A Formal Cryptanalysis of the Universal Digital
Identity Framework (UDIF)

John G. Underhill

Quantum Resistant Cryptographic Solutions Corporation

Abstract. The Universal Digital Identity Framework (UDIF) is a post—quantum
identity and object—custody architecture built on hierarchical certificates, capa-
bility—bounded authorization, canonical TLV state containers, Merkle-committed
registries, anchored audit logs, and a PQ-authenticated transport. This paper presents
a formal cryptanalysis of UDIF under standard game-based definitions and the
cryptographic assumptions underlying its constituent primitives, including ML-DSA
or SLH-DSA signatures, ML-KEM or McEliece key encapsulation, SHA3-family
hashes, KMAC-based MACs, and RCS-based AEAD. We formalize the UDIF
system model, including identity chains, capability tokens, registry and object
commitments, anchor—chain propagation, transport handshakes, epoch-ratcheting,
and the predicate-based query semantics that enforce minimal disclosure across
domains. For each subsystem we provide precise security definitions covering
certificate—chain authenticity, capability soundness, registry and object integrity,
anchor—chain consistency, session confidentiality and integrity, forward secrecy of
branch trunks, minimal-disclosure query privacy, and treaty—scoped cross—domain
containment. Under the stated assumptions, we prove that any adversary forging
certificates or escalating capabilities reduces to breaking the underlying signature or
MAC; any attempt to equivocate object or registry state, or to fork anchor histories,
reduces to finding hash collisions or forging signatures; any successful attack on the
transport channel reduces to breaking the KEM, AEAD, or authenticated—header
construction; and any adversary exceeding authorized query visibility contradicts
Merkle commitment binding or capability unforgeability. The combined results
yield explicit adversarial advantage bounds showing that UDIF achieves authenticity,
integrity, confidentiality, forward secrecy, auditability, and minimal disclosure within
negligible advantage relative to the primitive assumptions. This establishes UDIF
as a cryptographically rigorous framework for post—quantum identity, authorization,
and cross—domain provenance.

2 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

1 Introduction

The Universal Digital Identity Framework (UDIF) is a post—quantum identity and
provenance architecture designed to provide a unified, cryptographically sound substrate
for representing entities, administering authority, managing object custody, and enforcing
auditability across diverse domains. UDIF addresses a long—standing gap in digital
infrastructure: the absence of a universal, tamper—evident, post—quantum secure foundation
for identity binding, ownership tracking, cross—domain verification, and minimal—-disclosure
queries. Existing identity and object registries, whether governmental, financial, enterprise,
or supply—chain, typically rely on siloed databases, classical cryptography, and non—portable
semantics. UDIF replaces these ad hoc structures with a rigorously specified system built
on hierarchical certificates, deterministic canonical encodings, Merkle-committed state
containers, anchored audit logs, and a PQ-secure transport layer.

At a structural level, UDIF organizes participants into a rooted hierarchy of authorities.
A Root Authority defines the cryptographic suite of the domain and issues certificates
to Branch Controllers. Branches operate either in branch—administration mode, where
they manage subordinate branches, or in group—administration mode, where they act as
Group Controllers responsible for User Agents. UAs are the leaf nodes of the hierarchy
and the sole owners of objects. Every entity is represented by a canonical TLV—encoded
certificate signed by its parent, forming a verifiable chain to the Root. Capabilities
and access masks constrain each node’s authority by binding explicit permissions into
certificate and token fields. Objects, registries, membership logs, and transaction logs
are maintained as Merkle—committed containers, with periodic Anchor Records relayed
upstream to provide continuous, tamper—evident auditability. Communication between
any UDIF nodes occurs over TCP tunnels protected by a post—quantum authenticated
handshake, a cSHAKE-based key schedule, RCS—-based AEAD with authenticated headers,
strict sequence and time controls, and an epoch—based asymmetric ratchet for long—lived
branch trunks. Query operations follow a predicate—based minimal-disclosure model, where
entities may learn only Boolean answers or capability—restricted proofs, and cross—domain
requests are governed by bilateral treaties.

The goal of this paper is to give a formal cryptanalysis of UDIF under standard game—based
definitions and the security properties induced by its construction. We present a complete
functional and adversarial model of UDIF, formalize its certificate and capability system,
canonical data model, registry and object commitments, anchored audit chains, transport
handshake and ratchet, and predicate-based query semantics. For each subsystem
we define the precise security goals, including certificate—chain authenticity, capability
soundness and non—escalation, registry and object integrity, anchor—chain consistency,
transport confidentiality and integrity, forward secrecy and post—compromise recovery,
minimal-disclosure privacy, and cross—domain containment. We prove that these properties
hold up to negligible advantage under the cryptographic assumptions underpinning the
UDIF primitives, including ML-DSA or SLH-DSA signatures, ML-KEM or McEliece
encapsulation, RCS or AES-GCM authenticated encryption, SHA3—family hashing, KMAC
authentication, and the indifferentiability of sponge functions.

UDIF builds on design principles shared with other QRCS protocols, including
QSTP, QSMP, MPDC, RCS, and DKTP, while extending them into the identity and
object—provenance domain. Like QSTP, UDIF uses a PQ-secure handshake and AEAD
channel with authenticated headers, strict sequencing, and epoch ratcheting. Like MPDC,
it applies canonical TLV encodings, deterministic Merkle commitments, and capability
masks for authorization. Like QSMP, it uses a post—quantum KEM and signature suite
fixed at compile time to avoid downgrade and parser ambiguity. UDIF’s contribution is to
unify these cryptographic components into a coherent identity and auditability framework
suitable for multi-domain deployments.

The remainder of this paper proceeds as follows. Section 2 fixes notation and cryptographic

preliminaries. Section 3 gives a complete formalization of the UDIF system model,
including entities, certificates, capabilities, registries, logs, anchors, transport, and query
semantics. Section 4 defines the security properties targeted by UDIF. Section 5 states
the cryptographic assumptions used in the analysis. Sections 6 through 8 provide security
proofs for certificates and capabilities, registry and anchor integrity, the transport layer, and
the query and treaty model. Section 9 gives the composition theorem establishing UDIF’s
end-to—end guarantees. Section 10 discusses adversarial work factors and recommended
parameter sets. Section 11 analyzes limitations and implementation considerations.
Section 12 concludes.

1.1 Background and Motivation

Modern digital infrastructure lacks a universal, cryptographically enforced identity sub-
strate capable of representing individuals, institutions, object registries, and asset prove-
nance with strong authenticity, minimal disclosure, and tamper—evident auditability.
Identity systems such as SSNs, KYC registries, directory services, and certificate—based
authentication are fragmented, centralized, or limited in scope, and they lack cryptographic
binding between entities and the objects they own or manage. Provenance systems in
finance, supply chains, and digital assets rely on mutable databases or ledger—like constructs
that expose too much information or lack formal guarantees. As digital interactions
increasingly span jurisdictions and independent administrative domains, a need arises for
a verifiable identity and custody system that preserves privacy, enforces least privilege,
and remains secure against classical and quantum adversaries.

UDIF addresses this need by defining a polymorphic identity and object container model
equipped with post—quantum certificates, capability—scoped authorization, canonical
encodings, Merkle—-committed registries, anchored audit propagation, and a PQ-secure
transport. The system is designed for deployment in adversarial and cross—domain
environments where passive observation, active interference, compromised nodes, treaty
misuse, and cryptanalytic threats must all be assumed.

1.2 Overview of the UDIF Construction

UDIF organizes participants into a hierarchical trust model rooted at a single Root
Authority. Every entity holds a certificate containing a suite identifier, role, serial number,
issuer serial, validity window, public key, capability and access mask fields, and a parent’s
signature. Capabilities are implemented as KMAC-tagged bitmaps that constrain allowable
verbs and scopes. All structures in UDIF, including certificates, objects, registries, logs,
anchors, queries, and treaties, are encoded canonically using TLV encodings with strict
ordering and deterministic minimal-length encodings.

