
SKDP-2024 Rev. 1.1a

1

Symmetric Key Distribution Protocol – SKDP
Revision 1.1a, December 02, 2024

John G. Underhill – john.underhill@protonmail.com

This document is an engineering level description of the SKDP encrypted and authenticated

network messaging protocol. In its contents, a guide to implementing SKDP, an explanation of its

design, as well as references to its component primitives and links to supporting documentation.

Contents Page

Foreword 2

Figures 3

Tables 4

1: Introduction 5

2: Scope 8

3: References 9

4: Terms and Definitions 10

5: Structures 11

6: Operational Overview 16

7: Formal Description 28

8: SKDP API 33

7: Design Decisions 45

SKDP-2024 Rev. 1.1a

2

Foreword

This document is intended as the preliminary draft of a new standards proposal, and as a basis

from which that standard can be implemented. We intend that this serves as an explanation of

this new technology, and as a complete description of the protocol.

This document is the second revision of the specification of SKDP (version 1.1), further

revisions may become necessary during the pursuit of a standard model, and revision numbers

shall be incremented with changes to the specification. The reader is asked to consider only the

most recent revision of this draft, as the authoritative expression of the SKDP specification.

The author of this specification is John G. Underhill, and can be reached at

john.underhill@protonmail.com

SKDP, the algorithm constituting the SKDP messaging protocol is patent pending, and is owned

by John G. Underhill and Quantum Resistant Cryptographic Solutions Corporation. The code

described herein is copyrighted, and owned by John G. Underhill and Quantum Resistant

Cryptographic Solutions Corporation.

SKDP-2024 Rev. 1.1a

3

Figures

Contents Page

Figure 6.1: SKDP client connect request 17

Figure 6.2: SKDP server connect response 18

Figure 6.3: SKDP client exchange request 19

Figure 6.4: SKDP server exchange response 22

Figure 6.5: SKDP client establish request 24

Figure 6.6: SKDP server establish response 26

Figure 6.7: SKDP client establish verify 27

SKDP-2024 Rev. 1.1a

4

Tables

Contents Page

Table 5.1a: The client key structure 11

Table 5.1b: The device identity structure 11

Table 5.2: The server key structure 11

Table 5.3: The master key structure 12

Table 5.4: The client state structure 12

Table 5.5: The server state structure 13

Table 5.6: The keep alive state 13

Table 5.7: The SKDP packet structure 13

Table 5.8: Packet header flag types 14

Table 5.9: Error type messages 15

Table 8.1a SKDP configuration string. 33

Table 8.1b SKDP error strings. 33

Table 8.1c SKDP packet structure. 33

Table 8.1d SKDP master key structure 34

Table 8.1e SKDP server key structure 34

Table .1f SKDP device key structure 34

Table 8.1g SKDP keep alive state structure 34

Table 8.1h SKDP errors enumeration 35

Table 8.1i SKDP flags enumeration 35

Table 8.1j SKDP constants 37

Table 8.2 SKDP server state structure 40

Table 8.3 SKDP client state structure 42

SKDP-2024 Rev. 1.1a

5

1: Introduction

Key distribution is one of the most challenging problems in cryptography. The internet has

grown at an extraordinary pace since its inception and is now a core communications medium

used by billions of people around the globe. The information we send over this public medium

must be secured, as the internet has become a primary tool in global commerce and a

communications infrastructure connecting people everywhere.

The security mechanisms most widely used today utilize asymmetric cryptography;

public/private key cryptography to establish encryption and authentication. These asymmetric

primitives use ‘trapdoor’ functions where a difficult mathematical problem is created using a

public key and solved using the private key. The problem with this approach is that the

underlying mathematical problems used by these asymmetric ciphers and signature schemes are

constantly being challenged by new knowledge and advances in computing technology.

What seems like an intractable problem today could eventually be reduced or even solved at

some future time. This is why asymmetric parameters are continually adjusted to make the

problem more difficult, and why entire orders of asymmetric cryptography based on large integer

factorization and elliptic curves will soon become obsolete due to the emergence of quantum

computers. It has been well established that intelligence agencies collect and store encrypted

communications streams on a vast scale because, even if the technology to break these

encryption technologies does not currently exist, at some future point it may, and all of that

stored traffic will become readable.

We could face the same problem with Lattice-Based Encryption (LWE) cryptography in ten or

twenty years that we face now with elliptic curves or large integer factorization cryptography:

eventually, the technology and the mathematics will evolve, combining to create new threats

capable of breaking the cryptographic system. This is further complicated by the choice of

parameters used in the design of asymmetric primitives, which are calculated based on

projections established only in current knowledge, in a performance-oriented field that often

chooses less aggressive parameters to improve performance.

The knowledge that communications are being captured and stored while breakthroughs in

technology are unpredictable creates a serious issue that must be addressed. We do not believe

that any system based on asymmetric cryptography can guarantee true long-term security

absolutely, which must now be considered the lifespan of a human being.

Symmetric cryptography may provide part of the solution. Given sufficiently ‘strong’ symmetric

cryptographic primitives and longer key lengths, symmetric cryptography can be far more

computationally expensive to solve and perhaps even impossible to break for an indefinite time.

Systems that use pre-shared symmetric keys have traditionally faced challenges of scalability and

vulnerability to a single point of failure.

For example, some systems use a single pre-shared key and session counter to key a symmetric

cipher and establish an ad hoc encrypted tunnel, some SSH (Secure Shell) implementations use

this scheme. The issues with this method are that if a device is ever captured, all past messages

SKDP-2024 Rev. 1.1a

6

become readable; similarly, if the server’s key database is compromised, messages for all hosts

on the network—past, present, and future—become instantly readable by an attacker.

What we propose with SKDP is a symmetric scheme that uses pre-shared keys in a way that

provides forward secrecy, is scalable, and solves many of the problems associated with existing

schemes that use pre-shared keys. In SKDP, capturing a client host's embedded key does not

compromise past messages, and capturing the server’s key database does not reveal anything

about past encrypted messages because the symmetric ciphers used in the message stream are

keyed with ephemeral keys that cannot be derived from the pre-shared key alone.

This introduction sets the stage for SKDP as a secure and scalable key distribution protocol

designed to address the limitations of current cryptographic methods by using a symmetric key

strategy that incorporates strong forward secrecy and scalable management of secure

communication channels.

