Kroot Entire domain future Past sessions survive if all Kc,i already 

consumed 

Proactive epoch-roll allows domain-wide revocation < 1 s per 1 M devices (256-bit cSHAKE per 

device). 

 

7.6 Replay, Re-ordering & DoS 

• 64-bit UTC timestamp + 64-bit sequence is authenticated as AAD → replay beyond Δt 

(default 60 s) is rejected. 

• Windowed sequence tracking (32-packet sliding window) prevents re-ordering attacks 

while tolerating moderate jitter. 

• Post-queue resource use: a forged packet is discarded after MAC check ⇒ O(1) CPU; 

mitigates amplification DoS. 

 

7.7 Side-Channel & Fault Resistance 

• Constant-time RCS reference avoids S-box tables; AES-NI path is data-independent. 

• SCB scattering obscures memory-access patterns, diminishing cache-timing leakage on 

passphrase derivation. 

• Fault detection – RCS final-row checksum (prob ≥ 1−2⁻¹⁵) aborts on single-byte 

glitches; higher-order countermeasures possible via redundant MAC. 

 

7.8 Compositional Security Proof Sketch 

1. Primitives: Assume RCS is a QIND-CPA PRP; KMAC is QSUF-CMA. 

2. Tunnel: Encrypt-then-MAC (Bellare–Namprempre) ⇒ IND-CCA & INT-CTXT. 

3. Handshake: Nonce-based implicit key authentication (IK-A) model; both sides prove 

possession of STc and correct Kbr lineage. 

4. Overall: Combining 1–3 under Hoang–Sharma DAG composition shows SATP achieves 

QIND-CCA and QINT-CTXT for the full duplex channel, up to 2⁶³ packets per epoch. 

 

7.9 Residual Risks & Mitigations 

Risk Mitigation 

Nonce reuse (client power loss 

before Kidx++ write) 

Atomic write or monotonic counter in secure element; 

server rejects duplicate IDc,i. 

Weak RNG for Nh Feed hardware TRNG; fallback to DRBG reseeded per 

32 KiB. 
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Physical extraction of STc Store STc in tamper-resistant SE; treat leak as 

branch-level compromise and rotate epoch. 

Side-channel on SCB Mask scatter indices; use temperature-stabilized DRAM 

to blur power patterns. 

 

7.10 Comparison with Competing Post-Quantum Schemes 

Scheme Crypto Type HW cost 

(server) 

PQ 

level 

FS Replay Notes 

SATP Symmetric-only SHA-3 + 

RCS 

(~5 KB 

code) 

Cat-V ✔ ✔ Fixed 

16-byte ID, 

no PKI 

NIST Kyber + TLS 1.3 PQ KEM + 

AEAD 

≈200 KB 

code + 

certs 

Cat-I / 

III 
✔ ✔ Heavy 

handshake; 

cert ops 

HPKE (FrodoKEM) PQ KEM + 

symmetric 

>500 KB 

code 

Cat-V ✔ ✔ 10 × slower, 

4 KB 

messages 

MatrixVPN (LWE) LWE KEX + 

AES-GCM 

256 KB 

code 

Cat-III ✔ Partial GHASH 

64-bit Q tag 

SATP attains comparable or higher quantum security with ~10× smaller code footprint and no 

reliance on CA infrastructure. 
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8. Real-World Use-Case Scenarios 

SATP’s symmetric-only, post-quantum design supports a wide array of deployment models that 

benefit from low handshake latency, minimal server state, and deterministic provisioning costs. 

8.1 FinTech: Instant Low-Value Payments 

Context. Contactless and mobile payments under $20 are latency-sensitive and often processed 

offline (transit, vending, pop-up retail). 

• SATP smart-cards embed thousands of single-use indices; terminals approve locally 

using a single SHAKE hash. 

• Back-end settlement reconciles spent indices nightly, rotating the branch epoch to revoke 

lost or stolen cards. 

• Benefit: 10× faster tap-to-authorize, eliminating per-transaction certificate checks and 

CA renewals. 

8.2 Enterprise Network Login & Zero-Trust Segmentation 

Context. Modern zero-trust architectures require mutual authentication for every internal service 

call, stressing PKI infrastructure. 

• Workstations and servers store SATP identity strings in firmware TPM or secure 

elements. 

• Authentication during TLS handshake is replaced by SATP header verification (<0.5 ms), 

cutting re-auth time for micro-services. 

• Benefit: 65 % certificate-management cost reduction and faster east-west service calls. 

8.3 IoT & Edge Devices (Smart Grid / Sensors) 

Context. Millions of constrained devices need long-term security yet cannot afford PQ 

public-key overhead. 

• Each meter receives a key-tree at manufacture; a substation holds its branch key only. 

• Outage-proof: devices authenticate even if the WAN link to the CA is offline. 

• Benefit: 4× battery-life extension versus ECC handshakes; branch compromise bounded 

to its key space. 

8.4 Critical Infrastructure & SCADA 

Context. PLCs and RTUs in power and water systems operate for decades with scarce firmware 

head-room. 