Objects are represented as canonical records containing serials, type codes, creator bindings,
attribute Merkle roots, ownership assignments, and signatures. Each UA maintains a
registry of object digests organized into a Merkle tree, with the registry root periodically
committed to membership logs. GCs and BCs maintain membership and transaction
logs, which are folded into periodic Anchor Records containing Merkle roots and counters.
Anchors propagate upward through the hierarchy, forming a tamper—evident audit chain
to the Root.

Sessions between UDIF nodes run over TCP tunnels protected by a PQ-authenticated
handshake based on KEM encapsulation, digital signatures, nonces, and a transcript
hash. Keys are derived using cSHAKE and used to drive an RCS-based AEAD with
authenticated headers. Strictly monotonic sequence numbers, timestamp windows, and
epoch counters enforce replay and reordering resistance, while long—term branch trunks
employ periodic asymmetric ratchets to provide forward secrecy and post—compromise
recovery.

4 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

Queries operate under a minimal-disclosure predicate model. Predicate families include ex-
istence checks, ownership binding, attribute—bucket membership, and registry membership
proofs. Queries require explicit capabilities and are logged and anchored. Cross—domain
queries flow through bilateral treaties that constrain which predicate families may be
forwarded and audited in both domains.

1.3 Security Objectives of UDIF

UDIF targets the following informal security objectives:

¢ Authenticity of certificates and identities: Only valid parent—signed certificates
may appear in the hierarchy, and no adversary can forge or elevate authority.

e Capability soundness and non—escalation: An entity’s permissions cannot
exceed those granted by its parent or authorized capability tokens.

e Object and registry integrity: Objects, registry states, and ownership histories
cannot be equivocated or rolled back without detection.

¢ Anchor—chain consistency and auditability: Logs and anchor histories cannot
be forked or manipulated without breaking cryptographic assumptions.

e Transport confidentiality and integrity: All messages exchanged between UDIF
nodes remain confidential and tamper—evident under active attacks.

e Forward secrecy and post—compromise recovery: Long-lived branch trunks
gain new entropy through asymmetric ratchets to limit compromise impact across
epochs.

e Minimal disclosure: Adversaries learn only predicate outcomes authorized by
capabilities and cannot infer hidden state or attributes.

e Cross—domain containment: Treaty—mediated interactions reveal nothing beyond
the explicitly permitted predicate families.

These objectives motivate the formal definitions and proofs presented in the remainder of
the paper.

1.4 Roadmap

The remainder of this paper is structured to isolate the cryptographic components of
UDIF, define their security properties, and prove them under standard assumptions.
Section 2 introduces notation, formal models, and the interfaces for the primitives that
UDIF relies upon. Section 3 presents a complete formal system model of UDIF, including
certificates, capabilities, registries, logs, anchor propagation, the transport channel, and
query semantics. Section 4 defines the security goals for each subsystem. Section 5 outlines
the hardness assumptions and models used in the proofs. Sections 6, 7, and 8 contain
the main technical results, giving security proofs for the certificate and capability system,
the registry and anchor architecture, the transport layer, and the query and treaty model.
Section 9 demonstrates how these component results compose into end to end guarantees.
Section 10 discusses parameter choices and adversarial work factors. Section 11 presents
limitations and implementation considerations. Section 12 concludes.

2 Preliminaries and Notation

This section introduces notation, probability models, and cryptographic interfaces used
throughout the analysis. All security statements are with respect to a security parameter
A € N and adversaries with probabilistic polynomial time complexity unless otherwise
stated.

2.1 Basic Notation

Let {0,1}"™ denote the set of all bit strings of length n. Let {0,1}* denote the set of all
finite bit strings. For a string z, the notation |z| denotes its bit length. For bit strings
x and y, the symbol z|ly denotes concatenation. For a probabilistic algorithm A, the
notation y < A(z) denotes running A on input z and obtaining an output sampled from
its internal randomness.

For a set S, the notation x & S denotes sampling z uniformly at random from S. A
function e()) is negligible if for every polynomial p(\) there exists Ay such that e(A) < 1/p(\)
for all A > Ag.

For an adversary A and experiment Exp, the advantage of A is written

Advi,(\)

which denotes the probability that .4 wins the experiment, minus the probability that a
trivial random guess would succeed where applicable.

We use poly(A) to denote any function bounded by a polynomial in A. All algorithms and
adversaries are assumed to run in time poly(X).

2.2 Cryptographic Primitives

This subsection defines the abstract interfaces and security notions for the primitives used
in UDIF. The proofs refer only to these interfaces and not to specific implementations.

Key Encapsulation Mechanism (KEM). A KEM consists of algorithms
(KeyGen, Encaps, Decaps)

where KeyGen outputs a public key and a secret key, Encaps outputs a ciphertext and a
shared secret under the public key, and Decaps recovers the shared secret from the ciphertext
under the secret key. The KEM is IND-CCA secure if no probabilistic polynomial time
adversary with decapsulation oracle access can distinguish the real shared secret from a
random value.

Digital Signature Scheme. A signature scheme consists of
(KeyGen, Sign, Verify)

where Verify outputs accept or reject. The scheme is EUF-CMA secure if no adversary
with adaptive signing oracle access can forge a valid signature on a new message.

Authenticated Encryption with Associated Data (AEAD). An AEAD interface
provides
Enc(k,n,a,m) and Dec(k,n,a,c)

where k is a key, n is a nonce, a is associated data, m is plaintext, and c is ciphertext. The
AEAD must be IND-CPA secure for confidentiality and INT-CTXT secure for integrity.
Associated data must be authenticated and bound into the ciphertext.

6 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

Hash and XOF Functions. UDIF uses the SHA3 family, including SHA3, SHAKE,
cSHAKE, and KMAC. These are modeled either in the standard model or as ideal
permutations where appropriate. We assume collision resistance, preimage resistance, and
indifferentiability properties where required. For a hash function H, the output is written

H(z) €{0,1}"
for a fixed output length n determined by the construction. For XOFs, outputs are variable
length.

2.3 Canonical TLV Encoding

UDIF uses canonical Tag-Length—Value encoding with uvarint tags and lengths. We
formalize this as a deterministic encoding function

CI14N: R — {0,1}*

mapping abstract records to their canonical byte sequences. The following constraints
define the canonical form.

o Tags must appear strictly in ascending numerical order.

o Each tag may appear at most once unless designated as a repeated field.
e Length values must be encoded in minimal uvarint form.

e Fixed length fields must appear as raw bytes.

e UTF-8 strings must be normalized to NFKC prior to encoding.

¢ Nested TLVs must themselves be canonical under this definition.

We assume that C14N is injective on all valid UDIF records. Any deviation from canonical
form results in an invalid encoding. For Merkle commitments, the digest of a record R is
defined as

Digest(R) = H (label||C14N(R))

where the label ensures domain separation. The collision resistance of the Merkle trees
used for registries, logs, and anchors follows directly from the collision resistance of the
hash function combined with injectivity of C14N.

2.4 Adversarial Model and Oracles

We analyze UDIF in a multi party setting with adaptive adversaries capable of interacting
with UDIF nodes at all layers. The adversary controls the network and schedules all
message delivery. The adversary may corrupt nodes, request signatures, decapsulations,
and AEAD encryptions or decryptions under controlled conditions, and submit arbitrary
queries to the UDIF system according to the capabilities it has obtained.