1.1 Purpose

The SKDP secure messaging protocol, utilized in conjunction with quantum secure symmetric

cryptographic primitives, is used to create an encrypted and authenticated duplexed

communications channel. This specification presents a secure messaging protocol that creates an

encrypted communications channel, in such a way that:

1) The symmetric cipher keys for both the send and receive channels, are ephemeral, and

use shared secrets for each channel that are unique to each session (forward secrecy).

2) The capture of the devices shared key does not directly reveal any information about

future sessions (predicative resistance).

3) That each host in the bi-directional communications stream, is responsible for creating

the shared secret for the channel they transmit on.

SKDP is a duplexed communications system. It uses a separate shared secret to key both the

transmit and receive channels in a communications stream. Each host is responsible for

generating the symmetric key that host transmits data on. Symmetric cipher keys are ephemeral,

and unique keys are generated for each session. The system works in a client/server model,

where a client requests a connection from the server to initiate the key exchange. The server

authenticates and encrypts a key sent to the client, and the client encrypts and authenticates a key

sent to the server. These keys are used to initialize a quantum secure symmetric cipher for each

channel, which encrypts the communications stream. A strong emphasis has been placed on

authentication with SKDP, with the entire key exchange using authentication to guarantee the

exchange, and the symmetric stream cipher using KMAC authentication, with additional data

parameters (AEAD) that authenticate the SKDP packet headers.

SKDP-2024 Rev. 1.1a

7

2: Scope

This document describes the SKDP secure messaging protocol, which is used to establish an

encrypted and authenticated duplexed message stream between two hosts. This document

describes the complete symmetric key exchange, authentication, and the establishment of an

encrypted tunnel. This is a complete specification, describing the cryptographic primitives, the

derivation functions, and the complete client to server messaging protocol.

2.1 Application

This protocol is intended for institutions that implement secure communication channels used to

encrypt and authenticate secret information exchanged between remote terminals.

The key exchange functions, authentication and encryption of messages, and message exchanges

between terminals defined in this document must be considered as mandatory elements in the

construction of an SKDP communications stream. Components that are not necessarily

mandatory, but are the recommended settings or usage of the protocol shall be denoted by the

key-words SHOULD. In circumstances where strict conformance to implementation procedures

is required but not necessarily obvious, the key-word SHALL will be used to indicate

compulsory compliance is required to conform to the specification.

SKDP-2024 Rev. 1.1a

8

3: References

3.1 Normative References

The following documents serve as references for key components of SKDP:

3.1.1 NIST FIPS 202: SHA-3 Standard: Permutation-Based Hash and Extendable Output

Functions

3.1.2 NIST SP 800-185: Derived Functions cSHAKE, KMAC, TupleHash and ParallelHash

3.1.3 NIST SP 800-90A: Recommendation for Random Number Generation

3.1.4 NIST SP 800-108: Recommendation for Key Derivation using Pseudorandom Functions

3.1.5 NIST FIPS 197 The Advanced Encryption Standard

3.2 Reference Links

3.2.1 The Keccak Code Package: https://github.com/XKCP/XKCP

3.2.2 NIST AES FIPS 197: http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

https://github.com/XKCP/XKCP
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

SKDP-2024 Rev. 1.1a

9

4: Terms and Definitions

4.1 RCS

The Rijndael-256 Cryptographic Stream (RCS) AEAD authenticated symmetric stream cipher.

4.2 SHA-3

The SHA3 hash function NIST standard, as defined in the NIST standards document FIPS-202;

SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

4.3 SHAKE

The NIST standard Extended Output Function (XOF) defined in the SHA-3 standard publication

FIPS-202; SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.

4.4 KMAC

The SHA3 derived Message Authentication Code generator (MAC) function defined in NIST

special publication SP800-185: SHA-3 Derived Functions: cSHAKE, KMAC, TupleHash and

ParallelHash.

SKDP-2024 Rev. 1.1a

10

5: Structures

5.1 Device Key

The device key is an internal structure that stores the device derivation key, the expiration time,

and the client identity array.

Parameter Data Type Bit Length Function

Expiration Uint64 64 Validity Check

CID Uint8 array 128 Identification

DDK Uint8 array 256/512 Derivation Key

Table 5.1a: The client key structure.

The expiration parameter is a 64-bit unsigned integer that holds the UTC seconds since the last

epoch (01/01/1900) to the time the key remains valid. This value is checked during the

initialization of the client, if the key has expired, the connection attempt is halted and an error

returned.

The key identity array is a 16-byte array that uniquely identifies a device key. This identifier can

be used to match the key on a branch server. The key identity array, is divided into subsections,

32-bit identification numbers for the master key, branch key, device key, and set instance.

Master ID

4 bytes

Branch ID

4 bytes

Device ID

4 bytes

Set ID

4 bytes

Table 5.1b: The device identity structure.

The master key array, is hashed with a branch and master identification array, to derive the

branch key. More than four billion branches may be created from a single master key. The

branch key is hashed with the device identification array, as well as the branch and master

identification arrays, to derive more than four billion possible device keys. The set identification

array, the last four bytes of the key identification array, is the key version counter, the embedded

key version, in a set of time-limited keys assigned to the client device.

5.2 Server Key

The server key is identical to the client key except for the bit length of the key identification

array is ninety-six bits.

Parameter Data Type Bit Length Function

Expiration Uint64 64 Validity check

SID Uint8 array 96 Identification

SKDP-2024 Rev. 1.1a

11

SDK Uint8 array 256/512 Derivation Key

Table 5.2: The server key structure.

5.3 Master Key

The master key is identical to the client and branch keys except for the bit length of the key

identification array is sixty-four bits.

Parameter Data Type Bit Length Function

Expiration Uint64 64 Validity check

MID Uint8 array 64 Identification

MDK Uint8 array 256/512 Derivation Key

Table 5.3: The master key structure.

5.4 Device State

The client state is an internal structure that contains all the variables required by the SKDP

operations. This includes elements copied from the client key structure at initialization, send and

receive channels symmetric cipher states, session cookies, packet counters, and flags.