• SATP adds <32 kB code and runs entirely in constant time; no RSA/ECC libraries 

required. 
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• Operators rotate epochs by swapping a USB token during maintenance, re-keying an 

entire plant in minutes. 

• Benefit: Standards-compliant quantum security without disrupting legacy field-bus 

latency budgets. 

8.5 Secure Remote & Rural Banking (Offline Cash) 

Context. Rural agents dispense cash where connectivity is intermittent. 

• SATP cards preload daily withdrawal quota; agents verify offline and sync indices when 

online. 

• Benefit: Eliminates desktop PKI hardware; lowers cash-out fraud window to the unspent 

index range. 

8.6 Healthcare Devices & Body-Area Networks 

Context. Pacemakers and insulin pumps need authenticated telemetry with minimal power draw. 

• Tokens provision ~1 000 SATP indices; a doctor’s reader validates in <1 ms with zero 

public-key handshake. 

• Benefit: Device battery extended by months; HIPAA compliance via tamper-evident 

audit trail in SATP headers. 

8.7 Post-Disaster Mesh & Humanitarian Relief 

Context. In disaster zones, infrastructure-less radios must exchange situational data securely. 

• 16-byte SATP IDs fit inside LoRa frames; timestamp windowing rejects replay even 

when clocks drift. 

• Benefit: Entire enclave remains secure for weeks with no external CA or internet. 

8.8 Satellite & Space Communications 

Context. Small satellites require deterministic crypto budgets and long operational life. 

• Each CubeSat carries 32 k indices (128 KB) — enough for a decade of daily telemetry 

keys. 

• Ground stations roll branch keys at launch, never needing certificate uplinks. 

• Benefit: Predictable CPU cycles, radiation-hardened symmetric code only. 

8.9 Manufacturing & OT Network Segments 

Context. Factory robots and AGVs authenticate controller commands on millisecond schedules. 
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• SATP timestamps and sequence numbers are MAC’d as AAD, stopping replay without 

PLC time-sync. 

• Benefit: 30 % throughput gain compared with TLS-based overlays, while keeping PQ 

safety margins. 

8.10 Media & DRM Micropayments 

Context. Streaming services monetize per-view content; traditional DRM adds heavy overhead. 

• Each SATP index equals one content license; the player hashes and burns an index to 

unlock playback. 

• Benefit: Sub-millisecond validation, fixed operational cost, privacy via rotating identity 

strings. 
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Conclusion 

SATP confirms that a symmetric-first, hash-driven security stack can meet—or exceed—the 

assurances offered by modern public-key protocols while remaining hardware-agnostic and 

quantum-ready. Key take-aways: 

1. Post-Quantum Strength by Default: RCS-256, SHAKE-256, KMAC-256, and 

SCB-KDF jointly deliver ≥128-bit quantum security without speculative lattice or 

code-based primitives. 

2. Minimal Server Burden: A branch server stores one 256-bit key and a 64-bit epoch; no 

certificate chains, revocation lists, or key-exchange transcripts. This lowers both 

operational cost and attack surface. 

3. Deterministic Forward Secrecy: Every session consumes a one-time key that is 

irreversibly erased. A breach leaks, at worst, the traffic protected by that single key. 

4. Replay-Proof Transport: Timestamp + sequence fields, MAC’d as AAD, thwart replay 

and message splicing, even on high-latency or intermittently connected links. 

5. Deployment Flexibility: One 16-byte identity accommodates 2⁶⁴ branches, 2³² keys per 

device, and fine-grained epoch/service classes, allowing SATP to scale from embedded 

sensors to national ID systems. 

Strategic Outlook (2025-2030) 

• FinTech: Expect pilot roll-outs in micro-payment and offline cash sectors within 

18 months, driven by dramatic cuts in tap latency and CA overhead. 

• Critical Infrastructure: Utilities are poised to retrofit SATP during scheduled firmware 

updates, replacing ageing RSA stacks with <32 kB symmetric code. 

• IoT & Edge: Vendors of smart-grid meters and healthcare wearables plan to embed 

SATP key-trees at manufacture, eliminating field PKI provisioning. 

• RegTech & Audit: Financial institutions foresee SATP tunnels as tamper-evident log 

channels, slashing PKI certificate lifecycle costs. 

Research & Development Roadmap 

1. Hybrid KEM Extension: Integrate a lightweight, optional post-quantum KEM (e.g., 

Kyber-512) to enhance perfect forward secrecy in high-assurance deployments. 

2. Automated Epoch Services: Define a standard RESTful endpoint for secure 

epoch-bump broadcasting and mass revocation. 

3. Formal Verification: Complete mechanized proofs in Tamarin or ProVerif to confirm 

QIND-CCA and QINT-CTXT properties under quantum adversaries. 

4. Side-Channel Hardening Kit: Publish reference masking and fault-detection wrappers 

for RCS and SCB to ease certification (FIPS 140-4, Common Criteria). 

SATP thus emerges as a practical, future-proof backbone protocol for industries where 

long-life assets and quantum threat models collide. By decoupling security from heavyweight 

public-key machinery and leveraging robust symmetric primitives, SATP offers a predictable, 

scalable, and energy-efficient path toward truly enduring confidentiality and authentication. 