The environment interacts with UDIF through oracles representing the operations available
to entities in the system. These include:

o Certificate issuance oracles for parent nodes.
o Capability issuance and revocation oracles.
e Object creation, update, and transfer oracles.

e Registry and log completion oracles that return state commitments.

o Transport session oracles that simulate the authenticated handshake and record
exchange.

e Query oracles for existence, ownership binding, attribute bucket membership, and
registry membership.

e Treaty forwarding oracles for cross domain predicate evaluation.

The adversary may adaptively choose its queries and may attempt to cause inconsistencies,
equivocations, replay attacks, or unauthorized escalations. The security games defined
in later sections capture the limits of what the adversary can learn or influence without
breaking the underlying cryptographic assumptions.

3 UDIF System Model

This section provides a complete functional model of UDIF. All security definitions and
proofs in later sections are with respect to this model. The model captures the entities,
certificates, capabilities, registries, logs, anchor propagation, transport channels, and query
mechanics described in the UDIF specification.

3.1 Entities and Roles

Let R denote the set of Root Authorities. A Root is a unique element per domain and
defines the cryptographic suite. Let B denote the set of Branch Controllers. Each Branch
B € B operates in exactly one of two modes. In branch administration mode, B manages
subordinate branches. In group administration mode, B serves as a Group Controller. Let
G C B denote the set of all Branches in group administration mode, which we refer to as
GCs. Let U denote the set of User Agents. UAs are leaf entities and are the only holders
of objects. Let O denote the set of object records.

We model Roots, BCs, and GCs as long lived servers that maintain state across sessions.
UAs are modeled as clients that initiate authenticated transport sessions with their
respective GC. BC to BC connections are long term trunks maintained continuously in
the hierarchy. All entities have persistent key material and certificate chains.

3.2 Certificates and Identity Chains
Each entity £ € RUBUU U O holds a certificate

CertE = (S) T', UE7 Uissa tfrom, ttovpk7 e? b7 U)

encoded in canonical TLV form. Here s is the suite identifier. The field r specifies the
entity role. The field og is a unique serial. The field o is the issuer serial, omitted in
Root certificates. The fields (tfom, tto) define the validity window. The field pk is the
public verification key. The field e is the policy epoch. The field b is the capability bitmap
embedded directly into the certificate. The final field o is the parent signature over the
TLV encoding of the certificate fields except the signature itself.

The parent child relation is defined by the issuer serial. A certificate chain for an entity £
is the ordered sequence

Chain(E) = (Certg, Certp,, ..., Certp,)

where P; is the issuer of F and Py is a Root. Verification of a chain requires signature
verification on each link and compliance of roles and capabilities with the UDIF hierarchy
rules.

8 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

3.3 Capabilities and Access Masks

Capabilities are delegated permission tokens issued by parent authorities. A capability
token has the form
Cap = (Ua 45 Oto) Tiss) t; d; T)

where v is the verbs bitmap, ¢ is the scope bitmap, oy, and ojss identify the subject and
issuer, t is the expiration time, and d is the domain separated digest

d = H(label||C14N(v, ¢, 010, Tiss, 1))

The field 7 is a KMAC tag computed under the issuer key. We assume that capabilities
cannot be forged without breaking collision resistance or the KMAC construction.
Access masks are embedded in certificates and constrain attribute level visibility. An
entity may act only if both its certificate mask and its valid capability set permit the
requested predicate. The effective permissions of entity E at time t are the intersection of
the certificate bitmap and all unexpired capabilities issued to E.

3.4 Objects and Registries

Objects are immutable identity containers with mutable state fields. An object record is a
TLV encoded structure
ObJ = (007 T,0C, hAu ou, tC7 tu7 0)

where oo is a 32 byte identifying serial. The field 7 is a type code. The field o¢ is the
creator certificate serial. The field h 4 is the Merkle root of committed attributes. The
field oy is the current owner certificate serial. The fields ¢. and t,, are creation and update
times. The field o is the signature of the current owner over the TLV content.
Each UA maintains a registry which is a Merkle tree over object digests. A registry leaf
encodes

(hO; hU7 f7 t)
where ho is the object digest, hy is the owner certificate digest, f is a flags field, and ¢ is
a timestamp. Leaves are lexicographically sorted by ho. The registry root is

hveg = H (label||C14N(sorted leaves))

Registries are committed by GCs during membership log updates and included in Anchor
Records.

3.5 Logs and Anchor Records

Each GC or BC maintains two append only logs. The membership log records UA and
branch lifecycle events such as enrollment, suspension, revocation, capability grants, and
registry commits. The transaction log records object creations, transfers, attribute updates,
and status changes.

Each log entry is a TLV encoded event with fields for an event code, subject serial, time,
optional data, and a signature. Log entries are hashed into Merkle trees. Let hmnem and
hix denote the Merkle roots for the membership and transaction logs over a given interval.
An Anchor Record has the form

Anch = (UB7 q,t, hrega h’tX7 hmema c, U)

where op is the child serial, ¢ is a sequence number, ¢ is time, Areg, Nix, and hpmem are
Merkle commitments, and ¢ is an optional counter structure. The field o is a signature by
the child.

A parent maintains the last accepted anchor sequence for each child. Upon receiving an
anchor, the parent verifies the signature, checks the sequence number, and appends the
anchor to its log. By induction up the tree, all logs become committed at the Root.

3.6 Transport and Session Layer

Transport sessions run over TCP and use a mutual authentication handshake with KEM
and signature primitives. Let (pka, ska) and (pkp, skp) be long term keys of two peers.
The handshake proceeds by authenticated exchange of nonces, certificates, transcript
signatures, and KEM ciphertexts. The resulting shared secrets are passed through a
c¢SHAKE based key schedule to derive a transmit key, a receive key, and nonces.

Each record transmitted over a session includes an authenticated header containing a flag
field, a sequence number, a timestamp, an epoch counter, and a suite identifier. AEAD
sealing authenticates the header as associated data. The receiver enforces a strict time
window and sequence equality check. A branch trunk employs an asymmetric ratchet
where each side periodically encapsulates fresh KEM material to the peer and derives new
keys, advancing the epoch counter and resetting sequence numbers.

The transport state machine has the states idle, hello sent, hello received, established,
ratcheting, and closed. Failures in certificate validation, replay detection, sequence checks,
or AEAD verification result in immediate session closure and key erasure.

3.7 Query and Treaty Model

UDIF supports four predicate families. For each UA or object identifier and predicate p,
a query is a TLV encoded structure

Q = (O’Q,Cl{,l',p,t,d)

where o is a query identifier, o is a type code, = identifies the subject, p expresses the
predicate parameters, ¢ is an optional time anchor, and d is the capability digest used to
authorize the query.

The predicate families are:

 existence queries, which determine whether an entity exists under a controller,

e ownership binding queries, which test whether a UA is the current owner of an
object,

o attribute bucket queries, which test whether an attribute lies within a predefined
bucket,

e registry membership proofs, which produce yes or no results with optional Merkle
paths.

A GC evaluates a query only if the subject holds a valid capability that authorizes the
predicate type. All queries and responses are appended to the membership log.

Peering treaties define cross domain predicate visibility. A treaty is a bilateral agreement
between two domains and carries a treaty identifier, the two branch serials, a scope bitmap
specifying allowed predicate families, an expiration time, a policy epoch, and signatures
from both domains. Queries permitted by the treaty may be forwarded across a dedicated
transport session between the branches. Both sides log the forwarded query and its
response. No predicates outside the treaty scope may be evaluated across domains.

4 Security Definitions

This section defines the formal security properties required of UDIF. Each definition is
expressed as an experiment between a challenger and a probabilistic polynomial time
adversary A. The adversary is given oracle access matching the UDIF system model and
may adaptively issue queries. All advantages are defined with respect to the security
parameter A.

10 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

4.1 Certificate Chain Authenticity

UDIF requires that no adversary can produce a certificate chain that verifies under the
UDIF rules without being issued by the Root hierarchy. The adversary interacts with
certificate issuance oracles that allow it to request certificates for entities it controls but
does not allow impersonation of parents.