Data Name Data Type Bit Length Function

Expiration Uint64 64 Validity check

DDK Uint8 array 256/512 Derivation Key

DSH Uint8 array 128 Session Hash

CID Uint8 array Variable Identification

SSH Uint8 array Variable Session Cookie

RXSEQ Uint64 64 Packet Counter

TXSEQ Uint64 64 Packet Counter

Cipher Receive State Structure Variable Symmetric Decryption

Cipher Transmit State Structure Variable Symmetric Encryption

ExFlag Uint8 8 Protocol Check

Table 5.4: The client state structure.

5.5 Server State

The server state is identical to the client state, except for the additional server identification

parameter.

Data Name Data Type Bit Length Function

Expiration Uint64 64 Validity check

SDK Uint8 array 256/512 Derivation Key

SKDP-2024 Rev. 1.1a

12

DID Uint8 array 128 Identification

DSH Uint8 array 128 Session Hash

SID Uint8 array Variable Identification

SSH Uint8 array Variable Session Cookie

RXSEQ Uint64 64 Packet Counter

TXSEQ Uint64 64 Packet Counter

Cipher Receive State Structure Variable Symmetric Decryption

Cipher Transmit State Structure Variable Symmetric Encryption

ExFlag Uint8 8 Protocol Check

Table 5.5: The server state structure.

5.6 Keep Alive State

Parameter Data Type Bit Length Function

Expiration Time Uint64 64 Validity check

Packet Sequence Uint64 64 Protocol check

Received Status Bool 8 Status

Table 5.6: The keep alive state.

5.7 SKDP Packet Header

The SKDP packet header is 21 bytes in length, and contains:

1. The Packet Flag, the type of message contained in the packet; this can be any one of the

key-exchange stage flags, a message, or an error flag.

2. The Packet Sequence, this indicates the sequence number of the packet exchange.

3. The Packet Creation time, a UTC timestamp of seconds from the epoch.

4. The Message Size, this is the size in bytes of the message payload.

The message is a variable sized array, up to SKDP_MESSAGE_MAX in size.

Packet Flag

1 byte

Packet Sequence

8 bytes

Packet Creation

8 bytes

Message Size

4 bytes

Message

Variable Size

Table 5.7: The SKDP packet structure.

This packet structure is used for both the key exchange protocol, and the encrypted tunnel.

SKDP-2024 Rev. 1.1a

13

5.8 Flag Types

The following are a preliminary list of packet flag types used by SKDP:

Flag Name Numerical Value Flag Purpose

None 0x00 No flag was specified, the default value.

Connect Request 0x01 The key-exchange client connection

request flag.

Connect Response 0x02 The key-exchange server connection

response flag.

Connection Terminated 0x03 The connection is to be terminated.

Encrypted Message 0x04 The message has been encrypted by the

tunnel.

Exchange Request 0x05 The key-exchange client exchange request

flag.

Exchange Response 0x06 The key-exchange server exchange

response flag.

Establish Request 0x07 The key- exchange client establish request

flag.

Establish Response 0x08 The key- exchange server establish

response flag.

Establish Verify 0x09 The packet contains an establish verify

flag.

Keep Alive Request 0x0A The packet contains a keep alive request.

Session Established 0x0B The tunnel is in the established state.

Error Condition 0xFF The connection experienced an error.

Table 5.8: Packet header flag types.

5.9 Error Types

The following are a preliminary list of error messages used by SKDP:

Error Name Numerical Value Description

None 0x00 No error condition was detected.

Authentication Failure 0x01 The symmetric cipher had an

authentication failure.

KEX Failure 0x02 The KEX authentication has failed.

Bad Keep Alive 0x02 The keep alive check failed.

Channel Down 0x03 The communications channel has failed.

SKDP-2024 Rev. 1.1a

14

Connection Failure 0x04 The device could not make a connection

to the remote host.

Establish Failure 0x05 The transmission failed at the KEX

establish phase.

Exstart Failure 0x06 The transmission failed at the KEX

exstart phase.

Invalid Input 0x07 The expected input was invalid.

Keep Alive Expired 0x08 The keep alive has expired with no

response.

Key Expired 0x09 The SKDP public key has expired.

Key Unrecognized 0x0A The key identity is unrecognized.

Packet Un-Sequenced 0x0B The packet was received out of sequence.

Random Failure 0x0C The random generator has failed.

Receive Failure 0x0D The receiver failed at the network layer.

Transmit Failure 0x0E The transmitter failed at the network

layer.

Verify Failure 0x0F The expected data could not be verified.

Unknown Protocol 0x10 The protocol string was not recognized.

General Failure 0xFF The connection experienced an internal

error

Table 5.9: Error type messages.

SKDP-2024 Rev. 1.1a

15

6: Operational Overview

In a multi-tiered distributed topology, a set of branch identification numbers is determined, and

the master key is used to create the set of secret branch keys, which are distributed to servers on

the network. The servers generate the keys for the client devices associated with each branch,

and assign the secret keys to the devices. The method of distribution of secret keys varies with

the type of implementation. For example, keys can be imprinted on debit cards issued by

financial institutions, embedded on a device, or shared through an encrypted channel with

equivalent security to a host device.

Each key has an expiration-time parameter. The expiration of keys should be determined by the

application of this technology. Some applications, for example debit cards, may tolerate longer

periods, while other applications like a high-security communications link, might be renewed on

a much shorter time period. It is recommended that keys are refreshed periodically, this

guarantees that in a worst-case scenario, where either the master or branch keys have been

captured, that security is continually restored. A strong post-quantum asymmetric encrypted

tunnel, like QSMP, can periodically add entropy to a server’s and a device’s embedded key, by

mixing new entropy with that embedded key, a new shared secret combined with the base key to

generate a new base derivations key. These keys are counted as key revisions, in the key-set

bytes of the key identification string.

Any error during the key exchange or during the communications operation, causes the client or

server to send an error message to the other host, disconnect, and tear down the session. This

includes checks for message synchronization, expected size of sent and received messages

during the key exchange, authentication failures, and internal errors raised by cryptographic or

network functions used by the key exchange and communications stream.