A
Game Gamey,;.

The adversary may adaptively:

e request new child certificates from any parent it legitimately controls,
e query any public certificate verification procedure,

e request revocations or suspensions for certificates it controls.

Finally, A outputs a certificate chain Chain® for some entity E£*. The adversary wins if:

VerifyChain(Chain®) =1 and Chain™ contains a certificate not issued by a legitimate parent.

Certificate Authenticity Advantage.

Adv2 . (\) = Pr[A wins GameZ]

UDIF provides certificate chain authenticity if this advantage is negligible.

4.2 Capability Soundness and Delegation Safety

Capabilities must be unforgeable and must not allow escalation beyond permissions granted
by parents.

A

Game Gamey;,.

The adversary may:
e request capability tokens issued by parents it controls,
e request certificate issuance oracles for its own entities,
e query verification oracles for any capability digest or tag.
Finally, A outputs a capability token Cap™ for some subject E*. The adversary wins if:
e the token verifies under UDIF rules, and

o the effective permissions derived from Cap* exceed the permissions implied by any
valid chain of parents.

Capability Soundness Advantage.

Advép()\) = Pr|A wins GameZA

cap]

UDIF provides capability soundness if this advantage is negligible.

4.3 Object and Registry Integrity

Object integrity ensures that object states cannot be forked or equivocated. Registry
integrity ensures that UA registries cannot be manipulated or contradicted without
detection.

11

Game Game’:

obj—rege Lhe adversary may:

e create objects under UAs it controls,
e request object updates and registry updates,
o request Merkle proofs and registry commitments.
Finally, A outputs two distinct encodings of either:
e an object record for the same serial that both verify under the UDIF rules, or
e a registry state and a Merkle proof that contradict an anchored registry root.

The adversary wins if the challenger verifies both views.

Object and Registry Advantage.
Advi (A) = Pr[A wins Game}

obj—reg objfreg]

UDIF provides object and registry integrity if this advantage is negligible.

4.4 Anchor Chain Soundness and Auditability

Anchor chain soundness guarantees that no adversary can generate two valid but inconsis-
tent anchor histories for the same child or violate the monotonic sequence property.

Game Game;‘}mh. The adversary may:
e observe all anchors produced by honest nodes,
e request anchor verification oracles,
e schedule arbitrary network delivery patterns.
Finally, A outputs either:

e two valid anchor sequences for the same child with inconsistent Merkle roots, or

e a valid anchor with a non monotonic sequence number.

Anchor Soundness Advantage.
Adv . (A) = Pr[A wins GameZ ;]

The anchor system is sound if this advantage is negligible.

4.5 Transport Confidentiality and Integrity

The transport channel must provide confidentiality, integrity, replay resistance, and
authenticated header protection.

12 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

A

conf*

Confidentiality Game Game The adversary may:

 initiate arbitrary sessions with honest nodes,

e observe all ciphertexts and headers,

e request encryptions and decryptions subject to standard IND—CPA restrictions,

« interfere with message ordering and timing.

The adversary chooses mg and my of equal length. The challenger flips a bit b, encrypts
my, under an active UDIF session, and returns the ciphertext. The adversary outputs a
guess b'. The advantage is

1
AdvZ c(\) = Pr[b) = b] — 2’ :

Integrity Game Gamei“;‘t. The adversary may adaptively submit ciphertexts with
arbitrary headers. It wins if any forged record is accepted by an honest node.
UDIF transport is secure if both advantages are negligible.

4.6 Forward Secrecy and Post Compromise Security

Long lived BC to BC trunks use an asymmetric ratchet that provides forward secrecy
across epochs.

Game Gameé. The adversary may:
e compromise session state at some epoch i,
o observe all past and future ciphertexts,
« force ratchet initiations.

The challenger derives new keys at epoch ¢ 4+ 1. The adversary wins if it distinguishes any
ciphertext encrypted under the new epoch keys or decrypts any past epoch ciphertexts.
Forward secrecy holds if this advantage is negligible.

4.7 Query Minimal Disclosure

A query reveals only Boolean predicate outcomes and optional proofs permitted by
capabilities. Hidden state should remain indistinguishable.

Game GameZ,. The adversary chooses two UDIF worlds Wy and W; that differ only in
hidden attributes or registry entries. For all predicate types and all capabilities granted
to A, the predicate evaluations in both worlds must be identical. The challenger picks b,
instantiates world W, and answers all authorized queries. The adversary outputs &’. The
advantage is

AdvA,(A) = P[]t/ = b) — =|.

2

|
Minimal disclosure holds if this advantage is negligible.

4.8 Cross Domain Containment

Cross domain queries must not reveal any information outside the treaty defined predicate
scope.

13

Game GameZ.. The adversary may:
o establish treaties between domains it controls,
o forward queries across domains,
e observe reply logs and anchor records,
e interact with honest GCs through forward and backward tunnels.

The adversary chooses two worlds that differ only in predicate responses not allowed by
the treaty scope. The challenger flips a bit b, chooses one world, and answers all cross
domain queries permitted by the treaty. The adversary outputs &'. The advantage is

AdvA (A) = |Pr[b =b] — ;‘ .

UDIF satisfies cross domain containment if this advantage is negligible.

5 Cryptographic Assumptions

The security of UDIF relies on the hardness of several well studied cryptographic problems
and on the standard security definitions for the primitives used throughout the system.
This section states these assumptions and the cryptographic models used in the proofs.

5.1 Primitive Security

The following assumptions are required for the reductions used in later sections.

IND CCA Security of the KEM. Let KEM = (KeyGen, Encaps, Decaps) be either
ML KEM or Classic McEliece. The KEM provides IND CCA security if no probabilistic
polynomial time adversary with access to a decapsulation oracle can distinguish the shared

secret generated by Encaps from a uniform string of the same length except with negligible
probability. Formally, for any adversary A,

AdVINECA(A) = negl(N).

EUF CMA Security of the Signature Scheme. Let SIG = (KeyGen, Sign, Verify)
be either MLL DSA or SLH DSA. The scheme is existentially unforgeable under adaptive
chosen message attack if no adversary with oracle access to Sign can produce a valid
signature on any message that was not previously submitted. Formally,

AdvEFMA(A) = negl(\).

Security of the AEAD Construction. Let AEAD = (Enc, Dec) be the authenticated
encryption scheme used in UDIF, based on RCS and KMAC. The AEAD must satisfy the
following properties:

e IND CPA confidentiality, meaning that ciphertexts reveal no information about
plaintexts beyond their length,

e INT CTXT integrity, meaning that no forgery can be accepted by a decrypting party.
For any adversary A,

Advx\'E%SPA(A) = negl(\) and Ade{“,ETA:STXT(A) = negl(A).

14 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

Collision Resistance of SHA3 and Merkle Trees. For the hash function H used in
UDIF (SHA3 256 or cSHAKE 256), no adversary can find distinct inputs = and y such
that

except with negligible probability. Since registries, logs, and anchor structures use Merkle
constructions with domain separated hashes, collision resistance of H implies collision
resistance of all Merkle commitments.

Indifferentiability of Sponge Constructions. SHAKE, cSHAKE, and KMAC are
modeled as indifferentiable from random oracles or ideal permutations when used in XOF
or MAC mode. This supports the reductions used for the ratchet KDF, capability KMAC
tags, and authenticated headers.

5.2 Modeling Assumptions

The analysis uses the following additional modeling assumptions.

Ideal Permutation Model for Keccak. When required, SHA3 based primitives are
modeled using the ideal permutation model where the underlying Keccak permutation is
treated as a uniformly random bijection. This assumption is standard for indifferentiability
proofs of sponge based constructions.