In version 1.1, an anti-replay attack mechanism has been added to the key exchange and the

encrypted tunnel. A field has been added to the packet header utctime, which contains a low-

resolution packet creation time. This is the UTC time in seconds since the epoch, written as a 64-

bit integer. This timestamp is checked during the exchange and establish portions of the key

exchange, to be within the valid-time threshold (60 seconds). The timestamp along with the

serialized packet header, is added to the MAC function during portions of the client/server key

exchange. The utctime field is checked when the packet is received, and the header is added to

the MAC to ensure it has not been altered.

When the key exchange has completed and the encrypted tunnel has been raised, the utctime is

checked each time a device receives a packet. The packet header is serialized and added to the

AEAD field of the symmetric cipher, ensuring that the packet can not be re-used, and that the

packet header has not been altered.

SKDP-2024 Rev. 1.1a

16

6.1 Connect Request

Figure 6.1: SKDP client connect request.

The client device initializes a key exchange operation, by sending the server a connection

request packet. The message contains the client’s protocol configuration string, key

identification array, and a random session token. The client stores a hash of these three values,

for use later in the key exchange as the client’s session cookie.

SKDP-2024 Rev. 1.1a

17

6.2 Connect Response

Figure 6.2: SKDP server connect response.

The server receives the connection request, checks that the server portion of the key

identification array matches its own identity string, and stores the client’s identity string in state.

The server compares the client’s protocol configuration with its own, if either the configuration

string or key identification do not match, the connection request is rejected, and the client is sent

an error notification.

The server stores a hash of the client id, configuration string, and random token, which will be

used as the client’s session cookie in the exchange. The server generates a random token, then

hashes its own identification array, configuration string, and the random token, and stores this as

the server’s session cookie. The server then sends a connect response message to the client,

containing its own identification array, configuration string, and random token.

SKDP-2024 Rev. 1.1a

18

6.3 Exchange Request

Figure 6.3: SKDP client exchange request.

The client receives the connect response message from the server, and hashes the server’s

identity array, protocol configuration string, and random token to create the server session

cookie.

The client generates a random device token-key.

SKDP-2024 Rev. 1.1a

19

The client combines the device token-key, and the client’s session cookie to key cSHAKE. The

client then generates the symmetric stream cipher’s key and nonce from the keyed cSHAKE

instance, and initializes the transmit cipher for channel-1.

The client combines its embedded device derivation-key, with the client’s session cookie and

keys cSHAKE, to generate a pseudo-random block, used as the token encryption and MAC keys.

The client encrypts the random token using a bitwise XOR of the first half of the pseudo-random

block, then keys KMAC using the second half of the pseudo-random block (change in 1.1), the

serialized packet header is added to the MAC, along with the cipher-text, generating the MAC

tag. The encrypted session token and MAC tag are added to the exchange request message, and

sent to the server.

6.4 Exchange Response

SKDP-2024 Rev. 1.1a

20

Figure 6.4: SKDP server exchange response.

The server verifies the UTC timestamp in the packet header (change in 1.1), to ensure that the

packet was sent withing a valid-time window, to prevent replay and re-use of the exchange

request packet.

SKDP-2024 Rev. 1.1a

21

The server combines the server’s base derivation key, and the client’s key identity array, to key

cSHAKE, and derives the client’s device derivation key.

The server combines the device derivation-key, and the client’s session cookie to key cSHAKE,

and generates a pseudo-random block, used as the token encryption and MAC keys. The server

uses KMAC to authenticate the cipher-text (change in 1.1) and the serialized packet header

contained in the exchange request message sent by the client, and if that authentication

succeeds, the server uses the encryption key to decrypt the session token using a bitwise XOR.

The server combines the device token-key, and the device session cookie to key cSHAKE. The

server then generates the symmetric stream cipher’s key and nonce, and initializes the receive

symmetric cipher instance for channel-1.

The server generates a random session token-key. The server combines the server token-key, and

the server session cookie to key cSHAKE, and generates the key and nonce for the server’s

channel-2 transmit symmetric stream cipher instance.

The server combines the device derivation-key, and the server’s session cookie to key cSHAKE,

which generates the token encryption and MAC keys. The server encrypts the server session

token with the encryption key using a bitwise XOR, then keys KMAC with the MAC key and

authenticates the cipher-text. The cipher-text and MAC tag are added to the exchange response

message and sent to the client.

SKDP-2024 Rev. 1.1a

22

6.5 Establish Request

Figure 6.5: SKDP client establish request.

SKDP-2024 Rev. 1.1a

23

The client verifies the packet headers UTC valid-time (change in 1.1), to detect re-use of the

packet. The client combines its device derivation key with the server’s session hash to key

cSHAKE, which generates the token MAC and token encryption keys. The client keys KMAC,

and authenticates the serialized packet header (change in 1.1) and cipher-text contained in the

exchange response message sent by the server. If authentication succeeds the client decrypts the

server’s secret token using the encryption key and a bitwise XOR of the cipher-text.

The client combines the server’s session token and the server’s session cookie to key cSHAKE,

which derives the key and nonce for the channel-2 receive symmetric stream cipher instance.

The client generates a random verification token. The client serializes the establish request

packet header and adds it to the additional data parameter of the channel-1 AEAD symmetric

stream cipher. The client then encrypts the verification token, and adds the cipher-text to the

establish response message, and sends it to the server.

SKDP-2024 Rev. 1.1a

24

6.6 Establish Response

Figure 6.6: SKDP server establish response.

The server serializes the establish request packet header and adds it to the additional data

parameter of the AEAD symmetric stream cipher, including the UTC valid-time, it then

authenticates and decrypts the cipher-text. The server hashes the message, adds the establish

response packet header to the cipher’s additional data, and encrypts the message hash. The server

then sends the cipher-text back to the client in the establish response packet.

SKDP-2024 Rev. 1.1a

25

6.7 Establish Verify

Figure 6.7: SKDP client establish verify.

The client serializes the packet header and adds it to the additional data parameter of the channel-

2 RX cipher, including the UTC valid-time (change in 1.1). The client then authenticates and

decrypts the cipher-text sent in the establish response message sent by the server. The client

hashes the stored copy of the verification token, and compares it to the message for equality.

Upon successful decryption and verification of the message, the client raises its session

established flag, and is ready to process data.