Random Oracle Model for cSHAKE and KMAC. When used as key derivation
functions or MAC generators, cSHAKE and KMAC are treated as random oracles or
random oracle like objects. This is consistent with their security analyses and the domain
separation rules in UDIF.

Deterministic and Injective Canonical Encoding. The canonical TLV encoding
function C14N is assumed to be deterministic and injective over the domain of valid UDIF
records. This prevents malleability attacks based on alternate encodings and is required
for collision resistance of committed structures.

Merkle Tree Soundness. Merkle trees are assumed to be sound. A valid Merkle
proof authenticates exactly one leaf and no adversary can construct inconsistent proofs for
different leaves without finding a hash collision.

Deterministic Signature and Certificate Verification Model. Verification pro-
cedures for signatures, certificates, logs, and anchors are assumed to be deterministic
functions of their inputs. No side channels or timing leakage are modeled.

6 Security of Certificates and Capabilities

This section proves that UDIF certificate chains cannot be forged and that capabilities
cannot be constructed or escalated beyond what parent authorities authorize. The proofs
rely on the EUF CMA security of the signature scheme and the unforgeability of KMAC
tags.

15

6.1 Certificate Chain Authenticity Theorem

Theorem 1. Let A be any probabilistic polynomial time adversary in the certificate
authenticity game Gameért. Suppose the signature scheme used for UDIF certificates is
EUF CMA secure. Then any adversary that forges a valid UDIF certificate chain that was
not issued by the Root hierarchy can be used to construct an adversary that breaks the EUF
CMA security of the signature scheme. Therefore,

AdvA

cert

(A) < AdVEEMA(N) + negl(N).

6.2 Proof of Chain Authenticity

Proof. The proof follows a hybrid argument. Let A be an adversary that wins the certificate
authenticity game. We construct an adversary B that breaks the signature scheme.

Hybrid HO. This is the real certificate authenticity game. The challenger issues
certificates by signing the TLV encodings using the real signing key. The adversary
outputs a forged chain.

Hybrid H1. The challenger simulates all certificate issuance using the signature oracle of
the EUF CMA challenger. Since signatures are always produced by the oracle on honestly
formed messages, the view of A is identical to the real world.

Hybrid H2. When A outputs a forged certificate chain, at least one certificate in the
chain must contain a signature that the challenger did not request from the signing oracle.
Otherwise the certificate must originate from a legitimate parent and cannot violate the
chain relation. Hence the bottom certificate contains a new signature on a message not
requested previously.

Conclusion. The adversary B forwards this signature and the signed message to the
EUF CMA challenger as a forgery. Since B perfectly simulates the environment, the
success probability of B is identical to that of A up to negligible error. This concludes the
reduction. O

6.3 Capability Unforgeability and Non Escalation

Theorem 2. Let A be an adversary in the capability game Gameép. Suppose KMAC is a

secure MAC under chosen message attack and the signature scheme is EUF CMA secure.

Then any adversary that forges an effective capability not implied by parent permissions

yields an adversary that either forges a KMAC tag or forges a signature. Therefore,
Adv2 () < AdviBSIF) + AdvEE " SMA(N) + negl()).

cap
Proof. A forged capability must either contain:
e avalid KMAC tag under the issuer key that was never issued by the parent, or

o a reference to a certificate with an inflated capability bitmap not signed by the
parent.

The first case gives a direct MAC forgery. We construct an adversary that uses the
capability forger to produce a new digest and tag pair not requested during oracle queries.
The second case implies that the adversary has produced a certificate whose embedded
permission bits exceed those of its parent. This requires forging a signature on a certificate
TLV that the legitimate parent never signed. Hence this gives a signature forgery.

16 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

In each case the reduction is straightforward because the canonical encoding of the
capability or certificate is deterministic and injective. This allows extraction of the forged
message on which the adversary succeeded. Therefore the advantage in forging or escalating
capabilities is bounded by the sum of the advantages in forging KMAC tags or signatures,
which are negligible. O

7 Security of Objects, Registries, and Anchors

This section analyzes the integrity guarantees provided by UDIF for object records, UA
registries, and the anchored audit chain. Each result follows from the collision resistance
of the hash function, the deterministic canonical encoding, the EUF CMA security of
signatures, and the append only property of logs. Together these components ensure that
no adversary can produce conflicting object states, equivocate registry roots, or create
inconsistent anchor sequences without breaking one of the underlying assumptions.

7.1 Object Record Integrity

Theorem 3. Let A be an adversary in the object integrity game. Suppose the hash function
used for object digests and attribute commitments is collision resistant and the signature
scheme is EUF CMA secure. Then any adversary that produces two distinct valid object
records for the same serial, or produces a valid object record with an invalid creator or
owner binding, can be used to either find a hash collision or forge a signature. Therefore,

Advzi(A) < AdvER(A) + Advgid M) + negl (V).

Proof. An object record includes a serial, type code, creator digest, attribute Merkle root,
current owner serial, timestamps, and a signature by the owner. The digest of the object is

ho = H(label||C14N(Obj)).
A successful forgery must satisfy one of the following:

1. Two different TLV encodings Obj and Obj’ yield valid digests for the same serial.
Since C14N is injective, this gives a collision in H.

2. A forged object record binds a creator or owner that never signed the record. This
implies that the adversary has produced a valid signature on a message not signed
by the legitimate owner, violating EUF CMA security.

3. A forged attribute Merkle root corresponds to a tree that does not match any
attribute set produced by the legitimate creator. This again implies a hash collision
in either the leaf hashes or internal nodes.

Since these are the only ways to construct a conflicting or invalid object record, the
adversary does not win the game except with negligible probability. O

7.2 Registry Consistency and Non Repudiation

Theorem 4. Let A be an adversary in the registry consistency game. Assume that the
hash function is collision resistant and the membership logs are append only. Then any
adversary that produces two distinct registry states for the same UA and same time, or
contradicts an anchored registry root using a forged Merkle proof, can be used to find a
hash collision or to violate log consistency. Therefore,

Advd (A) < AdvER(A) + negl()).

reg

17

Proof. A UA registry is a Merkle set of object digests. The root is
hveg = H (label||C14N(sorted leaves)).
The adversary may attempt the following attacks:

e Produce two Merkle trees with different leaves but identical root values. Since the
canonical ordering of leaves is deterministic, this implies a collision in H.

e Produce a Merkle proof for an object that is not in the registry. A proof includes
sibling hashes along a path. A false proof must either collide with an existing leaf or
recreate an internal Merkle node without knowing the correct child. Either condition
yields a collision in H.

e Contradict an anchored root by producing a registry state that does not match
the root already sent to the GC and embedded in the latest Anchor Record. Since
anchored states are signed and logs are append only, contradicting an anchor requires
either forging a signature or generating inconsistent Merkle roots.

Thus any successful attack against registry integrity implies either a hash collision or a
break of append only logs, both of which are ruled out by assumption. O

7.3 Anchor Chain Soundness

Theorem 5. Let A be an adversary in the anchor soundness game. Assume the hash
function is collision resistant and the signature scheme is EUF CMA secure. Then any
adversary who constructs two valid but inconsistent anchor sequences for the same child,
or any anchor that violates monotonic sequence properties, can be reduced to a collision
attack or a signature forgery. Therefore,

Adv o (A) < AdVER(N) + AdvETMA(N) + negl()).

Proof. An Anchor Record binds together the registry root, transaction root, membership
root, and counters under a child signature. Let two anchors for the same child be

_ 1 1 1
AnChl - (UBaqlatla hreg7 htxa hmemvclygl)v

Anchy = (05, G2, ta, hieg, P, Pinems 2, 02).
The adversary wins if:

e g1 = g2 but the Merkle roots differ,

e g1 < g2 yet the roots contradict the append only log semantics,

o the signature on either anchor verifies but does not correspond to a legitimate child,

o the adversary produces a root that matches the parent’s expectations while reflecting
inconsistent underlying logs.