SKDP-2024 Rev. 1.1a

26

7: Formal Description

Legend:

← ↔ → - Assignment and direction symbols

:=, !=, ?= - Equality operators; assign, not equals, evaluate

C -The client host

S -The server host

cnf -The protocol configuration string

cprrx -A receive channels symmetric cipher instance

cprtx -A transmit channels symmetric cipher instance

ddk -The device derivation key

did -The device identity array

dsh -The device session hash

dtk -The device token key

-Ek -Decrypt using the encryption key

Ek -Encrypt using the encryption key

etk -The encrypted token

Exp -The cryptographic key expansion function

H -The hash function

ke -The token encryption key

km -The token MAC key

Exp -The key expansion function: cSHAKE

M -The MAC function

mtag -The MAC authentication output tag

RBG -The random bytes generator

rtk -A random token

sdk -The servers derivation key

sid -The servers identity array

stk -The server token

SKDP-2024 Rev. 1.1a

27

stokd -The device session token

stoks -The server session token

Key Exchange Sequence

7.1 Connect Request

The client generates a random token:

stokd ← RBG(n)

The client stores the device-id, configuration string, and token in the device session hash:

dsh ← H(did || cnf || stokd)

The client sends its identity string, configuration string, and the generated random token to the

server:

C { did || cnf || stokd } → S

7.2 Connect Response

The server verifies the configuration and client identity, then stores a hash of the message in the

device session hash:

dsh ← H(did || cnf || stokd)

The server generates a random token:

stoks ← RBG(n)

It stores a hash of the server’s identity, configuration string, and session token in the server

session hash:

ssh ← H(sid || cnf || stoks)

The server then sends its identity, configuration string, and session token to the client:

S { sid || cnf || stoks } → C

7.3 Exchange Request

The client stores a hash of the server’s configuration string, server-id, and server session token:

SKDP-2024 Rev. 1.1a

28

sth ← H(sid || cnf || stoks)

It generates a secret random device token key:

dtk ← RBG(n)

The client combines the device session hash and its embedded device derivation key to produce

the token encryption and MAC keys:

ke, km ← Exp(dsh, ddk)

It then encrypts the secret token and computes the MAC for the ciphertext:

etk ← Eke(dtk)

The client adds the serialized packet header, which includes the packet creation time and

sequence number (version 1.1) to the MAC along with the ciphertext.

mtag ← Mkm(sh || etk)

The client combines its device session hash and the device token key to produce the channel-1

transmit cipher key, initializing the cipher:

k, n ← Exp(dsh, dtk)

cprtx(k, n)

The client sends the encrypted token and MAC tag to the server:

C { etk, mtag } → S

7.4 Exchange Response

The server combines the client’s identity string with the server derivation key to derive the

client’s device derivation key:

ddk ← H(cid || sdk)

It then combines the device’s session hash and the device derivation key to produce the token

encryption and MAC keys:

ke, km ← Exp(dsh, ddk)

The server verifies that the UTC valid-time in the packet header is within the timeout
threshold (version 1.1). The server verifies the MAC code attached to the client's message:

SKDP-2024 Rev. 1.1a

29

Mkm(sh || etk) ?= true = mtag : 0

If the MAC is verified, the server decrypts the token and derives the receive channel-1 cipher

key:

dtk ← -Eke(etk)

k, n ← Exp(dsh, dtk)

cprrx(k, n)

The server generates a secret random token key:

rtk ← RBG(n)

It combines the server’s session hash and the device's derivation key to produce the token

encryption and MAC keys:

ke, km ← Exp(ssh, ddk)

The server encrypts the server token key and computes the MAC:

etk ← Eke(rtk)

The server adds the serialized packet header, which includes the packet creation time and

sequence number (version 1.1) to the MAC along with the ciphertext.

mtag ← Mkm(sh || etk)

The server initializes the transmit channel cipher key:

k, n ← Exp(ssh, rtk)

cprtx(k, n)

The server sends the encrypted token key and MAC tag to the client:

S { etk, mtag }→ C

7.5 Establish Request:

The client combines the server’s session hash, and the device derivation key to produce the token

encryption and mac keys.

ke, km ← Exp(ssh, ddk)

SKDP-2024 Rev. 1.1a

30

The client verifies the UTC valid-time is within the timeout threshold (version 1.1) The client

verifies the mac code appended to the client message.

Mkm(etk) = true ? mtag : 0

If the mac is verified, the client decrypts the servers token-key, and then combines the server

token-key and the server’s session hash to produce the channel-2 receive cipher key.

stk ← -Eke(etk)

k, n ← Exp(ssh, stk)

cprrx(k, n)

The client generates a random verification token that it stores in state.

vtok ← RBG(n)

It encrypts the verification token and sends the cipher-text to the server.

cpt ← Ek(vtok)

C { cpt } → S

7.6 Establish Response:

The server authenticates and decrypts the message.

msg ← -Ek(cpt)

The server hashes the decrypted message.

mhash ← H(msg)

The server encrypts the message hash using the channel-2 cipher, and sends it to the client for

verification. Both channels of the server’s communications stream are now initialized.

cpt ← Ek(mhash)

S{ cpt } → C

7.7 Establish Verify:

 The client authenticates and decrypts the message. Both of the client’s communication channels

are established, the connection is now ready to send and receive data.

msg ← -Ek(cpt)

The client hashes the verification token stored in state, and compares that hash to the decrypted

message for equality. If the check is valid, then the tunnel is ready to process data. If the check

fails, the client sends an error message to the server, and tears down the connection.

vhash ← H(msg)

SKDP-2024 Rev. 1.1a

31

7.8 Transmission:

The host, client or server, transmitting a message, first sets the UTC packet creation time in the

packet header (version 1.1), then serializes the packet header and adds it to the symmetric

ciphers associated data parameter. The host then encrypts the message, updates the MAC

function with the cipher-text, and appends a MAC code to the end of the cipher-text. All of this

is done by using the RCS stream cipher’s AEAD and encryption functions. The serialized packet

header, including the message size, protocol flag, packet creation-time, and sequence number,

are added to the MAC state through the additional-data parameter of the authenticated stream

cipher RCS. This unique data is added to the MAC function with every packet, along with the

encrypted cipher-text.

cpt ← Ek(m)

mc ← Mmk(sh || cpt)

The packet UTC creation time is checked to see if it is within the packet valid-time threshold, if

it is not, the function returns false and the packet is discarded. The packet is decrypted by

serializing the packet header and adding it to the MAC state, then finalizing the MAC on the

cipher-text and comparing the output code with the code appended to the cipher-text. If the code

matches, the cipher-text is decrypted, and the message passed up to the application. If this check

fails, the decryption function returns false, returns an empty message array, and must be handled

by the application.

m ← -Ek(cpt) ?= true, m : 0

SKDP-2024 Rev. 1.1a

32

8: SKDP API

8.1 Definitions and Shared API

Header:

skdp.h

Description:

The skdp header contains shared constants, types, and structures, as well as function calls

common to both the SKDP server and client implementations.