Case analysis:

1. If two anchors with equal sequence numbers have different roots, the attacker has
constructed two different Merkle commitments with identical signed metadata. This
is impossible without forging signatures or finding hash collisions.

2. If the attacker presents a later anchor whose roots contradict earlier Merkle roots,
they must contradict the append only nature of logs. The only way to achieve this is
to construct a false Merkle root or forge a signature.

18 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

3. If the signature verifies but was not produced by the legitimate child, this is an EUF
CMA forgery.

Thus, the adversary cannot produce inconsistent anchors without breaking the collision
resistance of the hash function or the unforgeability of signatures. O

8 Transport Layer Security

This section establishes confidentiality, integrity, replay protection, ordering guarantees,
and forward secrecy for UDIF transport sessions. The analysis applies to both UA to GC
sessions and BC to BC trunk sessions, with the latter supporting periodic asymmetric
ratchets.

8.1 Handshake Security

Theorem 6. Let A be any probabilistic polynomial time adversary in the UDIF handshake
game. Suppose the KEM is IND CCA secure and the signature scheme is EUF CMA
secure. Then any adversary that distinguishes the UDIF session key from a random string,
or impersonates either party in the handshake, can be used to break either the IND CCA
security of the KEM or the EUF CMA security of the signature scheme. Therefore,

AdVEL(A) < AdVIRRiS“A () + AdVEEMA(X) + negl(N).

Proof. The UDIF handshake exchanges nonces, certificates, signatures, and two KEM
ciphertexts. Key derivation is

IKM = ss4||ssg||nonce||nonceg||transcript__hash.
If an adversary distinguishes the derived key from random, then either:

e one of the KEM shared secrets has been distinguished from random, contradicting
IND CCA security, or

o the adversary has impersonated a peer by forging the signed transcript, contradicting
EUF CMA security.

Since both KEM contributions are included, the adversary must break at least one of
the primitives to win. The random oracle and transcript binding eliminate reflection and
unknown key share attacks. All other paths to advantage lead to negligible probability. [

8.2 Record Confidentiality and Integrity

Theorem 7. Let A be an adversary in the UDIF record security game. Suppose the
AEAD construction is IND CPA and INT CTXT secure and the header is authenticated
as associated data. Then UDIF records are confidential and unforgeable under chosen
ciphertext attacks, even in the presence of adversarial control of network scheduling,
including reordering and chosen ciphertext submission. Therefore,

Adviec(V) < Advagas (V) + Advagag < (A) + negl(A).
Proof. Each UDIF record is encrypted as

¢ = Enc(k,n, AAD, m)

19

where the authenticated header AAD includes the sequence number, timestamp, epoch,
and suite identifier. If an adversary distinguishes the ciphertext, it breaks IND CPA
confidentiality of the AEAD. If it causes an honest node to accept a forged record, it
breaks INT CTXT integrity.

Authenticated headers bind ordering, time, and suite information into the ciphertext.
Because AAD is covered by the MAC, the adversary cannot modify sequence, epoch, or
time fields without detection. Chosen ciphertext attacks cannot succeed because decryption
rejects any record that fails either AEAD verification or header constraint checks.
Therefore the advantage of a successful attack is negligible. O

8.3 Replay, Reordering, and Time Window Enforcement

Theorem 8. Let A be an adversary that controls the network and attempts replay or
reordering attacks. Suppose timestamps are checked within a bounded window and sequence
numbers must increase monotonically. Then any adversary that causes an honest node to
accept a replayed or reordered record must either forge a valid AEAD ciphertext or break
the header authentication. Therefore,

Advia,iay (V) < AdVAERS T () + negl()).

Proof. A UDIF receiver accepts a record only if:
seq = last_seq + 1, [now — utctime| < 60, epoch = current_epoch,

and the AEAD tag verifies.

For a replayed record, the sequence number will not match. For a reordered record, the
sequence number will not equal the expected value. For an out of window timestamp, the
time check fails. Any tampering with these header fields requires forging a valid AEAD
tag, since AAD is included in the MAC. Thus the only winning path for A is to break
INT CTXT integrity, which is negligible by assumption.

Therefore replay and reordering attacks are prevented except with negligible probability. [

8.4 Forward Secrecy and Post Compromise Security of Trunks

Theorem 9. Let A be an adversary in the forward secrecy game. Suppose the asymmetric
ratchet uses fresh KEM encapsulations and updates keys according to

IKM; 11 = ssis 4 ||ss2 ., ||mal mp||state;,

followed by ¢SHAKE based expansion. If the KEM is IND CCA secure and the hash
function is collision resistant, then compromising all secret state at epoch i does not enable
the adversary to derive keys from epoch i + 1 or decrypt ciphertexts from earlier epochs.
Therefore,

AdvA(\) < AdviRRICA () + negl()).

Proof. The ratchet introduces new entropy from two independent KEM contributions at
each epoch. If an adversary compromises state;, the derivation of state; ;1 still includes
ssf‘_H and ssﬁl, which require breaking the KEM to predict. Because the ratchet discards
all prior keys and state, recovering state; does not reveal past secrets without inverting
the hash function or forging earlier KEM ciphertexts.

Backward secrecy: Past keys depend on state; ; which is erased, and reversing the hash
chain requires breaking preimage resistance.

Forward secrecy: Future keys depend on fresh KEM encapsulations that are indistinguish-
able from random without breaking IND CCA security.

Thus UDIF trunk sessions achieve forward secrecy and post compromise security. O

20 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

9 Security of Queries and Peering Treaties

This section analyzes the privacy and containment guarantees of the UDIF query system.
Queries operate under a predicate based minimal disclosure model, and cross domain
forwarding is constrained by bilateral treaties. The results below show that no adversary
can learn information beyond the allowed predicates unless it breaks the collision resistance
of hash commitments, the unforgeability of capabilities, or the soundness of anchor
propagation.

9.1 Minimal Disclosure for Local Queries

Theorem 10. Let A be an adversary in the minimal disclosure game. Suppose the hash
function used for attribute commitments and registries is collision resistant, and Merkle
proofs are sound. Consider two worlds Wy and W1 that differ only in hidden attributes
or registry entries, and agree on all predicate evaluations permitted by the adversary’s
capabilities. Then any adversary that distinguishes which world it interacts with can be
used to either find a hash collision or produce inconsistent Merkle proofs. Therefore,

AdvA,(\) < AdVER(N) + negl()).
Proof. A query response contains only:
verdict € {0, 1, 2}, proof, signature.
If the adversary distinguishes Wy from Wi, then either:

e the predicate outcome differs, which contradicts the game definition, or

e the proof structure reveals information about hidden state.

A proof is a Merkle authentication path. If the adversary detects a difference in paths
without a predicate change, the two worlds must use different leaves or internal nodes that
hash to the same root. Since the Merkle root is fixed by anchored registry commitments,
this implies either:

1. a collision in H, or

2. an invalid proof that contradicts the Merkle construction.

Thus no distinguishing strategy exists except by breaking the hash function. Hence the
advantage is negligible. O

9.2 Cross Domain Query Containment

Theorem 11. Let A be a cross domain adversary with treaty mediated access to a foreign
domain. Suppose capabilities are unforgeable and the anchor system is sound. Then no
adversary can learn information outside the predicate families permitted by the treaty scope
without forging either a capability token, a certificate, or an anchor. Therefore,

AdvA (N) < AdvEe () 4+ AdvSuMd(\) + negl()).

cdc cap anch

Proof. A treaty specifies a scope bitmap indicating the allowed predicate types. The
evaluation procedure is:

1. the origin GC validates the caller capability,

2. the GC checks that the predicate type is allowed by the treaty,

21

3. the GC forwards the query to the treaty peer,
4. the peer evaluates the predicate locally,
5. both sides log the query and response.
If an adversary extracts additional information, then one of the following must occur:
o the adversary submitted a predicate not covered by its capability bitmap,
e the adversary submitted a predicate not covered by the treaty bitmap,
o the foreign GC evaluated a query outside the treaty scope,
e the adversary suppressed or altered a logged predicate without detection.