Structures:

The SKDP_ERROR_STRINGS is a static string-array containing SKDP configuration string.

Data Set Purpose

SKDP_CONFIG_STRING The SKDP configuration string

Table 8.1a SKDP configuration string.

The SKDP_CONFIG_STRING is a static string-array containing SKDP error descriptions,

used in the error reporting functionality.

Data Set Purpose

SKDP_ERROR_STRINGS A string array of readable error descriptions

Table 8.1b SKDP error strings.

The skdp_packet contains the SKDP packet structure.

Data Name Data Type Bit Length Function

flag Uint8 0x08 The packet flag

msglen Uint32 0x20 The packets message length

sequence Uint64 0x40 The packet sequence number

utctime Uint64 0x40 The packet creation time

message Uint8 Array Variable The packets message data

Table 8.1c SKDP packet structure.

The skdp_master_key contains the SKDP master key state.

SKDP-2024 Rev. 1.1a

33

Data Name Data Type Bit Length Function

kid Uint8 Array 0x80 The key identity string

mdk Uint8 Array Variable The master derivation key

expiration Uint64 0x40 The expiration time, in seconds from epoch

Table 8.1d SKDP master key structure.

The skdp_server_key contains the SKDP server key state.

Data Name Data Type Bit Length Function

kid Uint8 Array 0x80 The key identity string

sdk Uint8 Array Variable The server derivation key

expiration Uint64 0x40 The expiration time, in seconds from epoch

Table 8.1e SKDP server key structure.

The skdp_device_key contains the SKDP device key state.

Data Name Data Type Bit Length Function

kid Uint8 Array 0x80 The key identity string

ddk Uint8 Array Variable The device derivation key

expiration Uint64 0x40 The expiration time, in seconds from epoch

Table 8.1f SKDP device key structure.

The skdp_keep_alive_state contains the SKDP keep alive state.

Data Name Data Type Bit Length Function

etime Uint64 0x40 The keep alive epoch time

seqctr Uint64 0x40 The keep alive packet sequence number

recd Boolean 0x08 The keep alive response received status

Table 8.1g SKDP keep alive state structure.

Enumerations:

The skdp_errors enumeration is a list of the SKDP error code values.

Enumeration Purpose

skdp_error_none No error was detected

skdp_error_cipher_auth_failure The cipher authentication has failed

SKDP-2024 Rev. 1.1a

34

skdp_error_kex_auth_failure The kex authentication has failed

skdp_error_bad_keep_alive The keep alive check failed

skdp _error_channel_down The communications channel has failed

skdp _error_connection_failure The device could not make a connection to the remote host

skdp _error_establish_failure The transmission failed at the KEX establish phase

skdp _error_invalid_input The expected input was invalid

skdp _error_key_not_recognized The key was not recognized

skdp _error_random_failure The random generator has failed

skdp _error_receive_failure The receiver failed at the network layer

skdp _error_transmit_failure The transmitter failed at the network layer

skdp_error_unknown_protocol The protocol version is unknown

skdp_error_unsequenced The packet was received out of sequence

skdp_error_general_failure The connection experienced an error

Table 8.1h SKDP errors enumeration.

The skdp_flags enum contains the SKDP packet flags.

Enumeration Purpose

skdp _flag_none No flag was specified

skdp _flag_connect_request The SKDP key-exchange client connection request flag

skdp _flag_connect_response The SKDP key-exchange server connection response flag

skdp _flag_connection_terminate The connection is to be terminated

skdp _flag_encrypted_message The message has been encrypted flag

skdp _flag_exchange_request The SKDP key-exchange client exchange request flag

skdp _flag_exchange_response The SKDP key-exchange server exchange response flag

skdp _flag_establish_request The SKDP key-exchange client establish request flag

skdp _flag_establish_response The SKDP key-exchange server establish response flag

skdp _flag_establish_verify The packet contains an establish verify

skdp _flag_keep_alive_request The packet contains a keep alive request

skdp _flag_session_established The exchange is in the established state

skdp _flag_error_condition The connection experienced an error

Table 8.1i SKDP flags enumeration.

Constants:

Constant Name Value Purpose

SKDP-2024 Rev. 1.1a

35

SKDP_PROTOCOL_SEC256 N/A This flag enables 256-bit security

configuration

SKDP_PROTOCOL_SEC512 N/A This flag enables 512-bit security

configuration

SKDP_CONFIG_SIZE 0x1A The size of the protocol configuration

string

SKDP_EXP_SIZE 0x08 The expiration value size

SKDP_HEADER_SIZE 0x0D The SKDP packet header size

SKDP_KEEPALIVE_STRING 0x14 The keep alive string size

SKDP_KEEPALIVE_TIMEOUT Variable The keep alive timeout in milliseconds

(default: 5 minutes)

SKDP_MESSAGE_SIZE 0x400 The message size used during a

communications session

SKDP_MESSAGE_MAX 0x40D The maximum message size (may

exceed mtu)

SKDP_SERVER_PORT 0x899 The default server port address

SKDP_MID_SIZE 0x04 The master id size

SKDP_SID_SIZE 0x08 The server id size

SKDP_DID_SIZE 0x0C The device id size

SKDP_TID_SIZE 0x04 The session id size

SKDP_KID_SIZE 0x10 The SKDP key identity size

SKDP_SEQUENCE_TERMINATOR 0xFFFFFFFF The sequence number of a packet that

closes a connection

SKDP_CPRKEY_SIZE 0x20/0x40 The SKDP symmetric cipher key size

SKDP_DDK_SIZE 0x20/0x40 The device derivation key size

SKDP_DTK_SIZE 0x20/0x40 The device token key size

SKDP_HASH_SIZE 0x20/0x40 The size of the hash function output

SKDP_MACKEY_SIZE 0x20/0x40 The SKDP mac key size

SKDP_MACTAG_SIZE 0x20/0x40 The size of the mac function output

SKDP_MDK_SIZE 0x20/0x40 The size of the master derivation key

SKDP_PERMUTATION_RATE 0x88/0x48 The rate at which keccak processes

data

SKDP_SDK_SIZE 0x20/0x40 The server derivation key size

SKDP_STK_SIZE 0x20/0x40 The session token key size

SKDP_STH_SIZE 0x20/0x40 The session token-hash size

SKDP_STOK_SIZE 0x20/0x40 The session token size

SKDP_KEY_DURATION_DAYS 0x16D The number of days a key remains

valid

SKDP_KEY_DURATION_SECONDS D * 24 * 60 * 60 The number of seconds a key remains

valid

SKDP-2024 Rev. 1.1a

36

SKDP_DEVKEY_ENCODED_SIZE Variable The size of the encoded device key

SKDP_MSTKEY_ENCODED_SIZE Variable The size of the encoded master key

SKDP_SRVKEY_ENCODED_SIZE Variable The size of the encoded server key

SKDP_CONNECT_REQUEST_SIZE Variable The kex connect stage request packet

size

SKDP_CONNECT_REQUEST_SIZE Variable The kex exchange stage request packet

size

SKDP_ESTABLISH_REQUEST_SIZE Variable The kex establish stage request packet

size

SKDP_CONNECT_RESPONSE_SIZE Variable The kex connect stage response packet

size

SKDP_EXCHANGE_RESPONSE_SIZE Variable The kex exchange stage response

packet size

SKDP_ESTABLISH_RESPONSE_SIZE Variable The kex establish stage response packet

size

SKDP_ESTABLISH_VERIFY_SIZE Variable The kex establish verify stage response

packet size

SKDP_ERROR_STRING_DEPTH 0x10 The number of error strings

SKDP_ERROR_STRING_WIDTH 0x80 The length of each error string

Table 8.1j SKDP constants.

Functions:

Packet Clear

Clear a packet's state, resetting the structure to zero.

void skdp_packet_clear(skdp_packet* packet)

Deserialize Device Key

Deserialize a client device key.

void skdp_deserialize_device_key(skdp_device_key* dkey, const uint8_t

input[SKDP_DEVKEY_ENCODED_SIZE])

Serialize Device Key

Serialize a client device key.

void skdp_serialize_device_key(uint8_t output[SKDP_DEVKEY_ENCODED_SIZE], const

skdp_device_key* dkey)

SKDP-2024 Rev. 1.1a

37

Deserialize Master Key

Deserialize a master key.

void skdp_deserialize_master_key(skdp_master_key* mkey, const uint8_t

input[SKDP_MSTKEY_ENCODED_SIZE])

Serialize Master Key

Serialize a master key.

void skdp_serialize_master_key(uint8_t output[SKDP_MSTKEY_ENCODED_SIZE], const

skdp_master_key* mkey)

Deserialize Server Key

Deserialize a server key.

void skdp_deserialize_server_key(skdp_server_key* skey, const uint8_t

input[SKDP_SRVKEY_ENCODED_SIZE])

Serialize Server Key

Serialize a server key.

void skdp_serialize_server_key(uint8_t output[SKDP_SRVKEY_ENCODED_SIZE], const

skdp_server_key* skey)

Generate Master Key

Generate a master key-set.

bool skdp_generate_master_key(skdp_master_key* mkey, const uint8_t kid[SKDP_KID_SIZE])

Generate Server Key

Generate a server key-set.

void skdp_generate_server_key(skdp_server_key* skey, const skdp_master_key* mkey, const

uint8_t kid[SKDP_KID_SIZE])

SKDP-2024 Rev. 1.1a

38

Generate Device Key

Generate a server key-set.

void skdp_generate_device_key(skdp_device_key* dkey, const skdp_server_key* skey, const

uint8_t kid[SKDP_KID_SIZE])

Error To String

Return a pointer to a string description of an error code.

const char* skdp_error_to_string(skdp_errors error)

Error Message

Populate a packet structure with an error message.

void skdp_packet_error_message(skdp_packet* packet, skdp_errors error)

Packet Error Message

Populate a packet structure with an error message.

void skdp_packet_error_message(skdp_packet* packet, skdp_errors error)

Header Deserialize

Deserialize a byte array to a packet header.

void skdp_packet_header_deserialize(const uint8_t* header, skdp_packet* packet)

Header Serialize

Serialize a packet header to a byte array.

void skdp_packet_header_serialize(const skdp_packet* packet, uint8_t* header)

Packet To Stream

Serialize a packet to a byte array.

size_t skdp_packet_to_stream(const skdp_packet* packet, uint8_t* pstream)

SKDP-2024 Rev. 1.1a

39

Stream To Packet

Deserialize a byte array to a packet.

void skdp_stream_to_packet(const uint8_t* pstream, skdp_packet* packet)

8.2 Server API

Header:

skdpserver.h

Description:

Functions used to implement the SKDP server.

Structures:

The skdp_server_state contains the SKDP server state structure.

Data Name Data Type Bit Length Function

rxcpr RCS state Variable The receive channel cipher state

txcpr RCS state Variable The transmit channel cipher

state

did Uint8 Array 0x10 The device identity string

dsh Uint8 Array 0x20/0x40 The device session hash

kid Uint8 Array 0x10 The key identity string

ssh Uint8 Array 0x20/0x40 The server session hash

sdk Uint8 Array 0x20/0x40 The server derivation key

exflag enum skdp_flags The KEX position flag

expiration Uint64 0x40 The expiration time, in seconds

from epoch

rxseq Uint64 0x40 The receive channels packet

sequence number

txseq Uint64 0x40 The transmit channels packet

sequence number

Table 8.2 SKDP server state structure.