The first two cases imply forging a capability digest or KMAC tag. The third case implies
forging an anchor or altering logs, because query evaluations are logged and anchored in
both domains. The fourth implies either breaking collision resistance of the membership
log tree or producing a forged anchor.

Thus any violation of containment reduces to either capability forgery or anchor equivoca-
tion. Both are negligible by assumption. O

9.3 Auditability of Query Flows

Theorem 12. Let A be an adversary attempting to repudiate treaty interactions or suppress
evidence of cross domain queries. Suppose the membership logs and anchor chains are
append only and collision resistant. Then no adversary can alter or remove evidence of
a query, or present an inconsistent audit record across domains, without breaking hash
collision resistance or anchor soundness. Therefore,

AdvZ 4 (A) < AdvER(A) 4 AdvEUMd()) + negl(N).

Proof. Each query produces a log entry in both the origin and treaty peer domains. These
entries include:

e a digest of the query,

e a type code,

o the capability reference,

e a verdict,

e a timestamp,

 a signature of the GC or BC.

Later, both logs are aggregated into the Merkle roots of Anchor Records. For the adversary
to suppress or alter evidence of treaty interactions, it must either:

1. remove or alter a logged entry while preserving the Merkle root, or
2. produce two anchor sequences with contradictory log roots.

The first case implies a collision in H, because log entries are canonical and the Merkle
root must remain unchanged. The second implies an anchor forgery or a break of append
only log semantics. Both are ruled out by collision resistance and anchor soundness.

Therefore all treaty interactions are non repudiable and the adversary cannot produce
inconsistent audit trails. O

22 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

10 Composition and End to End Security

This section provides a system level view of UDIF security and shows how the local
guarantees proven in earlier sections compose into global security properties for full UDIF
deployments. The intent is to demonstrate that UDIF behaves as a secure identity,
authorization, and provenance framework when all components operate together as
specified.

10.1 Composition Framework

We analyze UDIF as an interactive multi party protocol executed among Roots, Branch
Controllers, Group Controllers, User Agents, and the adversarial environment. The
execution model consists of:

¢ long term state held by Roots, BCs, and GCs,

o short lived sessions between UAs and their GCs,
o long lived trunk sessions between BCs,

e certificate issuance events,

e capability delegation and revocation events,

e object creation, update, and transfer events,

e registry and log updates with periodic anchoring,

e query evaluations with optional treaty forwarding.

Each component has already been shown to satisfy its respective security definition. To
compose these guarantees, we use the following framework.

Independence of Subsystems. Certificates, capabilities, registries, anchors, and
transport sessions operate with cryptographically independent keys and nonces. No
key material is shared across primitives. This ensures that the failure of one subsystem
cannot be used to attack another, except through violations already ruled out by reductions.

Canonical Encoding and Domain Separation. All committed structures are encoded
with canonical TLV encoding under strict labels. The domain separation labels ensure that
outputs of hash and MAC functions cannot be confused or substituted across contexts.
This removes cross protocol interactions that commonly complicate composition.

Monotonicity of State. Logs, registries, and anchor chains are append only. The
monotonic nature of their Merkle roots ensures that later states cannot contradict earlier
states without breaking collision resistance. This provides temporal structure that simplifies
global reasoning.

Authenticated Binding of Components. Certificates bind identity, permissions, and
suites. Anchors bind logs. Transport binds time, sequence, and epoch metadata into
AEAD associated data. Queries bind predicate semantics to capability tokens. These
authenticated bindings enable modular composition proofs.

23

Adversarial Scheduling and Concurrency. The adversary controls message schedul-
ing but does not break the cryptographic assumptions. UDIF components are sequentially
composable since adversarial scheduling cannot remove authenticated bindings or violate
monotonicity.

10.2 Main End to End Security Theorem

Theorem 13. Let A be any probabilistic polynomial time adversary interacting with a full
UDIF deployment under the system model described above. Suppose the signature scheme
is EUF CMA secure, the KEM is IND CCA secure, the AEAD construction provides IND
CPA and INT CTXT security, the hash function is collision resistant, and Merkle trees
are sound. Then the global advantage of A in violating any UDIF security goal is bounded
by the sum of the advantages in breaking these primitives. Formally,

Advinie(A) < AdvET " SMA)+ AV EA (A) FAVRIDSPA (A +AdVRERS TXT (M) +AdVER (A)+-negl(N).

Proof. Every global UDIF failure corresponds to a violation of one of the local security
properties proven earlier. We consider the categories of global failures and apply reduction
arguments.

Identity or permission failures. Certificate chain authenticity and capability sound-
ness have already been reduced to EUF CMA and MAC unforgeability. Thus any attempt
to impersonate an entity, escalate privileges, or inject unauthorized identity material
reduces to signature or MAC forgery.

Object or registry failures. Contradictory object states or inconsistent registry views
reduce to hash collisions or signature forgeries. All registry states are Merkle committed
and included in anchored logs which are append only.

Anchor chain failures. Any equivocation of logs or anchors also reduces to either a
hash collision or a signature forgery. The monotonic sequence property enforces unique
progression.

Transport failures. Confidentiality and integrity failures reduce to breaking IND CPA
or INT CTXT security of the AEAD or IND CCA security of the KEM. Replay and
reordering attacks reduce to INT CTXT because all header metadata is authenticated.

Query and treaty failures. Minimal disclosure failures reduce to hash collisions in
committed structures. Treaty scope violations reduce to capability or certificate forgeries, or
anchor equivocation. All query flows are logged, and logs are anchored, so any suppression
or modification of evidence reduces to hash or signature forgery.

Composition. Since each subsystem operates under independent keys and is protected
by authenticated outputs, no combined attack provides more advantage than the sum of
the advantages for each primitive. All reductions are tight up to negligible loss due to
simulation overhead.

Thus the adversary cannot violate any global UDIF security property without breaking at
least one underlying primitive. The right hand side bounds the adversarial advantage by
the sum of negligible values, completing the proof. O

24 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

11 Adversarial Work Factors and Parameter Choices

This section provides concrete security estimates for the cryptographic primitives used
in UDIF and discusses how the recommended parameter sets contribute to the overall
security margin. Although the formal proofs rely on asymptotic assumptions, a deployment
requires concrete work factor estimates against the best known classical and quantum
adversaries.

11.1 Work Factor Estimates

UDIF supports two signature families (ML DSA and SLH DSA), two KEM families (ML
KEM and Classic McEliece), and a sponge based AEAD (RCS with KMAC) built upon
SHA3. The security levels of these primitives are well understood.

ML KEM. ML KEM at level 5 offers an estimated cost of at least 22%¢ classical operations
and 2'?8 for quantum search type adversaries. The best known lattice attacks, including
primal and dual attacks, remain significantly above the 256 bit classical security target for
the recommended parameters.

Classic McEliece. Classic McEliece with binary Goppa codes remains resistant to both
classical and quantum structural attacks. The work factor is conventionally estimated at
2256 for level 5 parameters. No subexponential quantum attack is known.

ML DSA. ML DSA at level 5 provides approximately 22°6 classical security. Quantum
attacks based on Grover’s algorithm reduce the security margin to roughly 2'28 but remain
at or above the desired requirement for long term identity and audit preservation.

SLH DSA. SLH DSA, based on hash based signatures, offers concrete security equal
to the collision and preimage security of the underlying hash function. With SHA3 256,
this is at least 2'2® for collision resistance and 22°6 for preimage resistance. The overall
signature scheme inherits the lower bound.