API:

SKDP-2024 Rev. 1.1a

40

Connection Close

Close the remote session and dispose of resources.

void skdp_server_connection_close(skdp_server_state* ctx, const qsc_socket* sock, skdp_errors

error)

Send Keepalive

Send a keep-alive to the remote host.

skdp_errors skdp_server_send_keep_alive(skdp_keep_alive_state* kctx, const qsc_socket* sock)

Initialize

Initialize the server state structure.

void skdp_server_initialize(skdp_server_state* ctx, const skdp_server_key* skey)

Listen IPv4

Run the IPv4 networked key exchange function. Returns the connected socket and the SKDP

server state.

skdp_errors skdp_server_listen_ipv4(skdp_server_state* ctx, qsc_socket* sock, const

qsc_ipinfo_ipv4_address* address, uint16_t port)

Listen IPv6

Run the IPv6 networked key exchange function. Returns the connected socket and the SKDP

server state.

skdp_errors skdp_server_listen_ipv6(skdp_server_state* ctx, qsc_socket* sock, const

qsc_ipinfo_ipv6_address* address, uint16_t port)

Decrypt Packet

Decrypt a message and copy it to the message output.

skdp_errors skdp_server_decrypt_packet(skdp_server_state* ctx, const skdp_packet* packetin,

uint8_t* message, size_t* msglen)

SKDP-2024 Rev. 1.1a

41

Encrypt Packet

Encrypt a message and build an output packet.

skdp_errors skdp_server_encrypt_packet(skdp_server_state* ctx, const uint8_t* message, size_t

msglen, skdp_packet* packetout)

Ratchet Response

A ratchet response sends an encrypted token to the client and re-keys the channel. This is useful

in a static tunnel configuration, where based on up time or data transferred, additional entropy

can be injected into the system on demand..

skdp_errors skdp_server_ratchet_response(skdp_server_state* ctx, skdp_packet* packetout)

8.3 Client API

Header:

skdpclient.h

Description:

Functions used to implement the SKDP client.

Structures:

The skdp_client_state contains the SKDP client state structure.

Data Name Data Type Bit Length Function

rxcpr RCS state Variable The receive channel cipher state

txcpr RCS state Variable The transmit channel cipher

state

ddk Uint8 Array 0x20/0x40 The device derivation key

dsh Uint8 Array 0x20/0x40 The device session hash

kid Uint8 Array 0x10 The key identity string

ssh Uint8 Array 0x20/0x40 The server session hash

exflag enum skdp_flags The KEX position flag

expiration Uint64 0x40 The expiration time, in seconds

from epoch

SKDP-2024 Rev. 1.1a

42

rxseq Uint64 0x40 The receive channels packet

sequence number

txseq Uint64 0x40 The transmit channels packet

sequence number

Table 8.3 SKDP client state structure.

API:

Send Error

Send an error code to the remote host.

void skdp_client_send_error(const qsc_socket* sock, skdp_errors error)

Initialize

Initialize the client state structure.

void skdp_client_initialize(skdp_client_state* ctx, const skdp_device_key* ckey)

Connect IPv4

Run the IPv4 networked key exchange function. Returns the connected socket and the SKDP

server state.

skdp_errors skdp_client_connect_ipv4(skdp_client_state* ctx, qsc_socket* sock, const

qsc_ipinfo_ipv4_address* address, uint16_t port)

Connect IPv6

Run the IPv6 networked key exchange function. Returns the connected socket and the SKDP

server state.

skdp_errors skdp_client_connect_ipv6(skdp_client_state* ctx, qsc_socket* sock, const

qsc_ipinfo_ipv6_address* address, uint16_t port)

Connection Close

Close the remote session and dispose of resources.

void skdp_client_connection_close(skdp_client_state* ctx, const qsc_socket* sock, skdp_errors

error)

SKDP-2024 Rev. 1.1a

43

Decrypt Packet

Decrypt a message and copy it to the message output.

skdp_errors skdp_client_decrypt_packet(skdp_client_state* ctx, const skdp_packet* packetin,

uint8_t* message, size_t* msglen)

Encrypt Packet

Encrypt a message and build an output packet.

skdp_errors skdp_client_encrypt_packet(skdp_client_state* ctx, const uint8_t* message, size_t

msglen, skdp_packet* packetout)

Ratchet Request

A ratchet request asks the server fo a token key on demand. This is useful in a static tunnel

configuration, where based on up time or data transferred, additional entropy can be injected into

the system on demand.

skdp_errors skdp_client_ratchet_request(skdp_client_state* ctx, skdp_packet* packetout)

SKDP-2024 Rev. 1.1a

44

9: Design Decisions

SKDP was designed to be flexible and scalable. It can scale to billions of devices using a

pyramid hierarchy of client devices connecting to intermediate ‘branch’ servers which can inter-

connect through a master server, or it can be used in a single link between two endpoints. It

could be implemented on credit or debit cards as an encrypted transport, in removable media to

create pluggable lightweight communications channels, or as the encryption protocol used to

connect VPN endpoints. The SKDP protocol can be used anywhere a cryptographically-strong,

lightweight, post-quantum secure communications channel is required.

SKDP uses Keccak, the NIST SHA3 secure hash and pseudo-random generation functions.

These state-of-the-art functions and protocols, that have been studied extensively and are

officially recognized as a strong post-quantum resistant family of cryptographic functions.

SKDP can use 256-bit or 512-bit symmetric cipher keys. The authenticated symmetric stream

cipher RCS, is based on Rijndael, the symmetric cipher used in AES. It has double the internal

block size (Rijndael-256), the transformation function is to the Rijndael specification, but the key

schedule, used to generate a large set of ‘round keys’ from a small input cipher key, has been

changed from the differentially-weak native expansion function to the strong Keccak cSHAKE

function. The number of transformation rounds has been increased from 14 used by AES-256 to

22 rounds, and 30 rounds when using the 512-bit key option. These changes strongly mitigate

most attacks against AES, as well as setting the number of transformation rounds to at least 2n

the best-known attack. RCS uses KMAC the Keccak MAC function to authenticate cipher-text,

making RCS oner of the strongest symmetric ciphers available in the world today.

Version 1.1 adds a significant change by introducing an anti-replay attack defence. By adding a

packet creation time field to the header, and using the MAC function in the key exchange to

guarantee the header integrity, and the AEAD functionality of the RCS stream cipher, the packet

creation time can be checked and verified. This strongly mitigates attacks that leverage re-use of

a packet, replaying elements of the key exchange or symmetric tunnel. This added attack

defense, further reduces the attack surface of the protocol, and guarantees packet headers are not

altered in transit.