Rijndael based RCS and KMAC. The wide block RCS construction operates over a
256 bit capacity and uses sponge permutations based on Keccak. Keccak 1600 provides
at least 22°6 security for preimage and related forging attacks in its capacity constrained
modes. The indifferentiability of KMAC and ¢SHAKE bounds MAC forging advantages
by roughly 27256,

Merkle Trees and SHA3 Commitments. Registry and anchor commitments use
SHA3 256. Collision resistance is 2128, and preimage resistance is 22°6. Since the anchor
chain extends indefinitely, registry and anchor proofs inherit the long term binding
properties of SHA3.

Taken together, the adversarial work factor required to violate UDIF in any subsystem is
dominated by the smallest of the primitive security levels, which is at least 2'28 in the
quantum setting and at least 22°¢ in the classical setting. UDIF therefore matches or
exceeds the standard 128 bit post quantum security target across all families.

11.2 Discussion of Suite Configurations

A UDIF suite specifies a complete set of cryptographic primitives selected at compile
time. The choice of suite impacts performance, bandwidth, audit durability, and long term
cryptographic confidence.

25

Lattice based suite. An ML KEM plus ML DSA suite yields the smallest certificate
and anchor sizes and the fastest handshake operations. This configuration is suitable for
high throughput deployments. Its long term quantum security rests on the hardness of
module lattice problems.

Hash based suite. An ML KEM plus SLH DSA suite provides maximal conservatism
for signatures, since SLH DSA reduces to hash based hardness alone. Signature sizes and
verification costs are larger but provide high assurance for domains requiring multi decade
audit durability.

Code based suite. A McEliece plus ML DSA suite offers very high security margins for
KEM operations at the cost of larger public keys. This configuration suits deployments
where bandwidth is abundant and the long term failure probability must be minimized.

AEAD and hash families. All suites use RCS plus KMAC for AEAD and SHA3 256
for commitments. These primitives balance performance, security, and implementation
simplicity and remain conservative under both classical and quantum models.

Tradeoffs between suites do not affect the validity of earlier proofs. All suites provide at
least 128 bit post quantum security and at least 256 bit classical security.

12 Limitations and Discussion

This section discusses the limitations of the UDIF security model, including modeling
choices, trust assumptions on domains, and caveats for real world deployment. While the
formal analysis covers the core cryptographic mechanisms, some classes of attacks are
outside scope and must be addressed by implementation policy or environment constraints.

12.1 Modeling Limitations

The formal model assumes that all cryptographic primitives behave according to their
idealized security assumptions. Several classes of attacks remain outside the present
analysis.

Side channel leakage. The analysis assumes that all cryptographic implementations
operate in constant time and do not leak key dependent information. Timing attacks,
power analysis, and fault attacks must be mitigated at the implementation level.

Random number generation. The model assumes access to high quality randomness.
Failures in random number generation can compromise key generation, signatures, and
KEM security but are not modeled.

Domain trust assumptions. The analysis assumes correct Root behavior. A malicious
or compromised Root can issue arbitrary certificates, override capabilities, and alter anchor
histories. Root trust is a global assumption inherent to the UDIF' hierarchy.

Physical access and endpoint compromise. UDIF does not protect against adver-
saries with physical access to a UA or GC endpoint. Compromise of endpoint state falls
outside the protocol model and must be addressed by operational controls.

26 A Formal Cryptanalysis of the Universal Digital Identity Framework (UDIF)

Out of band policy failures. Policies enforced by access masks and capabilities assume
correct administrative behavior. Errors in policy configuration or human oversight are
outside scope.

The following subsection will address deployment caveats, operational concerns, and
mitigation strategies for environments where these limitations may arise.

27

References

1.

National Institute of Standards and Technology (NIST). FIPS 202: SHA-3 Stan-
dard: Permutation-Based Hash and Ezxtendable-Output Functions. U.S. Department
of Commerce, 2015. Available at: /mnt/data/udif_specification.pdf.

National Institute of Standards and Technology (NIST). FIPS 203: Module-Lattice-
Based Key Encapsulation Mechanism (ML-KEM). U.S. Department of Commerce,
2024. Available at: https://doi.org/10.6028/NIST.FIPS.203.

National Institute of Standards and Technology (NIST). FIPS 20/4: Module-Lattice-
Based Digital Signature Standard (ML-DSA). U.S. Department of Commerce, 2024.
Available at: https://doi.org/10.6028/NIST.FIPS.204.

National Institute of Standards and Technology (NIST). SP 800-185: SHA-3 De-
rived Functions: ¢cSHAKE, KMAC, TupleHash, and ParallelHash. U.S. Department
of Commerce, 2016. Available at: https://doi.org/10.6028/NIST.SP.800-185.

Bertoni, G., Daemen, J., Peeters, M., and Van Assche, G. Keccak Specifications
and Implementations. NIST, 2012. Available at: https://doi.org/10.6028/NI
ST.SP.800-185.

. Underhill, J. G. Unidversal Digital Identity Framework (UDIF) Specification.

Quantum Resistant Cryptographic Solutions Corporation, 2025. Available at:
/mnt/data/udif_specification.pdf.

. Underhill, J. G. RCS: A Wide-Block Sponge-Based AEAD Construction. Quantum

Resistant Cryptographic Solutions Corporation, 2024. Available at: https://wuw.
grcscorp.ca.

. Underhill, J. G. Quantum Secure Tunnelling Protocol (QSTP) Specification.

Quantum Resistant Cryptographic Solutions Corporation, 2024. Available at:
https://www.qrcscorp.ca.

/mnt/data/udif_specification.pdf
https://doi.org/10.6028/NIST.FIPS.203
https://doi.org/10.6028/NIST.FIPS.204
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
https://doi.org/10.6028/NIST.SP.800-185
/mnt/data/udif_specification.pdf
https://www.qrcscorp.ca
https://www.qrcscorp.ca
https://www.qrcscorp.ca

	Introduction
	Background and Motivation
	Overview of the UDIF Construction
	Security Objectives of UDIF
	Roadmap

	Preliminaries and Notation
	Basic Notation
	Cryptographic Primitives
	Canonical TLV Encoding
	Adversarial Model and Oracles

	UDIF System Model
	Entities and Roles
	Certificates and Identity Chains
	Capabilities and Access Masks
	Objects and Registries
	Logs and Anchor Records
	Transport and Session Layer
	Query and Treaty Model

	Security Definitions
	Certificate Chain Authenticity
	Capability Soundness and Delegation Safety
	Object and Registry Integrity
	Anchor Chain Soundness and Auditability
	Transport Confidentiality and Integrity
	Forward Secrecy and Post Compromise Security
	Query Minimal Disclosure
	Cross Domain Containment

	Cryptographic Assumptions
	Primitive Security
	Modeling Assumptions

	Security of Certificates and Capabilities
	Certificate Chain Authenticity Theorem
	Proof of Chain Authenticity
	Capability Unforgeability and Non Escalation

	Security of Objects, Registries, and Anchors
	Object Record Integrity
	Registry Consistency and Non Repudiation
	Anchor Chain Soundness

	Transport Layer Security
	Handshake Security
	Record Confidentiality and Integrity
	Replay, Reordering, and Time Window Enforcement
	Forward Secrecy and Post Compromise Security of Trunks

	Security of Queries and Peering Treaties
	Minimal Disclosure for Local Queries
	Cross Domain Query Containment
	Auditability of Query Flows

	Composition and End to End Security
	Composition Framework
	Main End to End Security Theorem

	Adversarial Work Factors and Parameter Choices
	Work Factor Estimates
	Discussion of Suite Configurations

	Limitations and Discussion
	Modeling Limitations

	References

